1
|
Li H, Jin Z, Gao S, Kuang S, Lei C, Nie Z. Precise detection of G-quadruplexs in living systems: principles, applications, and perspectives. Chem Sci 2025:d5sc00918a. [PMID: 40417301 PMCID: PMC12096178 DOI: 10.1039/d5sc00918a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 05/15/2025] [Indexed: 05/27/2025] Open
Abstract
G-quadruplexes (G4s) are non-canonical nucleic acid secondary structures that play a crucial role in regulating essential cellular processes such as replication, transcription, and translation. The formation of G4s is dynamically controlled by the physiological state of the cell. Accurate detection of G4 structures in live cells, as well as studies of their dynamic changes and the kinetics of specific G4s, are essential for understanding their biological roles, exploring potential links between aberrant G4 expression and disease, and developing G4-targeted diagnostic and therapeutic strategies. This perspective briefly overviews G4 formation mechanisms and their known biological functions. We then summarize the leading techniques and methodologies available for G4 detection, discussing the principles and applications of each approach. In addition, we outline strategies for the global detection of intracellular G4s, methods for conformational recognition, and approaches for targeting specific sequences. Finally, we discuss the technical limitations and challenges currently facing the field of G4 detection and offer perspectives on potential future directions. We hope this review will inspire further research into the biological functions of G4s and their applications in disease diagnosis and therapy.
Collapse
Affiliation(s)
- Huanhuan Li
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Zelong Jin
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Shuxin Gao
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Shi Kuang
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Chunyang Lei
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| | - Zhou Nie
- State Key Laboratory of Chemo and Biosensing, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University Changsha 410082 People's Republic of China
| |
Collapse
|
2
|
Marzano S, Pinto G, Di Porzio A, Amato J, Randazzo A, Amoresano A, Pagano B. Identifying G-quadruplex-interacting proteins in cancer-related gene promoters. Commun Chem 2025; 8:64. [PMID: 40025218 PMCID: PMC11873050 DOI: 10.1038/s42004-025-01462-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
G-quadruplexes (G4s) are noncanonical DNA or RNA secondary structures involved in numerous biological processes. Their recognition by G4-related proteins (G4RPs) is essential for modulating biological pathways, particularly those associated with transcription and cancer progression. Identifying G4RPs is crucial for understanding their role in diseases like cancer, as these proteins may represent promising therapeutic targets. In this study, a proteomic-based fishing-for-partners approach was employed to identify putative interactors of G4-forming DNA sequences from the promoter regions of cancer-related genes DAP, HIF-1α, JAZF-1, and PDGF-A. A total of eighty-six G4RPs were identified, including nineteen known RNA and/or DNA G4 interactors. Notably, fourteen proteins were identified as potential interactors of all four investigated G4-forming DNA, seven of which were novel G4RPs. Direct interactions with G4s were validated for five of these proteins (AHNAK, GAPDH, HNRNP M, LMNA, and PPIA) using surface plasmon resonance experiments, which showed nanomolar binding affinities. This study not only validated known G4RPs but also led to the discovery of new G4/protein interactions, providing the basis for further investigation into their biological significance and potential implications in disease-associated pathways.
Collapse
Affiliation(s)
- Simona Marzano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- Interuniversity Consortium "Istituto Nazionale Biostrutture e Biosistemi", 00136, Rome, Italy
| | - Anna Di Porzio
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| | - Antonio Randazzo
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, 80126, Naples, Italy
- Interuniversity Consortium "Istituto Nazionale Biostrutture e Biosistemi", 00136, Rome, Italy
| | - Bruno Pagano
- Department of Pharmacy, University of Naples Federico II, 80131, Naples, Italy.
| |
Collapse
|
3
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LO. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. eLife 2025; 13:RP98152. [PMID: 39937575 PMCID: PMC11820137 DOI: 10.7554/elife.98152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
Affiliation(s)
- Kira Breunig
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Xuifen Lei
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Mauro Montalbano
- Mitchell Center for Neurodegenerative Diseases, University of Texas Medical BranchGalvestonUnited States
- Department of Neurology, University of Texas Medical BranchGalvestonUnited States
| | | | - Shiva Ostadrahimi
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Cell Systems and Anatomy, UT Health San AntonioSan AntonioUnited States
| | - Victoria Alers
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Cell Systems and Anatomy, UT Health San AntonioSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health San AntonioSan AntonioUnited States
| | - Adam Kosti
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Cell Systems and Anatomy, UT Health San AntonioSan AntonioUnited States
| | - Jennifer Chiou
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at AustinAustinUnited States
| | - Nicole Klein
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Corina Vinarov
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Lily Wang
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Mujia Li
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
| | - Weidan Song
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences,The University of Texas Southwestern Medical CenterDallasUnited States
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences,The University of Texas Southwestern Medical CenterDallasUnited States
| | - David S Libich
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Biochemistry and Structural Biology, UT Health San AntonioSan AntonioUnited States
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at AustinAustinUnited States
- Department of Pediatrics, Dell Medical School, University of Texas at AustinAustinUnited States
- Department of Oncology, Dell Medical School, University of Texas at AustinAustinUnited States
| | - Susan T Weintraub
- Department of Biochemistry and Structural Biology, UT Health San AntonioSan AntonioUnited States
| | - Pedro AF Galante
- Centro de Oncologia Molecular, Hospital Sírio-LibanêsSão PauloBrazil
| | - Luiz O Penalva
- Children’s Cancer Research Institute, UT Health San AntonioSan AntonioUnited States
- Department of Cell Systems and Anatomy, UT Health San AntonioSan AntonioUnited States
| |
Collapse
|
4
|
Huang W, Wang J, Wang C, Liu Y, Li W, Chen Q, Zhai J, Xiang Z, Liu C. Expanding Cas12a Activity Control with an RNA G-Quadruplex at the 5' end of CRISPR RNA. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411305. [PMID: 39721016 PMCID: PMC11831528 DOI: 10.1002/advs.202411305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Precise control of Cas12a activity is essential for the improvement of the detection limit of clinical diagnostics and the minimization of errors. This study addresses the challenge of controlling Cas12a activity, especially in the context of nucleic acid detection where the inherent incompatibility between isothermal amplification and CRISPR reactions complicates accurate diagnostics. An RNA G-quadruplex (RG4) structure at the 5' end of crRNA is introduced to modulate Cas12a activity accurately without the need for chemical modifications. The results indicate that the presence of RG4 does not significantly impact Cas12a's cleavage activity but can be controlled by RG4 stabilizers, enabling the suppression and subsequent restoration of Cas12a activity with potential for precise activity control. Moreover, the use of RG4 is expanded by incorporating it into split crRNA, introducing RG4 directly at the 5' end of the direct repeat (DR) region, enabling tailored activity regulation for different targets by matching with various Spacer regions. Additionally, a light-controlled one-pot method for activating Cas12a is developed, thereby enhancing the accuracy and sensitivity of clinical samples. This study showcases the pioneering use of RG4 in manipulating Cas12a activity, streamlining diagnostics, and paving the way for advances in clinical nucleic acid testing.
Collapse
Affiliation(s)
- Wenjuan Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000P. R. China
| | - Jiaqi Wang
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchDigestive Diseases CenterScientific Research CenterThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Cheng Wang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000P. R. China
| | - Yuanfang Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchDigestive Diseases CenterScientific Research CenterThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Wentao Li
- Department of Clinical LaboratoryThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| | - Qiaozhen Chen
- School of Chemistry and Biological EngineeringUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Junqiu Zhai
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006P. R. China
| | - Zhenyang Xiang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical UniversityLinhai317000P. R. China
| | - Chaoxing Liu
- Guangdong Provincial Key Laboratory of Digestive Cancer ResearchDigestive Diseases CenterScientific Research CenterThe Seventh Affiliated Hospital of Sun Yat‐sen UniversityShenzhenGuangdong518107P. R. China
| |
Collapse
|
5
|
Wang XD, Lin JH, Hu MH. Discovery of a tribenzophenazine analog for binding to the KRAS mRNA G-quadruplex structures in the cisplatin-resistant non-small cell lung cancer. J Biol Chem 2025; 301:108164. [PMID: 39793888 PMCID: PMC11847542 DOI: 10.1016/j.jbc.2025.108164] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Lung cancer is the malignant tumor with the highest morbidity and mortality rate worldwide, of which non-small cell lung cancer (NSCLC) accounts for approximately 85%. KRAS mutations are one of the significant mechanisms underlying the occurrence, development, immune escape, and chemotherapy resistance of NSCLC. Two KRAS inhibitors are approved by Food and Drug Administration for the treatment of NSCLC in the past 3 years. However, they are only effective to KRAS G12C mutant, and moreover, innate and acquired drug resistance is already reported, leaving an urgent need to block KRAS pathways through novel targets. In this study, we focused on the discovery of ligands targeting the RNA G-quadruplexes in 5'-UTR of KRAS mRNA, and a novel tribenzophenazine analog (MBD) was identified as the lead compound. Further mechanisms were discussed in A549/DDP cells, a cisplatin-resistant and KRAS-mutant NSCLC cell line. Antitumor efficacy was verified both in vitro in A549/DDP cells, and in vivo in a nude mouse xenograft model implanted with A549/DDP cells. To sum up, our results suggest the potential of MBD as a prominent anti-KRAS-driven NSCLC agent and propose a new idea for the development of small molecule ligands targeting KRAS RNA G-quadruplexes.
Collapse
MESH Headings
- Humans
- G-Quadruplexes/drug effects
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Animals
- Drug Resistance, Neoplasm/drug effects
- Cisplatin/pharmacology
- Mice
- Mice, Nude
- Xenograft Model Antitumor Assays
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Messenger/chemistry
- A549 Cells
- Phenazines/pharmacology
- Phenazines/chemistry
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/chemistry
- Cell Line, Tumor
Collapse
Affiliation(s)
- Xiao-Dong Wang
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, China
| | - Jia-Hong Lin
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, China
| | - Ming-Hao Hu
- Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, School of Pharmacy, Shenzhen University Medical School, Shenzhen, China.
| |
Collapse
|
6
|
Wang X, Qin G, Yang J, Zhao C, Ren J, Qu X. A subcellular selective APEX2-based proximity labeling used for identifying mitochondrial G-quadruplex DNA binding proteins. Nucleic Acids Res 2025; 53:gkae1259. [PMID: 39718986 PMCID: PMC11724306 DOI: 10.1093/nar/gkae1259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 12/26/2024] Open
Abstract
G-quadruplexes (G4s), as an important type of non-canonical nucleic acid structure, have received much attention because of their regulations of various biological processes in cells. Identifying G4s-protein interactions is essential for understanding G4s-related biology. However, current strategies for exploring G4 binding proteins (G4BPs) include pull-down assays in cell lysates or photoaffinity labeling, which are lack of sufficient spatial specificity at the subcellular level. Herein, we develop a subcellular selective APEX2-based proximity labeling strategy to investigate the interactome of mitochondrial DNA (mtDNA) G4s in living cells. By this method, we have identified several mtDNA G4BPs. Among them, a previously unrecognized mtDNA G4BP, DHX30 has been selected as an example to explore its important biofunctions. DHX30 localizes both in cytoplasm and mitochondria and can resolve mtDNA G4s. Further studies have demonstrated that DHX30 unfolds mtDNA G4 in living cells, which results in a decrease in glycolysis activity of tumor cells. Besides, RHPS4, a known mtDNA G4 stabilizer, will reverse this inhibition effect. Benefiting from the high spatiotemporal resolution and the ability of genetically encoded systems to perform the labeling with exquisite specificity within living cells, our approach can realize the identification of subcellular localized G4BPs. Our work provides a novel strategy to map protein interactions of specific nucleic acid features in subcellular compartments of living cells.
Collapse
Affiliation(s)
- Xu Wang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Geng Qin
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Jie Yang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
- University of Science and Technology of China, 96 JinZhai Road, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
7
|
Cadoni E, Moerman H, Madder A. Development of a His-Tag-mediated pull-down and quantification assay for G-quadruplex containing DNA sequences. RSC Chem Biol 2025; 6:56-64. [PMID: 39634055 PMCID: PMC11613956 DOI: 10.1039/d4cb00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024] Open
Abstract
In this study, we developed a simple pull-down assay using peptide nucleic acids (PNAs) equipped with a His-Tag and a G-quadruplex (G4) ligand for the selective recognition and quantification of G4-forming DNA sequences. Efficient and specific target recovery was achieved using optimized buffer conditions and magnetic Ni-NTA beads, while quantification was realized by employing the enzyme-like properties of the G4/hemin complex. The assay was validated through HPLC analysis and adapted for a 96-well plate format. The results show that higher recovery can be achieved using His-Tag with Ni-NTA magnetic beads as compared to the more common biotin-streptavidin purification. The inclusion of the G4-ligand as an additional selectivity handle was shown to be beneficial for both recovery and selectivity.
Collapse
Affiliation(s)
- Enrico Cadoni
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Hanne Moerman
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| | - Annemieke Madder
- Organic and Biomimetic Chemistry Research Group, Department of Organic and Macromolecular Chemistry, Ghent University Krijgslaan 281-S4 9000 Gent Belgium
| |
Collapse
|
8
|
Rusling DA, Vasquez KM. A third strand for protein-DNA interactions. Nat Chem 2024; 16:1748-1750. [PMID: 39406977 PMCID: PMC11671174 DOI: 10.1038/s41557-024-01652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
A method has been developed based on proximity labelling that detects the interaction of specific proteins with endogenous triplex DNA sequences formed in live cells — significantly expanding the catalogue of putative proteins that interact with these DNA structures.
Collapse
Affiliation(s)
- David A Rusling
- School of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Karen M Vasquez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX, USA.
| |
Collapse
|
9
|
Tang GX, Li ML, Zhou C, Huang ZS, Chen SB, Chen XC, Tan JH. Mitochondrial RelA empowers mtDNA G-quadruplex formation for hypoxia adaptation in cancer cells. Cell Chem Biol 2024; 31:1800-1814.e7. [PMID: 38821064 DOI: 10.1016/j.chembiol.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/04/2024] [Accepted: 05/07/2024] [Indexed: 06/02/2024]
Abstract
Mitochondrial DNA (mtDNA) G-quadruplexes (G4s) have important regulatory roles in energy metabolism, yet their specific functions and underlying regulatory mechanisms have not been delineated. Using a chemical-genetic screening strategy, we demonstrated that the JAK/STAT3 pathway is the primary regulatory mechanism governing mtDNA G4 dynamics in hypoxic cancer cells. Further proteomic analysis showed that activation of the JAK/STAT3 pathway facilitates the translocation of RelA, a member of the NF-κB family, to the mitochondria, where RelA binds to mtDNA G4s and promotes their folding, resulting in increased mtDNA instability, inhibited mtDNA transcription, and subsequent mitochondrial dysfunction. This binding event disrupts the equilibrium of energy metabolism, catalyzing a metabolic shift favoring glycolysis. Collectively, the results provide insights into a strategy employed by cancer cells to adapt to hypoxia through metabolic reprogramming.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Mao-Lin Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Cui Zhou
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Shu Huang
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Jia-Heng Tan
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
10
|
Breunig K, Lei X, Montalbano M, Guardia GDA, Ostadrahimi S, Alers V, Kosti A, Chiou J, Klein N, Vinarov C, Wang L, Li M, Song W, Kraus WL, Libich DS, Tiziani S, Weintraub ST, Galante PAF, Penalva LOF. SERBP1 interacts with PARP1 and is present in PARylation-dependent protein complexes regulating splicing, cell division, and ribosome biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586270. [PMID: 38585848 PMCID: PMC10996453 DOI: 10.1101/2024.03.22.586270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
RNA binding proteins (RBPs) containing intrinsically disordered regions (IDRs) are present in diverse molecular complexes where they function as dynamic regulators. Their characteristics promote liquid-liquid phase separation (LLPS) and the formation of membraneless organelles such as stress granules and nucleoli. IDR-RBPs are particularly relevant in the nervous system and their dysfunction is associated with neurodegenerative diseases and brain tumor development. Serpine1 mRNA-binding protein 1 (SERBP1) is a unique member of this group, being mostly disordered and lacking canonical RNA-binding domains. We defined SERBP1's interactome, uncovered novel roles in splicing, cell division and ribosomal biogenesis, and showed its participation in pathological stress granules and Tau aggregates in Alzheimer's brains. SERBP1 preferentially interacts with other G-quadruplex (G4) binders, implicated in different stages of gene expression, suggesting that G4 binding is a critical component of SERBP1 function in different settings. Similarly, we identified important associations between SERBP1 and PARP1/polyADP-ribosylation (PARylation). SERBP1 interacts with PARP1 and its associated factors and influences PARylation. Moreover, protein complexes in which SERBP1 participates contain mostly PARylated proteins and PAR binders. Based on these results, we propose a feedback regulatory model in which SERBP1 influences PARP1 function and PARylation, while PARylation modulates SERBP1 functions and participation in regulatory complexes.
Collapse
|
11
|
Bon C, Goretzki B, Flamme M, Shelton C, Davis H, Lima F, Garcia F, Brittain S, Brocklehurst CE. Oxadiazolines as Photoreleasable Labels for Drug Target Identification. J Am Chem Soc 2024; 146:26759-26765. [PMID: 39288302 DOI: 10.1021/jacs.4c06936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Photoaffinity labeling is a widely used technique for studying ligand-protein and protein-protein interactions. Traditional photoaffinity labels utilize nonspecific C-H bond insertion reactions mediated by a highly reactive intermediate. Despite being the most widely used photoaffinity labels, diazirines exhibit limited compatibility with downstream organic reactions and suffer from storage stability concerns. This study introduces oxadiazolines as innovative and complementary photoactivatable labels for addition to the toolbox and demonstrates their application in vitro and through in cellulo labeling experiments. Oxadiazolines can be easily synthesized from ketone moieties and cleaved with 302-330 nm light to cleanly liberate a diazo reactive moiety that can covalently modify nucleophilic amino acid residues. Notably, oxadiazolines are compatible with various organic reaction conditions and functional groups, allowing for the exploration of a large chemical space. Several known inhibitors featuring the oxadiazoline functionality were prepared without affecting their binding affinity. Furthermore, we confirmed the ability of oxadiazolines to form covalent bonds with proteins upon UV-irradiation, both in vitro and in cellulo, yielding comparable results to those of the matched diazirine compounds.
Collapse
Affiliation(s)
- Corentin Bon
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Benedikt Goretzki
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Marie Flamme
- Chemical and Analytical Development, Novartis Development, Novartis Pharma AG, Basel 4056, Switzerland
| | - Claude Shelton
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Holly Davis
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Fabio Lima
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| | - Francisco Garcia
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Scott Brittain
- Discovery Sciences, Novartis Biomedical Research, Novartis Pharma AG, Cambridge, Massachusetts 02139, United States
| | - Cara E Brocklehurst
- Global Discovery Chemistry, Novartis Biomedical Research, Novartis Pharma AG, Basel 4056, Switzerland
| |
Collapse
|
12
|
Wang Q, Du Y, Zheng J, Shi L, Li T. G-Quadruplex-Programmed Versatile Nanorobot Combined with Chemotherapy and Gene Therapy for Synergistic Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400267. [PMID: 38805747 DOI: 10.1002/smll.202400267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/29/2024] [Indexed: 05/30/2024]
Abstract
Developing synergistic targeted therapeutics to improve treatment efficacy while reducing side effects has proven promising for anticancer therapies, but how to conveniently modulate multidrug cooperation remains a challenge. Here, a novel synergistic strategy using a G-quadruplex-programmed versatile nanorobot (G4VN) containing two subunits of DNAzyme (DzG4) and ligand-drug conjugates (LDCs) is proposed to precisely target tumors and then execute both gene silencing and chemotherapy. As the core module of this nanorobot, a well-designed G4 responding to a high level of K+ in tumor microenvironment smartly kills three birds with one stone, which makes two TfR aptamers proximate to improve their efficiency of targeting tumor cells, and in situ activates a split 10-23 DNAzyme to downregulate target mRNA expression, meanwhile promotes the cell uptake of a GSH-responsive LDCs to enhance drug efficacy. Such a design enables a potently synergistic anticancer therapy with low side effects in vivo, showing great promise for broad applications in precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Yi Du
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Jiao Zheng
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
13
|
Huang C, Zhao C, Sun Y, Feng T, Ren J, Qu X. A Hydrogen-Bonded Organic Framework-Based Mitochondrion-Targeting Bioorthogonal Platform for the Modulation of Mitochondrial Epigenetics. NANO LETTERS 2024; 24:8929-8939. [PMID: 38865330 DOI: 10.1021/acs.nanolett.4c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Bioorthogonal chemistry represents a powerful tool in chemical biology, which shows great potential in epigenetic modulation. As a proof of concept, the epigenetic modulation model of mitochondrial DNA (mtDNA) is selected because mtDNA establishes a relative hypermethylation stage under oxidative stress, which impairs the mitochondrion-based therapeutic effect during cancer therapy. Herein, we design a new biocompatible hydrogen-bonded organic framework (HOF) for a HOF-based mitochondrion-targeting bioorthogonal platform TPP@P@PHOF-2. PHOF-2 can activate a prodrug (pro-procainamide) in situ, which can specifically inhibit DNA methyltransferase 1 (DNMT1) activity and remodel the epigenetic modification of mtDNA, making it more susceptible to ROS damage. In addition, PHOF-2 can also catalyze artemisinin to produce large amounts of ROS, effectively damaging mtDNA and achieving better chemodynamic therapy demonstrated by both in vitro and in vivo studies. This work provides new insights into developing advanced bioorthogonal therapy and expands the applications of HOF and bioorthogonal catalysis.
Collapse
Affiliation(s)
- Congcong Huang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuanqi Zhao
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yue Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tingting Feng
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
14
|
Wang Q, Jin D, Liu C, Shi L, Li T. A Tumor-Specific Cascade-Activating Smart Prodrug System for Enhanced Targeted Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309482. [PMID: 38150668 DOI: 10.1002/smll.202309482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/28/2023] [Indexed: 12/29/2023]
Abstract
Developing intelligently targeted drugs with low side effects is urgent for cancer treatment. Toward this goal, a tumor-specific cascade-activating smart prodrug system consisting of a G-quadruplex(G4)-modulated tumor-targeted DNA vehicle and a well-designed cellular stimuli-responsive ligand-drug conjugates (LDCs) is proposed. An original "donor-acceptor" binary fluorescent ligand, with ultrahigh affinity, brightness, and photostability, is engineered to tightly bind G4 structures and significantly improve the nuclease resistance of the DNA vehicle, which serves as a bridge contributing to the construction of the prodrug system, named ApG4/LDCs. Sodium nitroprusside and doxorubicin are loaded into ApG4/LDCs in one pot and generate nitric oxide and superoxide anion in response to cancer cellular environments, which in cascade generates peroxynitrite to cause DNA damage while promoting the self-monitored drug release to achieve enhanced targeted therapy. Such a cascade activation and self-reinforcement process is executed only when the prodrug system targets the tumor tissue followed by cell uptake, showing significant antitumor efficacy and greatly weakening the damage to normal tissues. Given the unique features, the innovative strategy for prodrug design may open a new door to precision disease treatment.
Collapse
Affiliation(s)
- Qiwei Wang
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Duo Jin
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Chengbin Liu
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| | - Lili Shi
- Department of Chemistry, Anhui University, 111 Jiulong Road, Hefei, Anhui, 230601, China
| | - Tao Li
- Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, China
| |
Collapse
|
15
|
Lu Z, Xie S, Su H, Han S, Huang H, Zhou X. Identification of G-quadruplex-interacting proteins in living cells using an artificial G4-targeting biotin ligase. Nucleic Acids Res 2024; 52:e37. [PMID: 38452210 PMCID: PMC11040147 DOI: 10.1093/nar/gkae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/30/2024] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
G-quadruplexes (G4s) are noncanonical nucleic acid structures pivotal to cellular processes and disease pathways. Deciphering G4-interacting proteins is imperative for unraveling G4's biological significance. In this study, we developed a G4-targeting biotin ligase named G4PID, meticulously assessing its binding affinity and specificity both in vitro and in vivo. Capitalizing on G4PID, we devised a tailored approach termed G-quadruplex-interacting proteins specific biotin-ligation procedure (PLGPB) to precisely profile G4-interacting proteins. Implementing this innovative strategy in live cells, we unveiled a cohort of 149 potential G4-interacting proteins, which exhibiting multifaceted functionalities. We then substantiate the directly binding affinity of 7 candidate G4-interacting-proteins (SF3B4, FBL, PP1G, BCL7C, NDUV1, ILF3, GAR1) in vitro. Remarkably, we verified that splicing factor 3B subunit 4 (SF3B4) binds preferentially to the G4-rich 3' splice site and the corresponding splicing sites are modulated by the G4 stabilizer PDS, indicating the regulating role of G4s in mRNA splicing procedure. The PLGPB strategy could biotinylate multiple proteins simultaneously, which providing an opportunity to map G4-interacting proteins network in living cells.
Collapse
Affiliation(s)
- Ziang Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Shengjie Xie
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Haomiao Su
- Department of Chemistry, Yale University, 600 West Campus Drive West Haven, West Haven, CT 06516, USA
| | - Shaoqing Han
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Haiyan Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
- Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
16
|
Du M, Li X, Dong W, Zeng F. Implication of Stm1 in the protection of eIF5A, eEF2 and tRNA through dormant ribosomes. Front Mol Biosci 2024; 11:1395220. [PMID: 38698775 PMCID: PMC11063288 DOI: 10.3389/fmolb.2024.1395220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Background: Dormant ribosomes are typically associated with preservation factors to protect themselves from degradation under stress conditions. Stm1/SERBP1 is one such protein that anchors the 40S and 60S subunits together. Several proteins and tRNAs bind to this complex as well, yet the molecular mechanisms remain unclear. Methods: Here, we reported the cryo-EM structures of five newly identified Stm1/SERBP1-bound ribosomes. Results: These structures highlighted that eIF5A, eEF2, and tRNA might bind to dormant ribosomes under stress to avoid their own degradation, thus facilitating protein synthesis upon the restoration of growth conditions. In addition, Ribo-seq data analysis reflected the upregulation of nutrient, metabolism, and external-stimulus-related pathways in the ∆stm1 strain, suggesting possible regulatory roles of Stm1. Discussion: The knowledge generated from the present work will facilitate in better understanding the molecular mechanism of dormant ribosomes.
Collapse
Affiliation(s)
- Mengtan Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Xin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Wanlin Dong
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
17
|
Sahayasheela VJ, Sugiyama H. RNA G-quadruplex in functional regulation of noncoding RNA: Challenges and emerging opportunities. Cell Chem Biol 2024; 31:53-70. [PMID: 37909035 DOI: 10.1016/j.chembiol.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/12/2023] [Accepted: 08/22/2023] [Indexed: 11/02/2023]
Abstract
G-quadruplexes (G4s) are stable, noncanonical structures formed in guanine (G)-rich sequences of DNA/RNA. G4 structures are reported to play a regulatory role in various cellular processes and, recently, a considerable number of studies have attributed new biological functions to these structures, especially in RNA. Noncoding RNA (ncRNA), which does not translate into a functional protein, is widely expressed and has been shown to play a key role in shaping cellular activity. There has been growing evidence of G4 formation in several ncRNA classes, and it has been identified as a key part for diverse biological functions and physio-pathological contexts in neurodegenerative diseases and cancer. This review discusses RNA G4s (rG4s) in ncRNA, focusing on the molecular mechanism underlying its function. This review also aims to highlight potential and emerging opportunities to identify and target the rG4s in ncRNA to understand its function and, ultimately, treat many diseases.
Collapse
Affiliation(s)
- Vinodh J Sahayasheela
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwakecho, Sakyo-Ku, Kyoto 606-8502, Japan; Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Yoshida-Ushinomaecho, Sakyo-Ku, Kyoto 606-8501, Japan.
| |
Collapse
|
18
|
Le Sénéchal R, Keruzoré M, Quillévéré A, Loaëc N, Dinh VT, Reznichenko O, Guixens-Gallardo P, Corcos L, Teulade-Fichou MP, Granzhan A, Blondel M. Alternative splicing of BCL-x is controlled by RBM25 binding to a G-quadruplex in BCL-x pre-mRNA. Nucleic Acids Res 2023; 51:11239-11257. [PMID: 37811881 PMCID: PMC10639069 DOI: 10.1093/nar/gkad772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/05/2023] [Accepted: 09/09/2023] [Indexed: 10/10/2023] Open
Abstract
BCL-x is a master regulator of apoptosis whose pre-mRNA is alternatively spliced into either a long (canonical) anti-apoptotic Bcl-xL isoform, or a short (alternative) pro-apoptotic Bcl-xS isoform. The balance between these two antagonistic isoforms is tightly regulated and overexpression of Bcl-xL has been linked to resistance to chemotherapy in several cancers, whereas overexpression of Bcl-xS is associated to some forms of diabetes and cardiac disorders. The splicing factor RBM25 controls alternative splicing of BCL-x: its overexpression favours the production of Bcl-xS, whereas its downregulation has the opposite effect. Here we show that RBM25 directly and specifically binds to GQ-2, an RNA G-quadruplex (rG4) of BCL-x pre-mRNA that forms at the vicinity of the alternative 5' splice site leading to the alternative Bcl-xS isoform. This RBM25/rG4 interaction is crucial for the production of Bcl-xS and depends on the RE (arginine-glutamate-rich) motif of RBM25, thus defining a new type of rG4-interacting domain. PhenDC3, a benchmark G4 ligand, enhances the binding of RBM25 to the GQ-2 rG4 of BCL-x pre-mRNA, thereby promoting the alternative pro-apoptotic Bcl-xS isoform and triggering apoptosis. Furthermore, the screening of a combinatorial library of 90 putative G4 ligands led to the identification of two original compounds, PhenDH8 and PhenDH9, superior to PhenDC3 in promoting the Bcl-xS isoform and apoptosis. Thus, favouring the interaction between RBM25 and the GQ-2 rG4 of BCL-x pre-mRNA represents a relevant intervention point to re-sensitize cancer cells to chemotherapy.
Collapse
Affiliation(s)
- Ronan Le Sénéchal
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marc Keruzoré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Alicia Quillévéré
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Nadège Loaëc
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Van-Trang Dinh
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Oksana Reznichenko
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Pedro Guixens-Gallardo
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Laurent Corcos
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| | - Marie-Paule Teulade-Fichou
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Anton Granzhan
- Chemistry and Modelling for the Biology of Cancer (CMBC), CNRS UMR9187, Inserm U1196, Institut Curie, Université Paris Saclay, F-91405 Orsay, France
| | - Marc Blondel
- Univ Brest; Inserm UMR1078; Etablissement Français du Sang (EFS) Bretagne; CHRU Brest, Hôpital Morvan, Laboratoire de Génétique Moléculaire, 22 avenue Camille Desmoulins, F-29200 Brest, France
| |
Collapse
|
19
|
Fang P, Xie C, Pan T, Cheng T, Chen W, Xia S, Ding T, Fang J, Zhou Y, Fang L, Wei D, Xiao S. Unfolding of an RNA G-quadruplex motif in the negative strand genome of porcine reproductive and respiratory syndrome virus by host and viral helicases to promote viral replication. Nucleic Acids Res 2023; 51:10752-10767. [PMID: 37739415 PMCID: PMC10602871 DOI: 10.1093/nar/gkad759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 08/28/2023] [Accepted: 09/07/2023] [Indexed: 09/24/2023] Open
Abstract
G-quadruplex (G4) is a unique secondary structure formed by guanine-rich nucleic acid sequences. Growing studies reported that the genomes of some viruses harbor G4 structures associated with viral replication, opening up a new field to dissect viral infection. Porcine reproductive and respiratory syndrome virus (PRRSV), a representative member of Arteriviridae, is an economically significant pathogen that has devastated the swine industry worldwide for over 30 years. In this study, we identified a highly conserved G-rich sequence with parallel-type G4 structure (named PRRSV-G4) in the negative strand genome RNA of PRRSV. Pyridostatin (PDS), a well-known G4-binding ligand, stabilized the PRRSV-G4 structure and inhibited viral replication. By screening the proteins interacting with PRRSV-G4 in PRRSV-infected cells and single-molecule magnetic tweezers analysis, we found that two helicases, host DDX18 and viral nsp10, interact with and efficiently unwound the PRRSV-G4 structure, thereby facilitating viral replication. Using a PRRSV reverse genetics system, we confirmed that recombinant PRRSV with a G4-disruptive mutation exhibited resistance to PDS treatment, thereby displaying higher replication than wild-type PRRSV. Collectively, these results demonstrate that the PRRSV-G4 structure plays a crucial regulatory role in viral replication, and targeting this structure represents a promising strategy for antiviral therapies.
Collapse
Affiliation(s)
- Puxian Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Congbao Xie
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Ting Pan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Ting Cheng
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Wei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Sijin Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Tong Ding
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Junkang Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanrong Zhou
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Liurong Fang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| | - Dengguo Wei
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, and Interdisciplinary Sciences Institute, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Shaobo Xiao
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- The Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China
| |
Collapse
|
20
|
Dai Y, Teng X, Zhang Q, Hou H, Li J. Advances and challenges in identifying and characterizing G-quadruplex-protein interactions. Trends Biochem Sci 2023; 48:894-909. [PMID: 37422364 DOI: 10.1016/j.tibs.2023.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/01/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023]
Abstract
G-quadruplexes (G4s) are peculiar nucleic acid secondary structures formed by DNA or RNA and are considered as fundamental features of the genome. Many proteins can specifically bind to G4 structures. There is increasing evidence that G4-protein interactions involve in the regulation of important cellular processes, such as DNA replication, transcription, RNA splicing, and translation. Additionally, G4-protein interactions have been demonstrated to be potential targets for disease treatment. In order to unravel the detailed regulatory mechanisms of G4-binding proteins (G4BPs), biochemical methods for detecting G4-protein interactions with high specificity and sensitivity are highly demanded. Here, we review recent advances in screening and validation of new G4BPs and highlight both their features and limitations.
Collapse
Affiliation(s)
- Yicong Dai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Xucong Teng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Qiushuang Zhang
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China
| | - Hongwei Hou
- Beijing Life Science Academy, Beijing 102209, China.
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Tsinghua University, Beijing 100084, China; New Cornerstone Science Laboratory, Shenzhen 518054, China; Beijing Life Science Academy, Beijing 102209, China; Center for BioAnalytical Chemistry, Hefei National Laboratory of Physical Science at Microscale, University of Science and Technology of China, Hefei 230026, Anhui, China.
| |
Collapse
|
21
|
Danino YM, Molitor L, Rosenbaum-Cohen T, Kaiser S, Cohen Y, Porat Z, Marmor-Kollet H, Katina C, Savidor A, Rotkopf R, Ben-Isaac E, Golani O, Levin Y, Monchaud D, Hickson I, Hornstein E. BLM helicase protein negatively regulates stress granule formation through unwinding RNA G-quadruplex structures. Nucleic Acids Res 2023; 51:9369-9384. [PMID: 37503837 PMCID: PMC10516661 DOI: 10.1093/nar/gkad613] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 07/29/2023] Open
Abstract
Bloom's syndrome (BLM) protein is a known nuclear helicase that is able to unwind DNA secondary structures such as G-quadruplexes (G4s). However, its role in the regulation of cytoplasmic processes that involve RNA G-quadruplexes (rG4s) has not been previously studied. Here, we demonstrate that BLM is recruited to stress granules (SGs), which are cytoplasmic biomolecular condensates composed of RNAs and RNA-binding proteins. BLM is enriched in SGs upon different stress conditions and in an rG4-dependent manner. Also, we show that BLM unwinds rG4s and acts as a negative regulator of SG formation. Altogether, our data expand the cellular activity of BLM and shed light on the function that helicases play in the dynamics of biomolecular condensates.
Collapse
Affiliation(s)
- Yehuda M Danino
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Lena Molitor
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tamar Rosenbaum-Cohen
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Brain science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sebastian Kaiser
- Center for Chromosome Stability, Dept. of Cellular and Molecular Medicine, Panum Institute, Copenhagen Univ, 2200 København N., Denmark
| | - Yahel Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ziv Porat
- Flow Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Hagai Marmor-Kollet
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- 1E therapeutics, Rehovot, Israel
| | - Corine Katina
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Eyal Ben-Isaac
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ofra Golani
- MICC Cell Observatory Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yishai Levin
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Monchaud
- Institut de Chimie Moleculaire, ICMUB CNRS UMR 6302, uB Dijon, France
| | - Ian D Hickson
- Center for Chromosome Stability, Dept. of Cellular and Molecular Medicine, Panum Institute, Copenhagen Univ, 2200 København N., Denmark
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
22
|
Rota Sperti F, Mitteaux J, Zell J, Pipier A, Valverde IE, Monchaud D. The multivalent G-quadruplex (G4)-ligands MultiTASQs allow for versatile click chemistry-based investigations. RSC Chem Biol 2023; 4:456-465. [PMID: 37415864 PMCID: PMC10320843 DOI: 10.1039/d3cb00009e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/12/2023] [Indexed: 07/08/2023] Open
Abstract
Chemical biology hinges on multivalent molecular tools that can specifically interrogate and/or manipulate cellular circuitries from the inside. The success of many of these approaches relies on molecular tools that make it possible to visualize biological targets in cells and then isolate them for identification purposes. To this end, click chemistry has become in just a few years a vital tool in offering practically convenient solutions to address highly complicated biological questions. We report here on two clickable molecular tools, the biomimetic G-quadruplex (G4) ligands MultiTASQ and azMultiTASQ, which benefit from the versatility of two types of bioorthogonal chemistry, CuAAC and SPAAC (the discovery of which was very recently awarded the Nobel Prize of chemistry). These two MultiTASQs are used here to both visualize G4s in and identify G4s from human cells. To this end, we developed click chemo-precipitation of G-quadruplexes (G4-click-CP) and in situ G4 click imaging protocols, which provide unique insights into G4 biology in a straightforward and reliable manner.
Collapse
Affiliation(s)
- Francesco Rota Sperti
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Jérémie Mitteaux
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Joanna Zell
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Angélique Pipier
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - Ibai E Valverde
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| | - David Monchaud
- ICMUB, CNRS UMR6302, Université de Bourgogne 9 Avenue Alain Savary 21078 Dijon France
| |
Collapse
|
23
|
Razzaq M, Han JH, Ravichandran S, Kim J, Bae JY, Park MS, Kannappan S, Chung WC, Ahn JH, Song MJ, Kim KK. Stabilization of RNA G-quadruplexes in the SARS-CoV-2 genome inhibits viral infection via translational suppression. Arch Pharm Res 2023; 46:598-615. [PMID: 37563335 DOI: 10.1007/s12272-023-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Abstract
The G-quadruplex (G4) formed in single-stranded DNAs or RNAs plays a key role in diverse biological processes and is considered as a potential antiviral target. In the genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), 25 putative G4-forming sequences are predicted; however, the effects of G4-binding ligands on SARS-CoV-2 replication have not been studied in the context of viral infection. In this study, we investigated whether G4-ligands suppressed SARS-CoV-2 replication and whether their antiviral activity involved stabilization of viral RNA G4s and suppression of viral gene expression. We found that pyridostatin (PDS) suppressed viral gene expression and genome replication as effectively as the RNA polymerase inhibitor remdesivir. Biophysical analyses revealed that the 25 predicted G4s in the SARS-CoV-2 genome formed a parallel G4 structure. In particular, G4-644 and G4-3467 located in the 5' region of ORF1a, formed a G4 structure that could be effectively stabilized by PDS. We also showed that PDS significantly suppressed translation of the reporter genes containing these G4s. Taken together, our results demonstrate that stabilization of RNA G4s by PDS in the SARS-CoV-2 genome inhibits viral infection via translational suppression, highlighting the therapeutic potential of G4-ligands in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maria Razzaq
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Ji Ho Han
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Subramaniyam Ravichandran
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
- Department of Biology, Stanford University, Stanford, United States of America
| | - Jaehyun Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, Biosafety Center, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Woo-Chang Chung
- Department of Microbiology, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea
| | - Jin-Hyun Ahn
- Department of Microbiology, Graduate School of Basic Medical Science (GSBMS), Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| | - Moon Jung Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Antimicrobial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Republic of Korea.
| |
Collapse
|
24
|
Pavlova I, Iudin M, Surdina A, Severov V, Varizhuk A. G-Quadruplexes in Nuclear Biomolecular Condensates. Genes (Basel) 2023; 14:genes14051076. [PMID: 37239436 DOI: 10.3390/genes14051076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
G-quadruplexes (G4s) have long been implicated in the regulation of chromatin packaging and gene expression. These processes require or are accelerated by the separation of related proteins into liquid condensates on DNA/RNA matrices. While cytoplasmic G4s are acknowledged scaffolds of potentially pathogenic condensates, the possible contribution of G4s to phase transitions in the nucleus has only recently come to light. In this review, we summarize the growing evidence for the G4-dependent assembly of biomolecular condensates at telomeres and transcription initiation sites, as well as nucleoli, speckles, and paraspeckles. The limitations of the underlying assays and the remaining open questions are outlined. We also discuss the molecular basis for the apparent permissive role of G4s in the in vitro condensate assembly based on the interactome data. To highlight the prospects and risks of G4-targeting therapies with respect to the phase transitions, we also touch upon the reported effects of G4-stabilizing small molecules on nuclear biomolecular condensates.
Collapse
Affiliation(s)
- Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Mikhail Iudin
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| | - Anastasiya Surdina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Vjacheslav Severov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, 119435 Moscow, Russia
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia
| |
Collapse
|
25
|
Asamitsu S, Yabuki Y, Matsuo K, Kawasaki M, Hirose Y, Kashiwazaki G, Chandran A, Bando T, Wang DO, Sugiyama H, Shioda N. RNA G-quadruplex organizes stress granule assembly through DNAPTP6 in neurons. SCIENCE ADVANCES 2023; 9:eade2035. [PMID: 36827365 PMCID: PMC9956113 DOI: 10.1126/sciadv.ade2035] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Consecutive guanine RNA sequences can adopt quadruple-stranded structures, termed RNA G-quadruplexes (rG4s). Although rG4-forming sequences are abundant in transcriptomes, the physiological roles of rG4s in the central nervous system remain poorly understood. In the present study, proteomics analysis of the mouse forebrain identified DNAPTP6 as an RNA binding protein with high affinity and selectivity for rG4s. We found that DNAPTP6 coordinates the assembly of stress granules (SGs), cellular phase-separated compartments, in an rG4-dependent manner. In neurons, the knockdown of DNAPTP6 diminishes the SG formation under oxidative stress, leading to synaptic dysfunction and neuronal cell death. rG4s recruit their mRNAs into SGs through DNAPTP6, promoting RNA self-assembly and DNAPTP6 phase separation. Together, we propose that the rG4-dependent phase separation of DNAPTP6 plays a critical role in neuronal function through SG assembly.
Collapse
Affiliation(s)
- Sefan Asamitsu
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Japan
| | - Yasushi Yabuki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazuya Matsuo
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
| | - Moe Kawasaki
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Hirose
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Gengo Kashiwazaki
- Major in Advanced Bioscience, Graduate School of Agriculture, Kindai University, Nara, Japan
| | - Anandhakumar Chandran
- Ludwig Cancer Research Oxford, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Toshikazu Bando
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Dan Ohtan Wang
- Center for Biosystems Dynamics Research (BDR), RIKEN, Kobe, Japan
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto, Japan
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University, Sakyo, Kyoto, Japan
| | - Norifumi Shioda
- Department of Genomic Neurology, Institute of Molecular Embryology and Genetics (IMEG), Kumamoto University, Kumamoto, Japan
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
26
|
Reznichenko O, Leclercq D, Franco Pinto J, Mouawad L, Gabelica V, Granzhan A. Optimization of G-Quadruplex Ligands through a SAR Study Combining Parallel Synthesis and Screening of Cationic Bis(acylhydrazones). Chemistry 2023; 29:e202202427. [PMID: 36286608 PMCID: PMC10099395 DOI: 10.1002/chem.202202427] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/06/2022]
Abstract
G-quadruplexes (G4s), secondary structures adopted by guanine-rich DNA and RNA sequences, are implicated in numerous biological processes and have been suggested as potential drug targets. Accordingly, there is an increasing interest in developing high-throughput methods that allow the generation of congeneric series of G4-targeting molecules ("ligands") and investigating their interactions with the targets. We have developed an operationally simple method of parallel synthesis to generate "ready-to-screen" libraries of cationic acylhydrazones, a motif that we have previously identified as a promising scaffold for potent, biologically active G4 ligands. Combined with well-established screening techniques, such as fluorescence melting, this method enables the rapid synthesis and screening of combinatorial libraries of potential G4 ligands. Following this protocol, we synthesized a combinatorial library of 90 bis(acylhydrazones) and screened it against five different nucleic acid structures. This way, we were able to analyze the structure-activity relationships within this series of G4 ligands, and identified three novel promising ligands whose interactions with G4-DNAs of different topologies were studied in detail by a combination of several biophysical techniques, including native mass spectrometry, and molecular modeling.
Collapse
Affiliation(s)
- Oksana Reznichenko
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Denis Leclercq
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Jaime Franco Pinto
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Liliane Mouawad
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| | - Valérie Gabelica
- Univ. BordeauxCNRS, INSERM, ARNAUMR 5320, U1212, IECB33600PessacFrance
| | - Anton Granzhan
- CMBC, CNRS UMR9187Inserm U1196, Institut CuriePSL Research University91405OrsayFrance
- CMBC, CNRS UMR9187Inserm U1196Université Paris Saclay91405OrsayFrance
| |
Collapse
|
27
|
Advances in
G
‐quadruplexes‐based fluorescent imaging. Biopolymers 2022; 113:e23528. [DOI: 10.1002/bip.23528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022]
|
28
|
Turner M, Danino YM, Barshai M, Yacovzada NS, Cohen Y, Olender T, Rotkopf R, Monchaud D, Hornstein E, Orenstein Y. rG4detector, a novel RNA G-quadruplex predictor, uncovers their impact on stress granule formation. Nucleic Acids Res 2022; 50:11426-11441. [PMID: 36350614 PMCID: PMC9723610 DOI: 10.1093/nar/gkac950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/21/2022] [Accepted: 10/14/2022] [Indexed: 11/11/2022] Open
Abstract
RNA G-quadruplexes (rG4s) are RNA secondary structures, which are formed by guanine-rich sequences and have important cellular functions. Existing computational tools for rG4 prediction rely on specific sequence features and/or were trained on small datasets, without considering rG4 stability information, and are therefore sub-optimal. Here, we developed rG4detector, a convolutional neural network to identify potential rG4s in transcriptomics data. rG4detector outperforms existing methods in both predicting rG4 stability and in detecting rG4-forming sequences. To demonstrate the biological-relevance of rG4detector, we employed it to study RNAs that are bound by the RNA-binding protein G3BP1. G3BP1 is central to the induction of stress granules (SGs), which are cytoplasmic biomolecular condensates that form in response to a variety of cellular stresses. Unexpectedly, rG4detector revealed a dynamic enrichment of rG4s bound by G3BP1 in response to cellular stress. In addition, we experimentally characterized G3BP1 cross-talk with rG4s, demonstrating that G3BP1 is a bona fide rG4-binding protein and that endogenous rG4s are enriched within SGs. Furthermore, we found that reduced rG4 availability impairs SG formation. Hence, we conclude that rG4s play a direct role in SG biology via their interactions with RNA-binding proteins and that rG4detector is a novel useful tool for rG4 transcriptomics data analyses.
Collapse
Affiliation(s)
- Maor Turner
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Yehuda M Danino
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Mira Barshai
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
| | - Nancy S Yacovzada
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yahel Cohen
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Tsviya Olender
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ron Rotkopf
- Bioinformatics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Monchaud
- Institut de Chimie Moleculaire, ICMUB CNRS UMR 6302, UBFC Dijon, France
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yaron Orenstein
- School of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Be’er-Sheva 8410501, Israel
- Department of Computer Science, Bar-Ilan University, Ramat-Gan 5290002, Israel
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
29
|
Zhao L, Ahmed F, Zeng Y, Xu W, Xiong H. Recent Developments in G-Quadruplex Binding Ligands and Specific Beacons on Smart Fluorescent Sensor for Targeting Metal Ions and Biological Analytes. ACS Sens 2022; 7:2833-2856. [PMID: 36112358 DOI: 10.1021/acssensors.2c00992] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The G-quadruplex structure is crucial in several biological processes, including DNA replication, transcription, and genomic maintenance. G-quadruplex-based fluorescent probes have recently gained popularity because of their ease of use, low cost, excellent selectivity, and sensitivity. This review summarizes the latest applications of G-quadruplex structures as detectors of genome-wide, enantioselective catalysts, disease therapeutics, promising drug targets, and smart fluorescence probes. In every section, sensing of G-quadruplex and employing G4 for the detection of other analytes were introduced, respectively. Since the discovery of the G-quadruplex structure, several studies have been conducted to investigate its conformations, biological potential, stability, reactivity, selectivity for chemical modification, and optical properties. The formation mechanism and advancements for detecting different metal ions (Na+, K+, Ag+, Tl+, Cu+/Cu2+, Hg2+, and Pb2+) and biomolecules (AMP, ATP, DNA/RNA, microRNA, thrombin, T4 PNK, RNase H, ALP, CEA, lipocalin 1, and UDG) using fluorescent sensors based on G-quadruplex modification, such as dye labels, artificial nucleobase moieties, dye complexes, intercalating dyes, and bioconjugated nanomaterials (AgNCs, GO, QDs, CDs, and MOF) is described herein. To investigate these extremely efficient responsive agents for diagnostic and therapeutic applications in medicine, fluorescence sensors based on G-quadruplexes have also been employed as a quantitative visualization technique.
Collapse
Affiliation(s)
- Long Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yating Zeng
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Weiqing Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
30
|
Liu LY, Ma TZ, Zeng YL, Liu W, Mao ZW. Structural Basis of Pyridostatin and Its Derivatives Specifically Binding to G-Quadruplexes. J Am Chem Soc 2022; 144:11878-11887. [PMID: 35749293 DOI: 10.1021/jacs.2c04775] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The nucleic acid G-quadruplex (G4) has emerged as a promising therapeutic target for a variety of diseases such as cancer and neurodegenerative disease. Among small-molecule G4-binders, pyridostatin (PDS) and its derivatives (e.g., PyPDS) exhibit high specificity to G4s, but the structural basis for their specific recognition of G4s remains unknown. Here, we presented two solution structures of PyPDS and PDS with a quadruplex-duplex hybrid. The structures indicate that the rigid aromatic rings of PyPDS/PDS linked by flexible amide bonds match adaptively with G-tetrad planes, enhancing π-π stacking and achieving specific recognition of G4s. The aliphatic amine side chains of PyPDS/PDS adjust conformation to interact with the phosphate backbone via hydrogen bonding and electrostatic interactions, increasing affinity for G4s. Moreover, the N-H of PyPDS/PDS amide bonds interacts with two O6s of G-tetrad guanines via hydrogen bonding, achieving a further increase in affinity for G4s, which is different from most G4 ligands. Our findings reveal from structural perspectives that the rational assembly of rigid and flexible structural units in a ligand can synergistically improve the selectivity and affinity for G4s through spatial selective and adaptive matching.
Collapse
Affiliation(s)
- Liu-Yi Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Tian-Zhu Ma
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - You-Liang Zeng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Wenting Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
31
|
Lena A, Benassi A, Stasi M, Saint‐Pierre C, Freccero M, Gasparutto D, Bombard S, Doria F, Verga D. Photoactivatable V-Shaped Bifunctional Quinone Methide Precursors as a New Class of Selective G-quadruplex Alkylating Agents. Chemistry 2022; 28:e202200734. [PMID: 35441438 PMCID: PMC9322314 DOI: 10.1002/chem.202200734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/22/2022]
Abstract
Combining the selectivity of G-quadruplex (G4) ligands with the spatial and temporal control of photochemistry is an emerging strategy to elucidate the biological relevance of these structures. In this work, we developed six novel V-shaped G4 ligands that can, upon irradiation, form stable covalent adducts with G4 structures via the reactive intermediate, quinone methide (QM). We thoroughly investigated the photochemical properties of the ligands and their ability to generate QMs. Subsequently, we analyzed their specificity for various topologies of G4 and discovered a preferential binding towards the human telomeric sequence. Finally, we tested the ligand ability to act as photochemical alkylating agents, identifying the covalent adducts with G4 structures. This work introduces a novel molecular tool in the chemical biology toolkit for G4s.
Collapse
Affiliation(s)
- Alberto Lena
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Alessandra Benassi
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Michele Stasi
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
- Present Address: Department of ChemistryTechnical University of MunichLichtenbergstraße 485748GarchingGermany
| | | | - Mauro Freccero
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Didier Gasparutto
- University Grenoble AlpesCEACNRSIRIGSyMMES-UMR581938054GrenobleFrance
| | - Sophie Bombard
- CNRS UMR9187INSERM U1196Institut CuriePSL Research University91405OrsayFrance
- CNRS UMR9187INSERM U1196Université Paris-Saclay91405OrsayFrance
| | - Filippo Doria
- Department of ChemistryUniversity of PaviaViale Taramelli 1027100PaviaItaly
| | - Daniela Verga
- CNRS UMR9187INSERM U1196Institut CuriePSL Research University91405OrsayFrance
- CNRS UMR9187INSERM U1196Université Paris-Saclay91405OrsayFrance
| |
Collapse
|
32
|
Jia S, Wang W, Qin S, Xie S, Zhan L, Wei Q, Lu Z, Zhou X, Chen C, Chen K, Yan S, Tan C, Mao Z, Zhou X. The development of an iridium(III) complex functionalized G-quadruplex probe for the stability of G-quadruplex and lifetime image in cytoplasm. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
33
|
Teng X, Dai Y, Li J. Methodological advances of bioanalysis and biochemical targeting of intracellular G-quadruplexes. EXPLORATION (BEIJING, CHINA) 2022; 2:20210214. [PMID: 37323879 PMCID: PMC10191030 DOI: 10.1002/exp.20210214] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/11/2022] [Indexed: 06/17/2023]
Abstract
G-quadruplexes (G4s) are a kind of non-canonical nucleic acid secondary structures, which involve in various biological processes in living cells. The relationships between G4s and human diseases, such as tumors, neurodegenerative diseases, and viral infections, have attracted great attention in the last decade. G4s are considered as a promising new target for disease treatment. For instance, G4 ligands are reported to be potentially effective in SARS-COV-2 treatment. However, because of the lack of analytical methods with high performance for the identification of intracellular G4s, the detailed mechanisms of the biofunctions of G4s remain elusive. Meanwhile, through demonstrating the principles of how the G4s systematically modulate the cellular processes with advanced detection methods, biochemical targeting of G4s in living cells can be realized by chemical and biological tools and becomes useful in biomedicine. This review highlights recent methodological advances about intracellular G4s and provides an outlook on the improvement of the bioanalysis and biochemical targeting tools of G4s.
Collapse
Affiliation(s)
- Xucong Teng
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijingChina
| | - Yicong Dai
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijingChina
| | - Jinghong Li
- Department of Chemistry, Center for BioAnalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical BiologyTsinghua UniversityBeijingChina
| |
Collapse
|
34
|
Sato S. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chem Pharm Bull (Tokyo) 2022; 70:95-105. [PMID: 35110442 DOI: 10.1248/cpb.c21-00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein bioconjugation has become an increasingly important research method for introducing artificial functions in to protein with various applications, including therapeutics and biomaterials. Due to its amphiphilic nature, only a few tyrosine residues are exposed on the protein surface. Therefore, tyrosine residue has attracted attention as suitable targets for site-specific modification, and it is the most studied amino acid residue for modification reactions other than lysine and cysteine residues. In this review, we present the progress of our tyrosine chemical modification studies over the past decade. We have developed several different catalytic approaches to selectively modify tyrosine residues using peroxidase, laccase, hemin, and ruthenium photocatalysts. In addition to modifying tyrosine residues by generating radical species through single-electron transfer, we have developed a histidine modification method that utilizes singlet oxygen generated by photosensitizers. These highly reactive chemical species selectively modify proteins in close proximity to the enzyme/catalyst. Taking advantage of the spatially controllable reaction fields, we have developed novel methods for site-specific antibody modification, detecting hotspots of oxidative stress, and target identification of bioactive molecules.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
35
|
Xu J, Huang H, Zhou X. G-Quadruplexes in Neurobiology and Virology: Functional Roles and Potential Therapeutic Approaches. JACS AU 2021; 1:2146-2161. [PMID: 34977886 PMCID: PMC8715485 DOI: 10.1021/jacsau.1c00451] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 05/11/2023]
Abstract
A G-quadruplex (G4) is a four-stranded nucleic acid secondary structure maintained by Hoogsteen hydrogen bonds established between four guanines. Experimental studies and bioinformatics predictions support the hypothesis that these structures are involved in different cellular functions associated with both DNA and RNA processes. An increasing number of diseases have been shown to be associated with abnormal G4 regulation. Here, we describe the existence of G4 and then discuss G4-related pathogenic mechanisms in neurodegenerative diseases and the viral life cycle. Furthermore, we focus on the role of G4s in the design of antiviral therapy and neuropharmacology, including G4 ligands, G4-based aptamers, G4-related proteins, and CRISPR-based sequence editing, along with a discussion of limitations and insights into the prospects of this unusual nucleic acid secondary structure in therapeutics. Finally, we highlight progress and challenges in this field and the potential G4-related research fields.
Collapse
Affiliation(s)
- Jinglei Xu
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Haiyan Huang
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
| | - Xiang Zhou
- The
Institute of Advanced Studies, Key Laboratory of Biomedical Polymers-Ministry
of Education, Wuhan University, Wuhan 430072, China
- Key
Laboratory of Biomedical Polymers-Ministry of Education, College of
Chemistry and Molecular Sciences, Wuhan
University, Wuhan 430072, China
- Email to X.Z.:
| |
Collapse
|
36
|
Fleming AM, Manage SAH, Burrows CJ. Binding of AP endonuclease-1 to G-quadruplex DNA depends on the N-terminal domain, Mg 2+ and ionic strength. ACS BIO & MED CHEM AU 2021; 1:44-56. [PMID: 35005714 DOI: 10.1021/acsbiomedchemau.1c00031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The base excision repair enzyme apurinic/apyrimidinic endonuclease-1 (APE1) is also engaged in transcriptional regulation. APE1 can function in both pathways when the protein binds to a promoter G-quadruplex (G4) bearing an abasic site (modeled with tetrahydrofuran, F) that leads to enzymatic stalling on the non-canonical fold to recruit activating transcription factors. Biochemical and biophysical studies to address APE1's binding and catalytic activity with the vascular endothelial growth factor (VEGF) promoter G4 are lacking, and the present work provides insight on this topic. Herein, the native APE1 was used for cleavage assays, and the catalytically inactive mutant D210A was used for binding assays with double-stranded DNA (dsDNA) versus the native G4 or the G4 with F at various positions, revealing dependencies of the interaction on the cation concentrations K+ and Mg2+ and the N-terminal domain of the protein. Assays in 0, 1, or 10 mM Mg2+ found that dsDNA and G4 substrates required the cation for both binding and catalysis, in which G4 binding increased with [Mg2+]. Studies with 50 versus physiological 140 mM K+ ions showed that F-containing dsDNA was bound and cleaved by APE1; whereas, the G4s with F were poorly cleaved in low salt and not cleaved at all at higher salt while the binding remained robust. Using Δ33 or Δ61 N-terminal truncated APE1 proteins, the binding and cleavage of dsDNA with F was minimally impacted; in contrast, the G4s required the N-terminus for binding and catalysis is nearly abolished without the N-terminus. With this knowledge, we found APE1 could remodel the F-containing VEGF promoter dsDNA→G4 folds in solution. Lastly, the addition of the G4 ligand pyridostatin inhibited APE1 binding and cleavage of F-containing G4s but not dsDNA. The biological and medicinal chemistry implications of the results are discussed.
Collapse
Affiliation(s)
- Aaron M Fleming
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Shereen A Howpay Manage
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| | - Cynthia J Burrows
- Department of Chemistry, University of Utah, 315 S. 1400 E., Salt Lake City, UT 84112-0850, United States
| |
Collapse
|
37
|
Patil KM, Chin D, Seah HL, Shi Q, Lim KW, Phan AT. G4-PROTAC: targeted degradation of a G-quadruplex binding protein. Chem Commun (Camb) 2021; 57:12816-12819. [PMID: 34783801 DOI: 10.1039/d1cc05025g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G-quadruplex (G4) binding proteins regulate important biological processes, but their interaction networks are poorly understood. We report the first use of G4 as a warhead of a proteolysis-targeting chimera (G4-PROTAC) for targeted degradation of a G4-binding protein (RHAU/DHX36). G4-PROTAC provides a new way to explore G4-protein networks and to develop potential therapeutics.
Collapse
Affiliation(s)
- Kiran M Patil
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Danielle Chin
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Hui Ling Seah
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Qi Shi
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Kah Wai Lim
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore.
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore. .,NTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
38
|
Wickhorst PJ, Ihmels H, Paululat T. Studies on the Interactions of 3,11-Difluoro-6,8,13-trimethyl-8 H-quino[4,3,2- kl]acridinium and Insulin with the Quadruplex-Forming Oligonucleotide Sequence a2 from the Insulin-Linked Polymorphic Region. Molecules 2021; 26:molecules26216595. [PMID: 34771003 PMCID: PMC8587938 DOI: 10.3390/molecules26216595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022] Open
Abstract
Recently, several quadruplex-DNA-forming sequences have been identified in the insulin-linked polymorphic region (ILPR), which is a guanine-rich oligonucleotide sequence in the promoter region of insulin. The formation of this non-canonical quadruplex DNA (G4-DNA) has been shown to be involved in the biological activity of the ILPR, specifically with regard to its interplay with insulin. In this context, this contribution reports on the investigation of the association of the quadruplex-forming ILPR sequence a2 with insulin as well as with the well-known G4-DNA ligand 3,11-difluoro-6,8,13-trimethyl-8H-quino[4,3,2-kl]acridinium (1), also named RHPS4, by optical and NMR spectroscopy. CD- and NMR-spectroscopic measurements confirmed the preferential formation of an antiparallel quadruplex structure of a2 with four stacked guanine quartets. Furthermore, ligand 1 has high affinity toward a2 and binds by terminal π stacking to the G1-G11-G15-G25 quartet. In addition, the spectroscopic studies pointed to an association of insulin to the deoxyribose backbone of the loops of a2.
Collapse
|
39
|
Baudin A, Moreno-Romero AK, Xu X, Selig EE, Penalva LOF, Libich DS. Structural Characterization of the RNA-Binding Protein SERBP1 Reveals Intrinsic Disorder and Atypical RNA Binding Modes. Front Mol Biosci 2021; 8:744707. [PMID: 34631798 PMCID: PMC8497785 DOI: 10.3389/fmolb.2021.744707] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
RNA binding proteins (RBPs) are essential for critical biological processes such as translation regulation and mRNA processing, and misfunctions of these proteins are associated with diseases such as cancer and neurodegeneration. SERBP1 (SERPINE1 mRNA Binding Protein 1) is an RBP that comprises two RG/RGG repeat regions yet lacks other recognizable RNA-binding motifs. It is involved in mRNA maturation, and translational regulation. It was initially identified as a hyaluronic acid binding protein, but recent studies have identified central roles for SERBP1 in brain function and development, especially neurogenesis and synaptogenesis. SERBP1 regulates One-carbon metabolism and epigenetic modification of histones, and increased SERBP1 expression in cancers such as leukemia, ovarian, prostate, liver and glioblastoma is correlated with poor patient outcomes. Despite these important regulatory roles for SERBP1, little is known about its structural and dynamic properties, nor about the molecular mechanisms governing its interaction with mRNA. Here, we define SERBP1 as an intrinsically disordered protein, containing highly conserved elements that were shown to be functionally important. The RNA binding activity of SERBP1 was explored using solution NMR and other biophysical techniques. The outcome of these experiments revealed that SERBP1 preferentially samples compact conformations including a central, stable α-helix and show that SERBP1 recognizes G-rich RNA sequences at the C-terminus involving the RGG box and neighboring residues. Despite the role in RNA recognition, the RGG boxes do not seem to stabilize the central helix and the central helix does not participate in RNA binding. Further, SERBP1 undergoes liquid-liquid phase separation, mediated by salt and RNA, and both RGG boxes are necessary for the efficient formation of condensed phases. Together, these results provide a foundation for understanding the molecular mechanisms of SERBP1 functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Antoine Baudin
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alma K Moreno-Romero
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Xiaoping Xu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Emily E Selig
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - David S Libich
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
40
|
Wang Y, Ye T, Yuan M, Cao H, Yu J, Yin F, Wu X, Hao L, Xu F. An aptasensor for the detection of Pb 2+ based on photoinduced electron transfer between a G-quadruplex-hemin complex and a fluorophore. LUMINESCENCE 2021; 37:14-20. [PMID: 34519153 DOI: 10.1002/bio.4141] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/22/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Due to the threat to health of heavy metal contamination, simple and rapid detection methods for heavy metals are an urgent needed in environment protection and food safety. In this work, we have developed a fluorescent aptasensor for the 'turn-off' model detection of Pb2+ . The key feature of the aptasensor is that the dye-labelled nucleic acid strand can be folded into a G-quadruplex structure in the presence of Pb2+ . This conformational change induces photoinduced electron transfer (PET) between a G-quadruplex-hemin complex and 6-carboxyrhodamine X (ROX), which results in fluorescence quenching of ROX. We systematically investigated the interaction mechanism between Pb2+ and the aptasensor and the effects of several environmental parameters were also studied. Under the optimum conditions, the proposed method exhibited a good liner relationship between the concentration of Pb2+ and fluorescence quenching efficiency in the range 25-500 nM and the limit of detection was 1.02 nM. In addition, this method also manifested good performance in spiked lettuce samples with satisfactory recoveries of 87.10-109.6%. This target-induced PET platform can be further expanded to other heavy metal analysis.
Collapse
Affiliation(s)
- Ya Wang
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Tai Ye
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Yuan
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Cao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jingsong Yu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fengqin Yin
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xiuxiu Wu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Liling Hao
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Fei Xu
- Shanghai Engineering Research Center for Food Rapid Detection, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
41
|
Liu X, Xiong Y, Zhang C, Lai R, Liu H, Peng R, Fu T, Liu Q, Fang X, Mann S, Tan W. G-Quadruplex-Induced Liquid-Liquid Phase Separation in Biomimetic Protocells. J Am Chem Soc 2021; 143:11036-11043. [PMID: 34270902 DOI: 10.1021/jacs.1c03627] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomolecular condensates comprised of specific proteins and nucleic acids are now recognized as one of the key organizing mechanisms in eukaryotic cells. However, the specific roles played by the nucleic acid secondary structure and sequence in biomolecular phase separation are still not clear. Here, utilizing giant membrane vesicles (GMVs) as a protocell model, we found that single-stranded DNA (ssDNA) with a parallel G-quadruplex structure could functionally cooperate with a G-quadruplex-binding protein to form speckle-like puncta inside the GMVs. The clustering behavior is dependent on the structural diversity of G-quadruplexes, and the reversible clustering behavior implicated a new pathway in dynamically regulating the formation of biomolecular condensates. This finding represents a potential link between G-quadruplex-binding proteins and the resulting G-quadruplex-mediated biomolecular phase separation, which would gain insight into a wide range of biological processes associated with nucleic acid-modulated phase separation inside living cells.
Collapse
Affiliation(s)
- Xuejiao Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yansong Xiong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Chunjuan Zhang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Rongji Lai
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ruizi Peng
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ting Fu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qiaoling Liu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Xiaohong Fang
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,Max Planck-Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.,School of Materials Science and Engineering, Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.,School of Materials Science and Engineering, Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
42
|
Zhang X, Spiegel J, Martínez Cuesta S, Adhikari S, Balasubramanian S. Chemical profiling of DNA G-quadruplex-interacting proteins in live cells. Nat Chem 2021; 13:626-633. [PMID: 34183817 PMCID: PMC8245323 DOI: 10.1038/s41557-021-00736-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/18/2021] [Indexed: 12/17/2022]
Abstract
DNA-protein interactions regulate critical biological processes. Identifying proteins that bind to specific, functional genomic loci is essential to understand the underlying regulatory mechanisms on a molecular level. Here we describe a co-binding-mediated protein profiling (CMPP) strategy to investigate the interactome of DNA G-quadruplexes (G4s) in native chromatin. CMPP involves cell-permeable, functionalized G4-ligand probes that bind endogenous G4s and subsequently crosslink to co-binding G4-interacting proteins in situ. We first showed the robustness of CMPP by proximity labelling of a G4 binding protein in vitro. Employing this approach in live cells, we then identified hundreds of putative G4-interacting proteins from various functional classes. Next, we confirmed a high G4-binding affinity and selectivity for several newly discovered G4 interactors in vitro, and we validated direct G4 interactions for a functionally important candidate in cellular chromatin using an independent approach. Our studies provide a chemical strategy to map protein interactions of specific nucleic acid features in living cells.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Jochen Spiegel
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
| | - Sergio Martínez Cuesta
- Department of Chemistry, University of Cambridge, Cambridge, UK
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK
- Data Sciences and Quantitative Biology, Discovery Sciences, AstraZeneca, Cambridge, UK
| | | | - Shankar Balasubramanian
- Department of Chemistry, University of Cambridge, Cambridge, UK.
- Cancer Research UK Cambridge Institute, Li Ka Shing Centre, University of Cambridge, Cambridge, UK.
- School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
43
|
Deciphering nucleic acid knots. Nat Chem 2021; 13:618-619. [PMID: 34183816 DOI: 10.1038/s41557-021-00739-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|