1
|
Cutillas-Font G, Pastor A, Alajarin M, Martinez-Cuezva A, Marin-Luna M, Batanero B, Berna J. Mechanical insulation of aza-Pechmann dyes within [2]rotaxanes. Chem Sci 2024; 15:13823-13831. [PMID: 39211492 PMCID: PMC11352530 DOI: 10.1039/d4sc03657c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Aza-Pechmann derivatives have emerged as interesting building blocks for the preparation of organic electronic devices. The development of methodologies aimed to enhance their chemical stability and modulate their physical and chemical properties constitutes an interesting goal. Here we report the synthesis of mechanically interlocked aza-Pechmann dyes with benzylic amide macrocycles, along with the study of how the mechanical bond impacts their stability, photophysical and redox properties. Rotaxanes composed of Pechmann dilactams as threads exhibit one of the highest energy barriers for macrocyclic ring rotation, highlighting the strength of the attractive interactions ring-thread within the interlocked structure. Their enhanced thermal stability, compared to the non-interlocked counterparts, evidences the protective role of the macrocycle. Computational and electrochemical analyses indicate that the benzylic amide macrocycle improves the stability of the HOMO and LUMO orbitals of the interlocked dyes. Finally, spectroscopic and electrochemical data reveal that the macrocycle subtly modulates the optoelectronic and redox behaviour of the Pechmann dilactams.
Collapse
Affiliation(s)
- Guillermo Cutillas-Font
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Aurelia Pastor
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Mateo Alajarin
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Alberto Martinez-Cuezva
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Marta Marin-Luna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| | - Belen Batanero
- Department of Organic Chemistry and Inorganic Chemistry, University of Alcala, Institute of Chemical Research AndrésM. del Rio 28805 Alcalá de Henares Madrid Spain
| | - Jose Berna
- Department of Organic Chemistry, Faculty of Chemistry, University of Murcia, Regional Campus of International Excellence Campus Mare Nostrum 30100 Murcia Spain
| |
Collapse
|
2
|
Codesal MD, David AHG, Santos CIM, Álvaro-Martins MJ, Maçôas E, Campaña AG, Blanco V. Curved Nanographenes as Stoppers in a [2]Rotaxane with Two-Photon Excited Emission. J Org Chem 2024; 89:9344-9351. [PMID: 38907714 PMCID: PMC11232015 DOI: 10.1021/acs.joc.4c00486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Heptagon-containing distorted nanographenes are used as stoppers for the capping of a [2]rotaxane through a Michael-type addition reaction to vinyl sulfone groups. These curved aromatics are bulky enough to prevent the disassembly of the rotaxane but also give emissive and nonlinear (two-photon absorption and emission) optical properties to the structure.
Collapse
Affiliation(s)
- Marcos D Codesal
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Arthur H G David
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Carla I M Santos
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Maria J Álvaro-Martins
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Ermelinda Maçôas
- Centro de Química Estrutural and Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1, 1049-001 Lisboa, Portugal
| | - Araceli G Campaña
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| | - Victor Blanco
- Departamento de Química Orgánica, Unidad de Excelencia de Química, Facultad de Ciencias, Universidad de Granada, Avda. Fuente Nueva s/n, 18071 Granada, Spain
| |
Collapse
|
3
|
Freudenberg J, Bunz UHF. How to Stabilize Large Soluble (Hetero-)Acenes. J Am Chem Soc 2024; 146:16937-16949. [PMID: 38862130 PMCID: PMC11212629 DOI: 10.1021/jacs.4c03484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/13/2024]
Abstract
The higher acenes and azaacenes (>(aza)heptacenes) are fascinating, yet elusive materials. Their reactivity and sensitivity increases concomitantly with their size. In recent years, confinement techniques, that is isolation of acenes in matrices and on surfaces, has surpassed solution-based chemistry with respect to accessing the larger (hetero)acenes at the price of the accessibility of no more than a couple thousands of molecules. Isolating acenes in bulk quantities and in processable form is vital for applications in organic electronics as well as from a viewpoint from basic research. In this Perspective, we will discuss after a short historical outline their degradation pathways, and then will selectively highlight recent efforts in stabilizing soluble (aza)acenes.
Collapse
Affiliation(s)
- Jan Freudenberg
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Uwe H. F. Bunz
- Ruprecht-Karls-Universität
Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
Marongiu M, Ha T, Gil-Guerrero S, Garg K, Mandado M, Melle-Franco M, Diez-Perez I, Mateo-Alonso A. Molecular Graphene Nanoribbon Junctions. J Am Chem Soc 2024; 146:3963-3973. [PMID: 38305745 PMCID: PMC10870704 DOI: 10.1021/jacs.3c11340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/20/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024]
Abstract
One of the challenges for the realization of molecular electronics is the design of nanoscale molecular wires displaying long-range charge transport. Graphene nanoribbons are an attractive platform for the development of molecular wires with long-range conductance owing to their unique electrical properties. Despite their potential, the charge transport properties of single nanoribbons remain underexplored. Herein, we report a synthetic approach to prepare N-doped pyrene-pyrazinoquinoxaline molecular graphene nanoribbons terminated with diamino anchoring groups at each end. These terminal groups allow for the formation of stable molecular graphene nanoribbon junctions between two metal electrodes that were investigated by scanning tunneling microscope-based break-junction measurements. The experimental and computational results provide evidence of long-range tunneling charge transport in these systems characterized by a shallow conductance length dependence and electron tunneling through >6 nm molecular backbone.
Collapse
Affiliation(s)
- Mauro Marongiu
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
| | - Tracy Ha
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Sara Gil-Guerrero
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kavita Garg
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Marcos Mandado
- Department
of Physical Chemistry, University of Vigo, Lagoas-Marcosende s/n, 36310 Vigo, Spain
| | - Manuel Melle-Franco
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ismael Diez-Perez
- Department
of Chemistry, Faculty of Natural & Mathematical Sciences, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, United Kingdom
| | - Aurelio Mateo-Alonso
- POLYMAT, University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018 Donostia-San Sebastian, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
5
|
Maier S, Heckershoff R, Hippchen N, Brödner K, Rominger F, Freudenberg J, Hashmi ASK, Bunz UHF. Substituted Cyclopentannulated Tetraazapentacenes. Chemistry 2022; 28:e202201842. [PMID: 35983676 PMCID: PMC9826220 DOI: 10.1002/chem.202201842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 01/11/2023]
Abstract
Brominated pentannulated dihydrotetraazapentacenes were prepared by gold- or palladium-catalyzed 5-endo-dig cyclization of TIPS-ethynylated dihydrotetraazaacenes (TIPS = triisopropylsilyl). Post-functionalization was demonstrated by Sonogashira alkynylation and Rosenmund-von Braun cyanation. Calculations predict these species to act as n-type semiconductors, which was verified for two derivates through characterization in organic field-effect transistors.
Collapse
Affiliation(s)
- Steffen Maier
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Robin Heckershoff
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Nikolai Hippchen
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Kerstin Brödner
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Frank Rominger
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Jan Freudenberg
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Chemistry DepartmentFaculty of ScienceKing Abdulaziz UniversityJeddah21589Saudi Arabia
| | - Uwe H. F. Bunz
- Organisch-Chemisches Institut (OCI)Heidelberg UniversityIm Neuenheimer Feld 27069120HeidelbergGermany
- Centre for Advanced Materials (CAM)Heidelberg UniversityIm Neuenheimer Feld 22569120HeidelbergGermany
| |
Collapse
|
6
|
Wang D, Zhang L, Zhao Y. Template-Free Synthesis of an Interlocked Covalent Organic Molecular Cage. J Org Chem 2022; 87:2767-2772. [DOI: 10.1021/acs.joc.1c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| | - Lin Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| |
Collapse
|
7
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
8
|
Borodin O, Shchukin Y, Robertson CC, Richter S, von Delius M. Self-Assembly of Stimuli-Responsive [2]Rotaxanes by Amidinium Exchange. J Am Chem Soc 2021; 143:16448-16457. [PMID: 34559523 PMCID: PMC8517971 DOI: 10.1021/jacs.1c05230] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 01/29/2023]
Abstract
Advances in supramolecular chemistry are often underpinned by the development of fundamental building blocks and methods enabling their interconversion. In this work, we report the use of an underexplored dynamic covalent reaction for the synthesis of stimuli-responsive [2]rotaxanes. The formamidinium moiety lies at the heart of these mechanically interlocked architectures, because it enables both dynamic covalent exchange and the binding of simple crown ethers. We demonstrated that the rotaxane self-assembly follows a unique reaction pathway and that the complex interplay between crown ether and thread can be controlled in a transient fashion by addition of base and fuel acid. Dynamic combinatorial libraries, when exposed to diverse nucleophiles, revealed a profound stabilizing effect of the mechanical bond as well as intriguing reactivity differences between seemingly similar [2]rotaxanes.
Collapse
Affiliation(s)
- Oleg Borodin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Yevhenii Shchukin
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Craig C. Robertson
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, U.K.
| | - Stefan Richter
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute
of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|