1
|
Zhang C, Xu G, Zhao W, Li X, Zheng M, Zhou Y, Li J, Li Q. Palladium-Catalyzed Enantioselective Arylative Dearomatization of Naphthols and Phenols for Constructing Quinazoline-Containing Spirocycles. Angew Chem Int Ed Engl 2025:e202503359. [PMID: 40296728 DOI: 10.1002/anie.202503359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
We report a palladium-catalyzed enantioselective arylative dearomatization of phenols and naphthols, demonstrating a broad substrate scope and excellent functional group tolerance. This approach enables the efficient construction of a diverse library of quinazoline-containing spirocyclic compounds, featuring enantioenriched, three-dimensional molecular architectures through the strategic integration of quinazolinone and spirocyclic frameworks. The successful transformation of planar aromatic precursors into complex three-dimensional molecular architectures using our developed methodology was further validated by principal moment of inertia (PMI) calculations. Additionally, we systematically evaluated the antiproliferative potential of the synthesized compounds against two representative cancer cell lines: Mino (human mantle cell lymphoma) and MV4-11 (human acute myeloid leukemia), revealing that compound (S)-4ac, characterized by well-defined stereochemistry and structural novelty, exhibited significantly enhanced antiproliferative efficacy against both cancer cell lines, with IC50 values 0.9 µM and 0.5 µM, respectively. In addition, flow cytometry quantification and western blot analysis showed that these compounds induced apoptosis through caspase activation and mitochondrial dysfunction. These results demonstrated (S)-4ac as a highly promising lead compound for further anticancer drug development.
Collapse
Affiliation(s)
- Chiyue Zhang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Gaoya Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wenlu Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xutong Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingyue Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yubo Zhou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jia Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, 528400, China
- The National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Qi Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
2
|
Nan J, Yang S, Huang G, Fan L. Radical-mediated chemo-divergent recyclization of 1,2,3,4-benzothiatriazine-1,1-dioxides: alkyl migration and dearomatization. Chem Commun (Camb) 2025; 61:5503-5506. [PMID: 40100163 DOI: 10.1039/d5cc00008d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
A divergent denitrogenation/recyclization of 1,2,3,4-benzothiatriazine-1,1-dioxides is disclosed, including C(sp2)-alkyl transposition and aniline dearomatization. Regarding the alkyl migration process, a rare radical-mediated model is presented. Synthetically, sterically-congested biaryl sultams and ortho-all carbon quaternary stereocenter-substituted imines are expeditiously assembled in a simple reaction system. Mechanistic insights indicate that an innovative pattern of diradical-triggered addition probably plays an essential role in the process of C(sp2)-alkyl transformation.
Collapse
Affiliation(s)
- Jiang Nan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shuai Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guanjie Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangxin Fan
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Shikari A, Chandra Pan S. Iridium/Acid-Dual Catalyzed Enantioselective Intramolecular Allylic Dearomatization Reaction of Allylic Alcohol Tethered α- and β-Naphthols. Chemistry 2025; 31:e202403664. [PMID: 39573944 DOI: 10.1002/chem.202403664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
The first catalytic enantioselective intramolecular allylic dearomatization of allylic alcohol tethered α- and β-naphthols has been developed with iridium/acid-dual catalysis. A wide range of polycyclic spiroketones containing vicinal tertiary and quaternary carbon stereocenters were readily prepared in good to high yields with high diastereo- and moderate to excellent enantioselectivities. An unusual anti-Markovnikov Wacker oxidation has also been shown in synthetic transformations.
Collapse
Affiliation(s)
- Amit Shikari
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
4
|
Sun S, Zhang Y, Banwell MG, White LV, Zhou L. Iridium-Catalyzed, Highly Selective Allylation of Pyrazolones for the Convenient Construction of Adjacent Stereocenters. Org Lett 2024; 26:10229-10234. [PMID: 39576759 DOI: 10.1021/acs.orglett.4c03586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
This paper describes an iridium-catalyzed allylation of ring-fused pyrazolones that proceeds with excellent regio-, diastereo- and enantio-selectivities. The approach exploits unactivated, racemic allylic alcohols as a source of allyl building blocks. Asymmetric syntheses of a series of biologically relevant, chiral pyrazolones highlight the utility of the methodology. The use of Cu(OTf)2 as a co-catalyst greatly enhances the regioselectivity of the reaction and permits selective syntheses of branched allylation products.
Collapse
Affiliation(s)
- Shixiang Sun
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yuqi Zhang
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Martin G Banwell
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Lorenzo V White
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| | - Leijie Zhou
- Institute for Advanced and Applied Chemical Synthesis, College of Pharmacy, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM & New Drugs Research, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
5
|
Li H, Wang X, Chang M, Wu M, Yuan X, Hui X, Wei H, Xi J, Xie W. Construction of contiguous quaternary carbon centers enabled by dearomatization of phenols with 3-bromooxindoles. Org Biomol Chem 2024; 22:8413-8417. [PMID: 39352695 DOI: 10.1039/d4ob01163e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
A transition metal-free and oxidation-free dearomatization of phenols through conjugate addition to in situ generated indol-2-one from 3-bromooxindole is detailed in this report. This methodology offers an effective approach for the synthesis of a range of 3-substituted oxindoles containing contiguous quaternary carbon centers (CQCCs) with yields of up to 99%. The reaction is characterized by mild conditions, exceptional efficiency, environmental compatibility, favorable functional group tolerance, and scalability to large-scale production.
Collapse
Affiliation(s)
- Hui Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xi Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Minhang Chang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Mengbo Wu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xinyu Yuan
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Xiangyu Hui
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Hongbo Wei
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
| | - Juyun Xi
- Department of General Surgery, Nanping People's Hospital, Nanping, 35300, China.
| | - Weiqing Xie
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, 22 Xinong Road, Yangling, 712100, Shaanxi, China.
- Key Laboratory of Botanical Pesticide R&D in Shaanxi Province, Yangling, 712100, Shaanxi, China
| |
Collapse
|
6
|
Yang TT, Zhang YQ, Xie MS, Tian Y, Wang DC, Guo HM. Dearomative [2 + 1] Spiroannulation of Bromophenols with Electron-Deficient Alkenes. J Org Chem 2024. [PMID: 38757188 DOI: 10.1021/acs.joc.4c00680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
A base-assisted dearomative [2 + 1] spiroannulation of p/o-bromophenols with activated olefins (methylenemalonates) to construct various cyclopropyl spirocyclohexadienone skeletons is reported. Furthermore, several other halophenols (X = Cl, I) were also tolerated in this process. Control experiments reveal a dearomative Michael addition of phenols at their halogenated positions to methylenemalonates, followed by intramolecular radical-based SRN1 dehalogenative cyclopropanation. However, according to the density functional theory (DFT) calculations, an SN2 dehalogenative cyclopropanation with the same low activation energy barrier should not be excluded. The utility of this method is showcased by gram-scale syntheses and transformations of the dearomatized products.
Collapse
Affiliation(s)
- Ting-Ting Yang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yun-Qiao Zhang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Ming-Sheng Xie
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Yin Tian
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Dong-Chao Wang
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| | - Hai-Ming Guo
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, China
| |
Collapse
|
7
|
Yuan PF, Huang XT, Long L, Huang T, Sun CL, Yu W, Wu LZ, Chen H, Liu Q. Regioselective Dearomative Amidoximation of Nonactivated Arenes Enabled by Photohomolytic Cleavage of N-nitrosamides. Angew Chem Int Ed Engl 2024; 63:e202317968. [PMID: 38179800 DOI: 10.1002/anie.202317968] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/06/2024]
Abstract
Dearomative spirocyclization reactions represent a promising means to convert arenes into three-dimensional architectures; however, controlling the regioselectivity of radical dearomatization with nonactivated arenes to afford the spirocyclizative 1,2-difunctionalization other than its kinetically preferred 1,4-difunctionalization is exceptionally challenging. Here we disclose a novel strategy for dearomative 1,2- or 1,4-amidoximation of (hetero)arenes enabled by direct visible-light-induced homolysis of N-NO bonds of nitrosamides, giving rise to various highly regioselective amidoximated spirocycles that previously have been inaccessible or required elaborate synthetic efforts. The mechanism and origins of the observed regioselectivities were investigated by control experiments and density functional theory calculations.
Collapse
Affiliation(s)
- Pan-Feng Yuan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xie-Tian Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Linhong Long
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Chun-Lin Sun
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hui Chen
- CAS Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
8
|
Gao X, Han TJ, Li BB, Hou XX, Hua YZ, Jia SK, Xiao X, Wang MC, Wei D, Mei GJ. Catalytic asymmetric dearomatization of phenols via divergent intermolecular (3 + 2) and alkylation reactions. Nat Commun 2023; 14:5189. [PMID: 37626030 PMCID: PMC10457327 DOI: 10.1038/s41467-023-40891-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The catalytic asymmetric dearomatization (CADA) reaction has proved to be a powerful protocol for rapid assembly of valuable three-dimensional cyclic compounds from readily available planar aromatics. In contrast to the well-studied indoles and naphthols, phenols have been considered challenging substrates for intermolecular CADA reactions due to the combination of strong aromaticity and potential regioselectivity issue over the multiple nucleophilic sites (O, C2 as well as C4). Reported herein are the chiral phosphoric acid-catalyzed divergent intermolecular CADA reactions of common phenols with azoalkenes, which deliver the tetrahydroindolone and cyclohexadienone products bearing an all-carbon quaternary stereogenic center in good yields with excellent ee values. Notably, simply adjusting the reaction temperature leads to the chemo-divergent intermolecular (3 + 2) and alkylation dearomatization reactions. Moreover, the stereo-divergent synthesis of four possible stereoisomers in a kind has been achieved via changing the sequence of catalyst enantiomers.
Collapse
Affiliation(s)
- Xiang Gao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Tian-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Bei-Bei Li
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xiao-Xiao Hou
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yuan-Zhao Hua
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Donghui Wei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| |
Collapse
|
9
|
Hu W, Huang J, Yao J, Guo W, Gao G, Yin F, Hu H, Pei X, Wang H, Tao C. Palladium-Catalyzed Carbonylative Dearomatization of Indoles to Achieve Carbonyl-Containing Spirocyclic Indolenines Bearing an All-Carbon Quaternary Center. Org Lett 2023; 25:5951-5956. [PMID: 37535423 DOI: 10.1021/acs.orglett.3c02013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
A Pd-catalyzed carbonylative dearomatization via an acyl Pd complex has been developed. Diversified carbonyl-containing spirocyclic indolenines with an all-carbon quaternary center were constructed in an efficient and straightforward way with good to excellent yields. The protocol features a simple catalytic system, operational simplicity, a broad substrate scope, easy scale-up, and versatile transformations. In addition, the asymmetric reaction was initially explored with moderate enantioselectivity.
Collapse
Affiliation(s)
- Weiming Hu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Jiali Huang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Jingyu Yao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Wenting Guo
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Gang Gao
- Jiangsu Province Lianyungang Flood Control and Motorized Rescue Team, Lianyungang 222000, Jiangsu, China
| | - Fujun Yin
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Huayou Hu
- Jiangsu Key Laboratory for Chemistry of Low Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Xiaoqin Pei
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Huiyan Wang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| | - Chuanzhou Tao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang 222005, Jiangsu, China
| |
Collapse
|
10
|
Ye Z, Liu W, Gu H, Yang X. Enantioselective Dearomatization of Substituted Phenols via Organocatalyzed Electrophilic Amination. Org Lett 2023; 25:5838-5843. [PMID: 37523610 DOI: 10.1021/acs.orglett.3c02100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Highly efficient and stereoselective dearomatization of substituted phenols was achieved via chiral phosphoric acid-catalyzed electrophilic para-amination with commercially available azodicarboxylates. This protocol readily afforded a series of chiral 2,5-cyclohexadienones bearing 4-aza-quaternary stereocenters with excellent yields and enantioselectivities (≤99% yield and >99% ee). Easy scale-up of this reaction to a gram scale and diverse derivatizations of the chiral products into α-tertiary amines and α-tertiary heterocycles derivatives well demonstrated the potential of this method.
Collapse
Affiliation(s)
- Zidan Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Huanchao Gu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
11
|
Wei J, Gandon V, Zhu Y. Amino Acid-Derived Ionic Chiral Catalysts Enable Desymmetrizing Cross-Coupling to Remote Acyclic Quaternary Stereocenters. J Am Chem Soc 2023; 145:16796-16811. [PMID: 37471696 PMCID: PMC10401725 DOI: 10.1021/jacs.3c04877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Synthetic application of asymmetric catalysis relies on strategic alignment of bond construction to creation of chirality of a target molecule. Remote desymmetrization offers distinctive advantages of spatial decoupling of catalytic transformation and generation of a stereogenic element. However, such spatial separation presents substantial difficulties for the chiral catalyst to discriminate distant enantiotopic sites through a reaction three or more bonds away from a prochirality center. Here, we report a strategy that establishes acyclic quaternary carbon stereocenters through cross-coupling reactions at distal positions of aryl substituents. The new class of amino acid-derived ionic chiral catalysts enables desymmetrizing (enantiotopic-group-selective) Suzuki-Miyaura reaction, Sonogashira reaction, and Buchwald-Hartwig amination between diverse diarylmethane scaffolds and aryl, alkynyl, and amino coupling partners, providing rapid access to enantioenriched molecules that project substituents to widely spaced positions in the three-dimensional space. Experimental and computational investigations reveal electrostatic steering of substrates by the C-terminus of chiral ligands through ionic interactions. Cooperative ion-dipole interactions between the catalyst's amide group and potassium cation aid in the preorganization that transmits asymmetry to the product. This study demonstrates that it is practical to achieve precise long-range stereocontrol through engineering the spatial arrangements of the ionic catalysts' substrate-recognizing groups and metal centers.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Hesnri Moissan, 17 avenue des sciences, 91400 Orsay, France
| | - Ye Zhu
- Department of Chemistry, Faculty of Science, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
12
|
Zhang QX, Xie JH, Gu Q, You SL. Pd-Catalyzed intermolecular asymmetric allylic dearomatization of 1-nitro-2-naphthols with MBH adducts. Chem Commun (Camb) 2023; 59:3590-3593. [PMID: 36883425 DOI: 10.1039/d3cc00568b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
An asymmetric allylic dearomatization reaction of 1-nitro-2-naphthol derivatives with Morita-Baylis-Hillman (MBH) adducts has been developed. By utilizing Pd catalyst derived from Pd(OAc)2 and Trost ligand (R,R)-L1, the reaction proceeded smoothly in 1,4-dioxane at room temperature, affording substituted β-naphthalenones in good yields (up to 92%) and enantioselectivity (up to 90% ee). A range of substituted 1-nitro-2-naphthols and MBH adducts were found to be compatible under the optimized conditions. This reaction provides a convenient method for the synthesis of enantioenriched 1-nitro-β-naphthalenone derivatives.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China.
| |
Collapse
|
13
|
Liu H, Gong ZR, Lin ML, Luo W, Xu YJ, Dong L. C-O Coupling/[4+2] Cycloaddition Tandem Reactions via Oxidative Dearomatization of BINOLs: Access to Bridged Polycyclic Compounds. J Org Chem 2023; 88:3916-3926. [PMID: 36849248 DOI: 10.1021/acs.joc.2c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Intramolecular C-H activation/C-O coupling, dearomatization, and [4+2] cycloaddition of BINOL units have been well developed in a one-pot approach with maleimide derivatives as the dienophiles. This tandem catalytic system generates a variety of functionalized bridged polycyclic products in a step-economical manner, which greatly enriches the modification methods and strategies for the BINOL skeletons.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi-Rong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
14
|
Xie JH, Hou YM, Feng Z, You SL. Stereodivergent Construction of 1,3-Chiral Centers via Tandem Asymmetric Conjugate Addition and Allylic Substitution Reaction. Angew Chem Int Ed Engl 2023; 62:e202216396. [PMID: 36597878 DOI: 10.1002/anie.202216396] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Herein, we report a synthesis of cyclohexanones bearing multi-continuous stereocenters by combining copper-catalyzed asymmetric conjugate addition of dialkylzinc reagents to cyclic enones with iridium-catalyzed asymmetric allylic substitution reaction. Good to excellent yields, diastereoselectivity and enantioselectivity can be obtained. Unlike the stereodivergent construction of adjacent stereocenters (1,2-position) reported in the literature, the current reaction can achieve the stereodivergent construction of nonadjacent stereocenters (1,3-position) by a proper combination of two chiral catalysts with different enantiomers.
Collapse
Affiliation(s)
- Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Yi-Ming Hou
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Zuolijun Feng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, 200032, Shanghai, China
| |
Collapse
|
15
|
Zhang QX, Gu Q, You SL. Palladium(0)-Catalyzed Intermolecular Asymmetric Allylic Dearomatization of Substituted β-Naphthols with Morita-Baylis-Hillman (MBH) Adducts. Org Lett 2022; 24:8031-8035. [PMID: 36264244 DOI: 10.1021/acs.orglett.2c03262] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pd-catalyzed intermolecular asymmetric allylic dearomatization of substituted β-naphthol derivatives with Boc-protected Morita-Baylis-Hillman (MBH) adducts was developed. The reaction occurs smoothly in 1,4-dioxane at room temperature in the presence of [Pd(C3H5)Cl]2 (2.5 mol %), (S, Sp)-PHOX ligand (5.5 mol %), and Li2CO3 (1.0 equiv). A series of dearomatized products were afforded in moderate to excellent yields and enantioselectivity (up to 99% yield, 97% ee). Furthermore, the compatibility with gram-scale reaction and mild conditions make the current method synthetically useful.
Collapse
Affiliation(s)
- Qing-Xia Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai, 200032, China
| |
Collapse
|
16
|
Shi Q, Liao Z, Liu Z, Wen J, Li C, He J, Deng J, Cen S, Cao T, Zhou J, Zhu S. Divergent synthesis of benzazepines and bridged polycycloalkanones via dearomative rearrangement. Nat Commun 2022; 13:4402. [PMID: 35906217 PMCID: PMC9338057 DOI: 10.1038/s41467-022-31920-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
The dearomative functionalization of aromatic compounds represents a fascinating but challenging transformation, as it typically needs to overcome a great kinetic barrier. Here, a catalyst-free dearomative rearrangement of o-nitrophenyl alkyne is successfully established by leveraging the remote oxygen transposition and a weak N-O bond acceleration. This reaction features high atom-, step- and redox-economy, which provides a divergent entry to a series of biologically important benzazepines and bridged polycycloalkanones. The reaction is proposed to proceed through a tandem oxygen transfer cyclization/(3 + 2) cycloaddition/(homo-)hetero-Claisen rearrangement reaction. The resulting polycyclic system is richly decorated with transformable functionalities, such as carbonyl, imine and diene, which enables diversity-oriented synthesis of alkaloid-like polycyclic framework. The dearomative functionalization of aromatic compounds represents a challenging transformation, as it typically needs to overcome a great kinetic barrier. Here, the authors disclose a weak-bond-accelerated, catalyst-free dearomative [3,3]-rearrangement of o-nitrophenyl alkyne for the divergent synthesis of benzazepines and bridged polycycloalkanones via remote oxygen transposition.
Collapse
Affiliation(s)
- Qiu Shi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhehui Liao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhili Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiajia Wen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China
| | - Chenguang Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiamin He
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiazhen Deng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shan Cen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science, Beijing, 100050, China
| | - Tongxiang Cao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| | - Jinming Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, China.
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
17
|
Liu H, Chen F, Zhao N, Vummaleti SVC, Sullivan MB, Ying JY, Wang L. Rhodium-Catalyzed Ring Expansion Reactions for the Concise Construction of Densely Functionalized Oxathionines and Oxathiocines. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Haitao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| | - Feng Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Nannan Zhao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| | - Sai V. C. Vummaleti
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-6 Connexis, Singapore 138632, Singapore
| | - Michael B. Sullivan
- Institute of High Performance Computing (IHPC), Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way, #16-6 Connexis, Singapore 138632, Singapore
| | - Jackie Y. Ying
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- A*STAR Infectious Diseases Laboratories, Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Lei Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100193, P. R. China
| |
Collapse
|
18
|
Yang Y, Lu B, Xu G, Wang X. Overcoming O-H Insertion to Para-Selective C-H Functionalization of Free Phenols: Rh(II)/Xantphos Catalyzed Geminal Difunctionalization of Diazo Compounds. ACS CENTRAL SCIENCE 2022; 8:581-589. [PMID: 35647279 PMCID: PMC9136979 DOI: 10.1021/acscentsci.2c00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 05/04/2023]
Abstract
Para-selective C-H functionalization of free phenols by metal carbenoids is rather challenging due to the generally more favorable competing O-H insertion. Herein, with the use of the combination of Rh(II) and a Xantphos ligand as the catalyst, a novel multicomponent reaction of free phenols, diazoesters, and allylic carbonates was successfully developed, affording a wide variety of phenol derivatives, bearing an all-carbon quaternary center and a synthetically useful allylic unit. This reaction is likely to occur through a tandem process of carbene-induced para-selective C-H functionalization, followed by Rh(II)/Xantphos-catalyzed allylation. The distinctive reactivity of para-selective C-H rather than O-H insertion for the carbenoid intermediate, combined with features of excellent functional group compatibility, high atom and step economy, and ease in further diversification of the products, might render this protocol highly attractive in facile functionalization of unprotected phenols.
Collapse
Affiliation(s)
- Yang Yang
- Henan
Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Bin Lu
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Guiqing Xu
- Henan
Engineering Research Center of Chiral Hydroxyl Pharmaceutical, Collaborative
Innovation Center of Henan Province for Green Manufacturing of Fine
Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry
of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- (G.X.)
| | - Xiaoming Wang
- State
Key Laboratory of Organometallic Chemistry, Center for Excellence
in Molecular Synthesis, Shanghai Institute
of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School
of Chemistry and Materials Science, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane
Xiangshan, Hangzhou 310024, China
- (X.W.)
| |
Collapse
|
19
|
Zhen G, Jiang K, Yin B. Progress in Organocatalytic Dearomatization Reactions Catalyzed by Heterocyclic Carbenes. ChemCatChem 2022. [DOI: 10.1002/cctc.202200099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guangjin Zhen
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Kai Jiang
- South China University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Biaolin Yin
- South China University of Technology Dept. of Chenistry and chemical engineering Wushan Street 510640 Guangzhou CHINA
| |
Collapse
|
20
|
Ding L, Song H, Zheng C, You SL. Enantioselective Synthesis of Medium-Sized-Ring Lactones via Iridium-Catalyzed Z-Retentive Asymmetric Allylic Substitution Reaction. J Am Chem Soc 2022; 144:4770-4775. [PMID: 35266702 DOI: 10.1021/jacs.2c01103] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Medium-sized rings are important structural units, but their synthesis, especially in a highly enantioselective manner, has been a great challenge. Herein we report an enantioselective synthesis of medium-sized-ring lactones by an iridium-catalyzed Z-retentive asymmetric allylic substitution reaction. The reaction features mild conditions and a broad substrate scope. Various eight- to 11-membered-ring lactones can be afforded in moderate to excellent yields (up to 88%) and excellent enantioselectivity (up to 99% ee). The utilization of both Z-allyl precursors and an Ir catalyst is critical for the medium-sized-ring formation.
Collapse
Affiliation(s)
- Lu Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Hao Song
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
21
|
C(sp3)−H bond functionalization of oximes derivatives via 1,5−hydrogen atom transfer induced by iminyl radical. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Nie YH, Komatsuda M, Yang P, Zheng C, Yamaguchi J, You SL. Pd-Catalyzed Asymmetric Dearomative Arylation of Indoles via a Desymmetrization Strategy. Org Lett 2022; 24:1481-1485. [DOI: 10.1021/acs.orglett.2c00129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Yu-Han Nie
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Masaaki Komatsuda
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Ping Yang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
23
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
A tandem asymmetric oxidation-oxa-Michael sequence for dearomatization of β-naphthols. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Zhu B, Guo W, Sun Q, Qian P, Ye L, Li L. Auxiliary‐Free Remote Dearomatizative Nitrenoid Transfer for Enantioselective Construction of Spirolactams. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Bo‐Han Zhu
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 People's Republic of China
| | - Wen‐Ting Guo
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Qing Sun
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle Nanchang Hangkong University Nanchang 330063 People's Republic of China
| | - Peng‐Cheng Qian
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| | - Long‐Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces Key Laboratory for Chemical Biology of Fujian Province College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 People's Republic of China
| | - Long Li
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 People's Republic of China
| |
Collapse
|
26
|
Zhao Y, Wang X, Yao R, Li C, Xu Z, Zhang L, Han G, Hou J, Liu Y, Song Y. Iron‐Catalyzed Alkene Trifluoromethylation in Tandem with Phenol Dearomatizing Spirocyclization: Regioselective Construction of Trifluoromethylated Spirocarbocycles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yilin Zhao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Xue Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Ru Yao
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Chengwen Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Zelin Xu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Liming Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Guifang Han
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Jingli Hou
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Yangping Liu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| | - Yuguang Song
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics School of Pharmacy The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics School of Basic Medical Sciences Tianjin Medical University Tianjin 300070 People's Republic of China
| |
Collapse
|
27
|
Wang DC, Cheng PP, Yang TT, Wu PP, Qu GR, Guo HM. Asymmetric Domino Heck/Dearomatization Reaction of β-Naphthols to Construct Indole-Terpenoid Frameworks. Org Lett 2021; 23:7865-7872. [PMID: 34582193 DOI: 10.1021/acs.orglett.1c02881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A palladium-catalyzed enantioselective Heck cyclization/dearomatization cascade via capturing the cyclized Heck π-allylpalladium intermediate by β-naphthols is reported, which provides a new strategy for the construction of chiral indole-terpenoid frameworks. This method affords indole-functionalized β-naphthalenone compounds bearing an all-carbon-substituted quaternary chiral center in excellent yields (up to 92%) and enantioselectivities (up to 94% ee). In addition, the utility of this method is showcased by the gram-scale syntheses and diverse transformations of the dearomatized products.
Collapse
Affiliation(s)
- Dong-Chao Wang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Peng-Peng Cheng
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ting-Ting Yang
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Pan-Pan Wu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
28
|
Dou P, Chen Y, You Y, Wang Z, Zhao J, Zhou M, Yuan W. Organocatalyzed Asymmetric Dearomative [3+2] Annulation of Electron‐Deficient 2‐Nitrobenzo Heteroarenes with 3‐Isothiocyanato Oxindoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100516] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pei‐Hao Dou
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yan Chen
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yong You
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Zhen‐Hua Wang
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Jian‐Qiang Zhao
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| | - Ming‐Qiang Zhou
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
| | - Wei‐Cheng Yuan
- National Engineering Research Center of Chiral Drugs Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 People's Republic of China
- Institute for Advanced Study Chengdu University Chengdu 610106 People's Republic of China
| |
Collapse
|
29
|
Nakamura I, Masukawa K, Ishida Y, Terada M. Cu-Catalyzed [1,3]-Alkoxy Rearrangement/Diels-Alder Cascade Reactions via in Situ Generation of Functionalized ortho-Quinol Imines. Org Lett 2021; 23:4127-4132. [PMID: 33960798 DOI: 10.1021/acs.orglett.1c00995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Cu-catalyzed cascade reaction between N-alkoxyanilines having an electron-donating functional group at the ortho position and dienophiles, such as N-methylmaleimide, styrene, and indene, proceeded via a dearomative [1,3]-alkoxy rearrangement followed by the Diels-Alder reaction, affording the corresponding ketimines with highly functionalized bicyclic skeletons in an efficient and stereoselective manner. Our mechanistic investigations indicated that the [1,3]-rearrangement is the rate-determining process, efficiently suppressing unfavorable side reactions.
Collapse
Affiliation(s)
- Itaru Nakamura
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Sendai 980-8578 Japan
| | - Kazuki Masukawa
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Yasuhiro Ishida
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
30
|
Huang L, Xie JH, Cai Y, Zheng C, Hou XL, Dai LX, You SL. Enantioselective synthesis of polycyclic pyrrole derivatives by iridium-catalyzed asymmetric allylic dearomatization and ring-expansive migration reactions. Chem Commun (Camb) 2021; 57:5390-5393. [PMID: 33949525 DOI: 10.1039/d1cc01929e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report an N-alkylation of pyrroles triggered by an unprecedented selective ring-expansive migration of the spiro-2H-pyrrole intermediates obtained via Ir-catalyzed asymmetric allylic dearomatization. The reaction affords a series of tetrahydropyrrolo[1,2-c]pyrimidine derivatives in good yields (up to 88%) with excellent enantioselectivity (up to >99% ee). The proposed reaction mechanism is supported by DFT calculations and the characterization of the key intermediate.
Collapse
Affiliation(s)
- Lin Huang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Jia-Hao Xie
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Yue Cai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Xue-Long Hou
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Li-Xin Dai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
31
|
Ouchi S, Koshikawa T, Nagashima Y, Tanaka K. Platinum-Catalyzed Intramolecular Spirocyclization of N-(Methylnaphthalenyl)propiolamides via Formal Aromatic Ene Reaction. Org Lett 2021; 23:1934-1939. [PMID: 33595327 DOI: 10.1021/acs.orglett.1c00393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been established that an in situ-generated cationic platinum(II)/rac-BINAP complex catalyzes the intramolecular dearomative 5-endo spirocyclization of N-(methylnaphthalenyl)propiolamides via the deprotonation-protonation sequence (formal aromatic ene reaction). Mechanistic studies revealed that our previously reported dearomative 6-endo cyclization followed by the Friedel-Crafts reaction is kinetically and thermodynamically unfavored, and thus, the 5-endo spirocyclization proceeds selectively.
Collapse
Affiliation(s)
- Seiya Ouchi
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Takumi Koshikawa
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Yuki Nagashima
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ken Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|