1
|
Zhang W, Zhang X, Song Y, Gao F, Zhang Y. High-entropy layered double hydroxide with advanced structural regulation for electrochemical water splitting. Chem Commun (Camb) 2025; 61:7532-7542. [PMID: 40302626 DOI: 10.1039/d5cc01284h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Electrochemical water splitting (EWS) serves as a pivotal technology for green hydrogen production. However, its practical application is limited by the high cost and scarcity of noble metal-based catalysts. High-entropy layered double hydroxides (HE-LDHs) have emerged as a novel class of high-entropy materials attracting significant attention for their exceptional electrocatalytic performance. Compared with traditional bimetallic layered double hydroxides, HE-LDHs possess unique configurational entropy and "four core effects" (high-entropy effect, delayed diffusion effect, lattice distortion effect, and cocktail effect). In this review, we firstly introduced the concept of HE-LDHs and summarized their different synthesis methods such as the hydrothermal method, co-precipitation method, electrodeposition method and template etching method. Then, we presented advanced regulation strategies of HE-LDHs, including geometric structure design, single-atom doping, inert component doping and vacancy creation. Finally, we further explored the current important challenges and corresponding solutions to promote the practical development of HE-LDH catalysts.
Collapse
Affiliation(s)
- Wen Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Xiyue Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yan Song
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Fei Gao
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Yangping Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| |
Collapse
|
2
|
Zhou H, Duan X, Huang B, Zhong S, Cheng C, Sharma VK, Wang S, Lai B. Isotope Techniques in Chemical Wastewater Treatment: Opportunities and Uncertainties. Angew Chem Int Ed Engl 2025; 64:e202422892. [PMID: 40040468 PMCID: PMC12051784 DOI: 10.1002/anie.202422892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/03/2025] [Accepted: 03/04/2025] [Indexed: 03/06/2025]
Abstract
A comprehensive and in-depth analysis of reaction mechanisms is essential for advancing chemical water treatment technologies. However, due to the limitations of conventional experimental and analytical methods, the types of reactive species and their generation pathways are commonly debatable in many aqueous systems. As highly sensitive diagnostic tools, isotope techniques offer deeper insights with minimal interference from reaction conditions. Nevertheless, precise interpretations of isotope results remain a significant challenge. Herein, we first scrutinized the fundamentals of isotope chemistry and highlighted key changes induced by the isotope substitution. Next, we discussed the application of isotope techniques in kinetic isotope effects, presenting a roadmap for interpreting KIE in sophisticated systems. Furthermore, we summarized the applications of isotope techniques in elemental tracing to pinpoint reaction sites and identify dominant reactive species. Lastly, we propose future research directions, highlighting critical considerations for the rational design and interpretation of isotope experiments in environmental chemistry and related fields.
Collapse
Affiliation(s)
- Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Xiaoguang Duan
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Bingkun Huang
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
| | - Shuang Zhong
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Cheng Cheng
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Virender K. Sharma
- Department of Chemical, Environmental and MaterialsUniversity of Miami1251 Memorial DriveCoral GablesFlorida33146USA
| | - Shaobin Wang
- School of Chemical EngineeringThe University of AdelaideAdelaideSA5005Australia
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River EngineeringCollege of Architecture and Environment, Sichuan UniversityChengdu610065China
| |
Collapse
|
3
|
Wang X, Peng Z, Zhou W, Chen X, Tan Y, Huang YF, Liu Z, Deng WQ, Wu H. Ligand Modulation in Metal-Organic Frameworks Derived Regenerable Oxygen Evolution Electrocatalysts. Angew Chem Int Ed Engl 2025; 64:e202504148. [PMID: 40069110 DOI: 10.1002/anie.202504148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/01/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging as promising pre-catalysts for the oxygen evolution reaction (OER) in water electrolysis. However, the coordination chemistry of MOF ligands in reconstructed species remains poorly understood, particularly regarding how ligand modulation influences the electronic configurations of catalytic sites. In this study, we present the synthesis of an α-FeOOH coated Ni-catecholate MOF composite (FeOOH@Ni-CAT), which transforms into a ligand-coordinated γ-NiFeOOH active species during OER. Notably, this active species can revert to its stable α-phase counterpart, exhibiting an "easy-to-regenerate" characteristic. Theoretical calculations demonstrate that the ligand significantly enhances the adsorption energies of oxygenic intermediates involved in the OER, while also modulating electronic structures by strengthening bonding states and promoting electron delocalization between active sites and intermediates. As a result, the FeOOH@Ni-CAT pre-catalyst exhibits exceptional OER performance, achieving an ultralow overpotential of 180 mV at 10 mA cm-2 and impressive durability over 384 h (16 days), leveraging the regenerable property. This work advances the understanding of high-performance MOF-based pre-catalysts by elucidating the fundamental mechanisms of structural reconstruction during OER and highlighting the role of ligand modulation in improving OER activity.
Collapse
Affiliation(s)
- Xiao Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Zheng Peng
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Wei Zhou
- School of Chemistry and Chemical Engineering, Hainan University, Haikou, 570228, China
| | - Xiaokang Chen
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Yi Tan
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Yi-Fan Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Liu
- Center for Transformative Science, ShanghaiTech University, Shanghai, 201210, China
| | - Wei-Qiao Deng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
| | - Hao Wu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266071, China
- Suzhou Research Institute of Shandong University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
4
|
Rong C, Huang X, Arandiyan H, Shao Z, Wang Y, Chen Y. Advances in Oxygen Evolution Reaction Electrocatalysts via Direct Oxygen-Oxygen Radical Coupling Pathway. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416362. [PMID: 39815381 PMCID: PMC11881674 DOI: 10.1002/adma.202416362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/27/2024] [Indexed: 01/18/2025]
Abstract
Oxygen evolution reaction (OER) is a cornerstone of various electrochemical energy conversion and storage systems, including water splitting, CO2/N2 reduction, reversible fuel cells, and rechargeable metal-air batteries. OER typically proceeds through three primary mechanisms: adsorbate evolution mechanism (AEM), lattice oxygen oxidation mechanism (LOM), and oxide path mechanism (OPM). Unlike AEM and LOM, the OPM proceeds via direct oxygen-oxygen radical coupling that can bypass linear scaling relationships of reaction intermediates in AEM and avoid catalyst structural collapse in LOM, thereby enabling enhanced catalytic activity and stability. Despite its unique advantage, electrocatalysts that can drive OER via OPM remain nascent and are increasingly recognized as critical. This review discusses recent advances in OPM-based OER electrocatalysts. It starts by analyzing three reaction mechanisms that guide the design of electrocatalysts. Then, several types of novel materials, including atomic ensembles, metal oxides, perovskite oxides, and molecular complexes, are highlighted. Afterward, operando characterization techniques used to monitor the dynamic evolution of active sites and reaction intermediates are examined. The review concludes by discussing several research directions to advance OPM-based OER electrocatalysts toward practical applications.
Collapse
Affiliation(s)
- Chengli Rong
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Xinyi Huang
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC)School of ScienceRMIT UniversityMelbourneVIC3000Australia
| | - Zongping Shao
- WA School of Mines: MineralsEnergy and Chemical EngineeringCurtin UniversityPerthWA6845Australia
| | - Yuan Wang
- Department of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Yuan Chen
- School of Chemical and Biomolecular EngineeringThe University of SydneyDarlingtonNew South Wales2006Australia
| |
Collapse
|
5
|
Zhang Z, Zhao H, Xi S, Zhao X, Chi X, Bin Yang H, Chen Z, Yu X, Wang YG, Liu B, Chen P. Breaking linear scaling relationships in oxygen evolution via dynamic structural regulation of active sites. Nat Commun 2025; 16:1301. [PMID: 39900893 PMCID: PMC11790916 DOI: 10.1038/s41467-024-55150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/03/2024] [Indexed: 02/05/2025] Open
Abstract
The universal linear scaling relationships between the adsorption energies of reactive intermediates limit the performance of catalysts in multi-step catalytic reactions. Here, we show how these scaling relationships can be circumvented in electrochemical oxygen evolution reaction by dynamic structural regulation of active sites. We construct a model Ni-Fe2 molecular catalyst via in situ electrochemical activation, which is able to deliver a notable intrinsic oxygen evolution reaction activity. Theoretical calculations and electrokinetic studies reveal that the dynamic evolution of Ni-adsorbate coordination driven by intramolecular proton transfer can effectively alter the electronic structure of the adjacent Fe active centre during the catalytic cycle. This dynamic dual-site cooperation simultaneously lowers the free energy change associated with O-H bond cleavage and O-O bond formation, thereby disrupting the inherent scaling relationship in oxygen evolution reaction. The present study not only advances the development of molecular water oxidation catalysts, but also provides an unconventional paradigm for breaking the linear scaling relationships in multi-intermediates involved catalysis.
Collapse
Affiliation(s)
- Zheye Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Hongyan Zhao
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiao Chi
- Department of Physics, National University of Singapore, Singapore, Singapore
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, Singapore, Singapore
| | - Yang-Gang Wang
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen, China.
| | - Bin Liu
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China.
- Department of Chemistry, Hong Kong Institute of Clean Energy (HKICE) & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, China.
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
6
|
Hua S, Shah SA, Nsang GEO, Sayyar R, Ullah B, Ullah N, Khan N, Yuan A, Bin Mohd Yusoff AR, Ullah H. Unveiling active sites in FeOOH nanorods@NiOOH nanosheets heterojunction for superior OER and HER electrocatalysis in water splitting. J Colloid Interface Sci 2025; 679:487-495. [PMID: 39374558 DOI: 10.1016/j.jcis.2024.09.219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 09/27/2024] [Indexed: 10/09/2024]
Abstract
The development of cost-effective, highly active, and stable electrocatalysts for water splitting to produce green hydrogen is crucial for advancing clean and sustainable energy technologies. Herein, we present an innovative in-situ synthesis of FeOOH nanorods@NiOOH nanosheets on nickel foam (FeOOH@NiOOH/NF) at an unprecedentedly low temperature, resulting in a highly efficient electrocatalyst for overall water splitting. The optimized FeOOH@NiOOH/NF sample, evaluated through time-dependent studies, exhibits exceptional oxygen evolution reaction (OER) performance with a low overpotential of 261 mV at a current density of 20 mA cm-2, alongside outstanding hydrogen evolution reaction (HER) activity with an overpotential of 150 mV at a current density of 10 mA cm-2, demonstrating excellent stability in alkaline solution. The water-splitting device featuring FeOOH@NiOOH/NF-2 electrodes achieves a voltage of 1.59 V at a current density of 10 mA cm-2, rivalling the state-of-the-art RuO2/NF||PtC/NF electrode system. Density functional theory (DFT) calculations unveil the efficient functionality of the Fe sites within the FeOOH@NiOOH heterojunction as the active OER catalyst, while the Ni centres are identified as the active HER sites. The enhanced performance of OER and HER is attributed to the tailored electronic structure at the heterojunction, modified magnetic moments of active sites, and increased electron density in the dx2-y2 orbital of Fe. This work provides critical insights into the rational design of advanced electrocatalysts for efficient water splitting.
Collapse
Affiliation(s)
- Sun Hua
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Sayyar Ali Shah
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China; Department of Engineering, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| | - Gabriel Engonga Obiang Nsang
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Rani Sayyar
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China; School of Materials Science & Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Badshah Ullah
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Noor Ullah
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Naseem Khan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Aihua Yuan
- School of Environmental & Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | | | - Habib Ullah
- Department of Engineering, University of Exeter, Penryn Campus, Penryn, Cornwall TR10 9FE, United Kingdom.
| |
Collapse
|
7
|
Yang J, Deng C, Lei Y, Duan M, Yang Y, Chen X, Yang S, Li J, Sheng H, Shi W, Chen C, Zhao J. Fe-N Co-Doped BiVO 4 Photoanode with Record Photocurrent for Water Oxidation. Angew Chem Int Ed Engl 2025; 64:e202416340. [PMID: 39330922 DOI: 10.1002/anie.202416340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
Bismuth vanadate (BVO) ranks among the most promising photoanodes for photoelectrochemical (PEC) water splitting. Nonetheless, slow charge separation and transport, besides the sluggish water oxidation kinetics, are key barriers to its photoefficiency. Here, we present a co-doping strategy that significantly improves the charge separation performance of BVO photoanodes. We found that, under standard one sun illumination, the Fe-N co-doped BVO photoanode (Fe-N-BVO) by N-coordinated Fe precursor reaches a record photocurrent density of 7.01 mA cm-2 at 1.23 V vs RHE after modified a surface co-catalyst (FeNiOOH), and exhibits an outstanding stability. By contrast, much lower photocurrent density is obtained for the N-doped, Fe-doped and Fe/N-doped BVO photoanode with separated N and Fe precursors. The detailed experimental characterizations show that the high activity of the Fe-N co-doped BVO photoanode is attributed to the enhanced photo-induced bulk charge separation, as well as the accelerated surface water oxidation kinetics. XPS, EXAFS and DFT calculations clearly show that, instead of formation of deep trapping state in the individually doped BVO, the co-doping of Fe-N into BVO generates Fe-based electronic states just below the bottom of conduction band and N-derived states just above the top of valence band. Such modulations in electronic structure enable the efficient trap of the electrons and holes to enhance the separation of photo-induced carriers, but hinder the charge recombination originated from the deep trapping sites.
Collapse
Affiliation(s)
- Jie Yang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Chaoyuan Deng
- New Energy Materials Laboratory, Sichuan Changhong Electronic (Group) Co., Ltd., Chengdu, 610041, China
| | - Yu Lei
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Mengyu Duan
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Yisen Yang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Xiaoran Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Sipeng Yang
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jikun Li
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Hua Sheng
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Weiqun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics of Chinese Academy of Sciences, Beijing, 100049, P.R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of the Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|
8
|
Wu D, Hu L, Liu X, Liu T, Zhu X, Luo Q, Zhang H, Cao L, Yang J, Jiang Z, Yao T. Time-resolved spectroscopy uncovers deprotonation-induced reconstruction in oxygen-evolution NiFe-based (oxy)hydroxides. Nat Commun 2025; 16:726. [PMID: 39820084 PMCID: PMC11739423 DOI: 10.1038/s41467-025-56070-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 01/08/2025] [Indexed: 01/19/2025] Open
Abstract
Transition-metal layered double hydroxides are widely utilized as electrocatalysts for the oxygen evolution reaction (OER), undergoing dynamic transformation into active oxyhydroxides during electrochemical operation. Nonetheless, our understanding of the non-equilibrium structural changes that occur during this process remains limited. In this study, utilizing in situ energy-dispersive X-ray absorption spectroscopy and machine learning analysis, we reveal the occurrence of deprotonation and elucidate the role of incorporated iron in facilitating the transition from nickel-iron layered double hydroxide (NiFe LDH) into its active oxyhydroxide. Our findings demonstrate that iron substitution promotes deprotonation process within NiFe LDH, resulting in the preferential removal of protons from the specific bridged hydroxyl group (Ni2+-OH-Fe3+) linked to edge-sharing [NiO6] and [FeO6] octahedron. This deprotonation behavior drives the formation of high-valence Ni3+δ species (0 <δ < 1), which subsequently serve as the active sites, thereby ensuring efficient oxygen evolution activity. This approach offers high-resolution insights of dynamic structural evolution, overcoming the limitations of extended acquisition times and advancing our understanding of OER mechanisms.
Collapse
Affiliation(s)
- Dan Wu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Longfei Hu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Xiaokang Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Tong Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Xiangyu Zhu
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, PR China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, PR China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, PR China
| | - Huijuan Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China
| | - Linlin Cao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, PR China.
| | - Jinlong Yang
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, PR China
| | - Zheng Jiang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China.
| | - Tao Yao
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, PR China.
- State Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, PR China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, PR China.
| |
Collapse
|
9
|
Qin Z, Yu Z, Zhang Z, Qin X, Liu J, Fan B, Zhang B, Jiang R, Hou Y, Qu J. Electrochemical reconfiguration of iron-modified Ni 3S 2 surface induced oxygen vacancies to immobilize sulfate for enhanced oxygen evolution reaction. J Colloid Interface Sci 2025; 677:259-270. [PMID: 39146814 DOI: 10.1016/j.jcis.2024.08.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/31/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
There is an urgent need for highly active, durable, and low-cost electrocatalysts to overcome the shortcomings of high overpotential in the oxygen evolution reaction (OER) process. In this work, the nickel-iron hydroxysulfate rich in sulfate and oxygen vacancies (SO42-@Fe-NiOOH-Ov/NiS) is legitimately constructed. SO42-@Fe-NiOOH-Ov/NiS only requires a low overpotentials of 190 mV and 232 mV at 10 mA cm-2 and 100 mA cm-2 current densities in 1 M KOH, with excellent stability for 200 h at 100 mA cm-2 current density. In situ Raman spectroscopy and Fourier transform infrared spectroscopy demonstrated the stable adsorption of more SO42- on the surface of catalyst. Density functional theory calculations testify surface reconstruction, doped Fe and oxygen vacancies significantly reduced the adsorption energy of sulfate on the surface. More importantly, the formation of *OOH to O2 is facilitated by the highly hydrogen bonding between SO42- and *OOH, accelerating the OER process.
Collapse
Affiliation(s)
- Zuoyu Qin
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Zebin Yu
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China.
| | - Zimu Zhang
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Xuanning Qin
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Jing Liu
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Ben Fan
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Boge Zhang
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, PR China
| | - Yanping Hou
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| | - Jiayi Qu
- School of Resources, Environment and Materials, Guangxi Key Laboratory of Emerging Contaminants Monitoring & Early Warning and Environmental Health Risk Assessment, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
10
|
Xu HM, Yue KH, Song LJ, Zhang HC, Zhu HR, Zhang ZJ, Li GR. The Asymmetrical Fe-O-Se Bonds in Fe 2O(SeO 3) 2 Boosting Bifunctional Oxygen Electrocatalytic Performance for Zinc-Air Battery. Angew Chem Int Ed Engl 2024; 63:e202412025. [PMID: 39228013 DOI: 10.1002/anie.202412025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/15/2024] [Accepted: 09/01/2024] [Indexed: 09/05/2024]
Abstract
Zinc-air batteries (ZABs) have the advantages of high energy density and rich zinc raw materials. It is a low-cost, green and sustainable energy storage device. At present, one of the key technologies that hinder the large-scale application of ZABs is the design and fabrication oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) bifunctional catalysts with excellent performance, especially the non-platinum-based catalysts. Here N-doped carbon-coated Fe-based selenium oxide catalyst Fe2O(SeO3)2/Fe3C@NC with high performance has been fabricated by a one-step pyrolysis and then the electrochemical oxidization. The experimental results confirmed that the existence of Fe-O-Se bonds in Fe2O(SeO3)2 crystal phase of Fe2O(SeO3)2/Fe3C@NC, and the Fe-O-Se bonds could obviously enhance ORR and OER catalytic performance of Fe2O(SeO3)2/Fe3C@NC. Density functional theoretical calculations (DFT) confirmed that the Fe2O(SeO3)2 in Fe2O(SeO3)2/Fe3C@NC had a higher d-band center of Fe atom and a lower p-orbital coupling degree with its own lattice O atom than Fe2O3, which leads to Fe site of Fe2O(SeO3)2 being more likely to adsorb external oxygen intermediates. The Fe-O-Se bonds in Fe2O(SeO3)2 results in the modification of coordination environment of Fe atoms and optimizes the adsorption energy of Fe site for oxygen intermediates. Compared with Fe2O3/Fe3C@NC, the Fe2O(SeO3)2/Fe3C@NC showed the obvious enhancements of ORR/OER catalytic activities with a half-wave potential of 0.91 V for ORR in 0.1 M KOH electrolyte and a low overpotential of 345 mV for OER at 10 mA cm-2 in a 1.0 M KOH electrolyte. The peak power density and specific capacity of Fe2O(SeO3)2/Fe3C@NC-based ZABs are higher than those of Pt/C+RuO2-ZABs. The above results demonstrate that the asymmetrical Fe-O-Se bonds in Fe2O(SeO3)2 plays a key role in improving the bifunctional catalytic activities of ORR/OER for ZABs.
Collapse
Affiliation(s)
- Hui-Min Xu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| | - Kai-Hang Yue
- CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Lian-Jie Song
- Materials and Equipment Engineering Branch of China 19th Metallurgical Group Corporation Limited, Chengdu, 610031, China
| | - Hong-Cheng Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| | - Hong-Rui Zhu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| | - Zhi-Jie Zhang
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| | - Gao-Ren Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065
| |
Collapse
|
11
|
Rajput A, Sivasakthi P, Samanta PK, Chakraborty B. Recognizing the reactive sites of SnFe 2O 4 for the oxygen evolution reaction: the synergistic effect of Sn II and Fe III in stabilizing reaction intermediates. NANOSCALE 2024; 16:21388-21397. [PMID: 39480537 DOI: 10.1039/d4nr03107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Among the reported spinel ferrites, the p-block metal containing SnFe2O4 is scarcely explored, but it is a promising water-splitting electrocatalyst. This study focuses on the reaction kinetics and atomic scale insight of the reaction mechanism of the oxygen evolution reaction (OER) catalyzed by SnFe2O4 and analogous Fe3O4. The replacement of FeIIOh sites with SnIIOh in SnFe2O4 improves the catalytic efficiency and various intrinsic parameters affecting the reaction kinetics. The variable temperature OER depicts a low activation energy (Ea) of 28.71 kJ mol-1 on SnFe2O4. Experimentally determined second-order dependence on [OH-] and the prominent kinetic isotope effect observed during the deuterium labelling study implies the role of hydroxide ions in the rate-determining step (RDS). Using density functional theory, the reaction mechanism on the (001) surface of SnFe2O4 and Fe3O4 is modelled. The DFT simulated free energy diagram for the reaction intermediates shows an adsorbate evolution mechanism (AEM) on both the ferrites' surfaces where the formation of *OOH is the RDS on SnFe2O4 while *O formation is the RDS on Fe3O4. In contrast to other spinel ferrites, where individual metal sites act independently, in case of SnFe2O4, a synergy between FeIIIOh and the neighbouring SnIIOh atoms is responsible for stabilizing the OER intermediates, enhancing the catalytic OER activity of SnFe2O4 as compared to isostructural Fe3O4.
Collapse
Affiliation(s)
- Anubha Rajput
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| | - Pandiyan Sivasakthi
- Department of Chemistry, Birla Institute of Technology and Science Pilani (BITS Pilani), Hyderabad Campus, Hyderabad-500078, India.
| | - Pralok K Samanta
- Department of Chemistry, Birla Institute of Technology and Science Pilani (BITS Pilani), Hyderabad Campus, Hyderabad-500078, India.
| | - Biswarup Chakraborty
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, 110016, New Delhi, India.
| |
Collapse
|
12
|
Song W, Xia C, Zaman S, Chen S, Xiao C. Advances in Stability of NiFe-Based Anodes toward Oxygen Evolution Reaction for Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406075. [PMID: 39314014 DOI: 10.1002/smll.202406075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/19/2024] [Indexed: 09/25/2024]
Abstract
Alkaline electrolysis plays a crucial role in sustainable energy solutions by utilizing electrolytic cells to produce hydrogen gas, providing a clean and efficient method for energy storage and conversion. Efficient, stable, and low-cost electrocatalysts for the oxygen evolution reaction (OER) are essential to facilitate alkaline water electrolysis on a commercial scale. Nickel-iron-based (NiFe-based) transition metal electrocatalysts are considered the most promising non-precious metal catalysts for alkaline OER due to their low cost, abundance, and tunable catalytic properties. Nevertheless, the majority of existing NiFe-based catalysts suffer from limited activity and poor stability, posing a significant challenge in meeting industrial applications. This also highlights a common situation where the emphasis on material activity receives significant attention, while the equally critical stability aspect is often underemphasized. Initiating with a comprehensive exploration of the stability of NiFe-based OER materials, this article first summarizes the debate surrounding the determination of active sites in NiFe-based OER electrocatalysts. Subsequently, the degradation mechanisms of recently reported NiFe-based electrocatalysts are outlined, encompassing assessments of both chemical and mechanical endurance, along with essential approaches for enhancing their stability. Finally, suggestions are put forth regarding the essential considerations for the design of NiFe-based OER electrocatalysts, with a focus on heightened stability.
Collapse
Affiliation(s)
- Wenyu Song
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chenfeng Xia
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shahid Zaman
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Rd, Wuhan, 430074, China
| | - Shenghua Chen
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Chunhui Xiao
- Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
13
|
Liao L, Li D, Zhang Y, Zhang Y, Yu F, Yang L, Wang X, Tang D, Zhou H. Complementary Multisite Turnover Catalysis toward Superefficient Bifunctional Seawater Splitting at Ampere-Level Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405852. [PMID: 39021291 DOI: 10.1002/adma.202405852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Indexed: 07/20/2024]
Abstract
The utilization of seawater for hydrogen production via water splitting is increasingly recognized as a promising avenue for the future. The key dilemma for seawater electrolysis is the incompatibility of superior hydrogen- and oxygen-evolving activities at ampere-scale current densities for both cathodic and anodic catalysts, thus leading to large electric power consumption of overall seawater splitting. Here, in situ construction of Fe4N/Co3N/MoO2 heterostructure arrays anchoring on metallic nickel nitride surface with multilevel collaborative catalytic interfaces and abundant multifunctional metal sites is reported, which serves as a robust bifunctional catalyst for alkaline freshwater/seawater splitting at ampere-level current density. Operando Raman and X-ray photoelectron spectroscopic studies combined with density functional theory calculations corroborate that Mo and Co/Fe sites situated on the Fe4N/Co3N/MoO2 multilevel interfaces optimize the reaction pathway and coordination environment to enhance water adsorption/dissociation, hydrogen adsorption, and oxygen-containing intermediate adsorption, thus cooperatively expediting hydrogen/oxygen evolution reactions in base. Inspiringly, this electrocatalyst can substantially ameliorate overall freshwater/seawater splitting at 1000 mA cm-2 with low cell voltages of 1.65/1.69 V, along with superb long-term stability at 500-1500 mA cm-2 for over 200 h, outperforming nearly all the ever-reported non-noble electrocatalysts for freshwater/seawater electrolysis. This work offers a viable approach to design high-performance bifunctional catalysts for seawater splitting.
Collapse
Affiliation(s)
- Liling Liao
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Dongyang Li
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Yan Zhang
- Anhui Provincial Key Laboratory of Advanced Catalysis and Energy Materials, School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing, 246011, P. R. China
| | - Yong Zhang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Fang Yu
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Lun Yang
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, China
| | - Xiuzhang Wang
- Institute for Advanced Materials, Hubei Normal University, Huangshi, 435002, China
| | - Dongsheng Tang
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| | - Haiqing Zhou
- Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, Key Laboratory for Matter Microstructure and Function of Hunan Province, Institute of Interdisciplinary Studies, School of Physics and Electronics, Hunan Normal University, Changsha, 410081, China
| |
Collapse
|
14
|
Park CH, Lee H, Choi JS, Yun TG, Lim Y, Bae HB, Chung SY. Atomic-Level Observation of Potential-Dependent Variations at the Surface of an Oxide Catalyst during Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403392. [PMID: 39011793 DOI: 10.1002/adma.202403392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/07/2024] [Indexed: 07/17/2024]
Abstract
Understanding the intricate details of the surface atomic structure and composition of catalysts during the oxygen evolution reaction (OER) is crucial for developing catalysts with high stability in water electrolyzers. While many notable studies highlight surface amorphization and reconstruction, systematic analytical tracing of the catalyst surface as a function of overpotential remains elusive. Heteroepitaxial (001) films of chemically stable and lattice-oxygen-inactive LaCoO3 are thus utilized as a model catalyst to demonstrate a series of atomic-resolution observations of the film surface at different anodic potentials. The first key finding is that atoms at the surface are fairly dynamic even at lower overpotentials. Angstrom-scale atomic displacements within the perovskite framework are identified below a certain potential level. Another noteworthy feature is that amorphization (or paracrystallization) with no long-range order is finally induced at higher overpotentials. In particular, surface analyses consistently support that the oxidation of lattice oxygen is coupled with amorphous phase formation at the high potentials. Theoretical calculations also reveal an upward shift of oxygen 2p states toward the Fermi level, indicating enhanced lattice oxygen activation when atom displacement occurs more extensively. This study emphasizes that the degradation behavior of OER catalysts can distinctively vary depending on the overpotential level.
Collapse
Affiliation(s)
- Chang Hyun Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyungdoh Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Jin-Seok Choi
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Tae Gyu Yun
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Younghwan Lim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Hyung Bin Bae
- KAIST Analysis Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sung-Yoon Chung
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
15
|
Sun D, Zhang J, Wang H, Song Y, Du J, Meng G, Sun S, Deng W, Wang Z, Wang B. Discovering Facet-Dependent Formation Kinetics of Key Intermediates in Electrochemical Ammonia Oxidation by a Electrochemiluminescence Active Probe. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402673. [PMID: 38923273 PMCID: PMC11348187 DOI: 10.1002/advs.202402673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/18/2024] [Indexed: 06/28/2024]
Abstract
Facile evaluation of formation kinetics of key intermediate is crucial for a comprehensive understanding of electrochemical ammonia oxidation reaction (AOR) mechanisms and the design of efficient electrocatalysts. Currently, elucidating the formation kinetics of key intermediate associated with rate-determining step is still challenging. Herein, 4-phtalamide-N-(4'-methylcoumarin) naphthalimide (CF) is developed as a molecular probe to detect N2H4 intermediate during AOR via electrochemiluminescence (ECL) and further investigated the formation kinetics of N2H4 on Pt catalysts with different crystal planes. CF probe can selectively react with N2H4 to release ECL substance luminol. Thus, N2H4 intermediate as a key intermediate can be sensitively and selectively detected by ECL during AOR. For the first time, Pt(100) facet is discovered to exhibit faster N2H4 formation kinetics than Pt(111) facet, which is further confirmed by Density functional theory calculation and the finite element simulation. The AOR mechanism under the framework of Gerischer and Mauerer is further validated by examining N2H4 formation kinetics during the dimerization process (NH2 coupling). The developed ECL active probe and the discovered facet-dependent formation kinetics of key intermediates provide a promising new tool and strategy for the understanding of electrochemical AOR mechanisms and the design of efficient electrocatalysts.
Collapse
Affiliation(s)
- Dina Sun
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Jiaqi Zhang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Heng Wang
- School of Mathematics and StatisticsGansu Key Laboratory of Applied Mathematics and Complex SystemsLanzhou UniversityLanzhou730000China
| | - Yanxia Song
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Jing Du
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Genping Meng
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Shihao Sun
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| | - Weihua Deng
- School of Mathematics and StatisticsGansu Key Laboratory of Applied Mathematics and Complex SystemsLanzhou UniversityLanzhou730000China
| | - Zhiyi Wang
- Spin‐X InstituteSchool of Chemistry and Chemical EngineeringState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou511442China
| | - Baodui Wang
- State Key Laboratory of Applied Organic ChemistryKey Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu ProvinceLanzhou UniversityLanzhouGansu730000China
| |
Collapse
|
16
|
Jia W, Cao X, Chen X, Qin H, Miao L, Wang Q, Jiao L. γ-MnO 2 as an Electron Reservoir for RuO 2 Oxygen Evolution Catalyst in Acidic Media. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310464. [PMID: 38597768 DOI: 10.1002/smll.202310464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/24/2024] [Indexed: 04/11/2024]
Abstract
Developing highly active and durable catalysts in acid conditions remains an urgent issue due to the sluggish kinetics of oxygen evolution reaction (OER). Although RuO2 has been a state-of-the-art commercial catalyst for OER, it encounters poor stability and high cost. In this study, the electronic reservoir regulation strategy is proposed to promote the performance of acidic water oxidation via constructing a RuO2/MnO2 heterostructure supported on carbon cloth (CC) (abbreviated as RuO2/MnO2/CC). Theoretical and experimental results reveal that MnO2 acts as an electron reservoir for RuO2. It facilitates electron transfer from RuO2, enhancing its activity prior to OER, and donates electrons to RuO2, improving its stability after OER. Consequently, RuO2/MnO2/CC exhibits better performance compared to commercial RuO2, with an ultrasmall overpotential of 189 mV at 10 mA cm-2 and no signs of deactivation even after 800 h of electrolysis in 0.5 m H2SO4 at 10 mA cm-2. When applied as the anode in a proton exchange membrane water electrolyzer, the cost-efficient RuO2/MnO2/CC catalyst only requires a cell voltage of 1.661 V to achieve the water-splitting current of 1 A cm-2, and the noble metal cost is as low as US$ 0.00962 cm-2, indicating potential for practical applications.
Collapse
Affiliation(s)
- Wenqi Jia
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuejie Cao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xiaojie Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Hongye Qin
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Qinglun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
17
|
Dong R, Gao J, Vo TG, Xi S, Kee CW, Cao X, Chu W, Liu Y. Engineering high-valence metal-enriched cobalt oxyhydroxide catalysts for an enhanced OER under near-neutral pH conditions. NANOSCALE 2024; 16:12482-12491. [PMID: 38856654 DOI: 10.1039/d4nr01168f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Understanding water splitting in pH-neutral media has important implications for hydrogen production from seawater. Despite their significance, electrochemical water oxidation and reduction in neutral electrolytes still face great challenges. This study focuses on designing efficient electrocatalysts capable of promoting the oxygen evolution reaction (OER) in neutral media by incorporating high-valence elements into transition-metal hydroxides. The as-prepared and optimized two-dimensional Mo-Co(OH)2 nanosheets, which undergo operando transformation into oxyhydroxide active species, demonstrated an overpotential of 550 mV at 10 mA cm-2 with a Tafel slope of 110.1 mV dec-1 in 0.5 M KHCO3. In situ X-ray absorption spectroscopy revealed that the incorporation of high-valence elements facilitates the generation of CoOOH active sites at low potential and enhances electron transfer kinetics by altering the electronic environment of the Co center. This study offers new insights for developing more efficient OER electrocatalysts and provides fresh ideas for seawater utilization through the study of the reaction mechanism of the near-neutral-pH OER.
Collapse
Affiliation(s)
- Ruijing Dong
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Truong-Giang Vo
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Choon Wee Kee
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Xun Cao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Wei Chu
- School of Chemical Engineering, Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu, 610065, China.
| | - Yan Liu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology, and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
18
|
Lim SS, Sivanantham A, Choi C, Shanmugam S, Lansac Y, Jang YH. Active Sites of Mixed-Metal Core-Shell Oxygen Evolution Reaction Catalysts: FeO 4 Sites on Ni Cores or NiN 4 Sites in C Shells? ACS OMEGA 2024; 9:25748-25755. [PMID: 38911812 PMCID: PMC11190911 DOI: 10.1021/acsomega.3c09920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024]
Abstract
Water electrolysis for clean hydrogen production requires high-activity, high-stability, and low-cost catalysts for its particularly sluggish half-reaction, the oxygen evolution reaction (OER). Currently, the most promising of such catalysts working in alkaline conditions is a core-shell nanostructure, NiFe@NC, whose Fe-doped Ni (NiFe) nanoparticles are encapsulated and interconnected by N-doped graphitic carbon (NC) layers, but the exact OER mechanism of these catalysts is still unclear, and even the location of the OER active site, either on the core side or on the shell side, is still debated. Therefore, we herein derive a plausible active-site model for each side based on various experimental evidence and density functional theory calculations and then build OER free-energy diagrams on both sides to determine the active-site location. The core-side model is an FeO4-type (rather than NiO4-type) active site where an Fe atom sits on Ni oxide layers grown on top of the core surface during catalyst activation, whose facile dissolution provides an explanation for the activity loss of such catalysts directly exposed to the electrolyte. The shell-side model is a NiN4-type (rather than FeN4-type) active site where a Ni atom is intercalated into the porphyrin-like N4C site of the NC shell during catalyst synthesis. Their OER free-energy diagrams indicate that both sites require similar amounts of overpotentials, despite a complete shift in their potential-determining steps, i.e., the final O2 evolution from the oxophilic Fe on the core and the initial OH adsorption to the hydrophobic shell. We conclude that the major active sites are located on the core, but the NC shell not only protects the vulnerable FeO4 active sites on the core from the electrolyte but also provides independent active sites, owing to the N doping.
Collapse
Affiliation(s)
- Sung Soo Lim
- Department
of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | | | - Changwon Choi
- Department
of Energy Science and Engineering, DGIST, Daegu 42988, Korea
| | | | - Yves Lansac
- Department
of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- GREMAN,
UMR 7347, Université de Tours, CNRS, INSA CVL, 37200 Tours, France
- LPS,
CNRS UMR 8502, Université Paris-Saclay, 91405 Orsay, France
| | - Yun Hee Jang
- Department
of Energy Science and Engineering, DGIST, Daegu 42988, Korea
- GREMAN,
UMR 7347, Université de Tours, CNRS, INSA CVL, 37200 Tours, France
| |
Collapse
|
19
|
Li Z, Xu C, Zhang Z, Xia S, Li D, Liu L, Chen P, Dong X. Reversing the Interfacial Electric Field in Metal Phosphide Heterojunction by Fe-Doping for Large-Current Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308477. [PMID: 38590138 DOI: 10.1002/advs.202308477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/29/2024] [Indexed: 04/10/2024]
Abstract
Developing non-precious-metal electrocatalysts that can operate with a low overpotential at a high current density for industrial application is challenging. Heterogeneous bimetallic phosphides have attracted much interest. Despite high hydrogen evolution reaction (HER) performance, the ordinary oxygen evolution reaction (OER) performance hinders their practical use. Herein, it is shown that Fe-doping reverses and enlarges the interfacial electrical field at the heterojunction, turning the H intermediate favorable binding sites for HER into O intermediate favorable sites for OER. Specifically, the self-supported heterojunction catalysts on nickel foam (CoP@Ni2P/NF and Fe-CoP@Fe-Ni2P/NF) are readily synthesized. They only require the overpotentials of 266 and 274 mV to drive a large current density of 1000 mA cm-2 (j1000) for HER and OER, respectively. Furthermore, a water splitting cell equipped with these electrodes only requires a voltage of 1.724 V to drive j1000 with excellent durability, demonstrating the potential of industrial application. This work offers new insights on interfacial engineering for heterojunction catalysts.
Collapse
Affiliation(s)
- Zhong Li
- Center for Rehabilitation Medicine, Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Chengshuang Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Zheye Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 637457, Singapore
| | - Shan Xia
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Dongsheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, China
| | - Liren Liu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Peng Chen
- School of Chemistry, Chemical Engineering and Biotechnology, Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 637457, Singapore
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| |
Collapse
|
20
|
Fu G, Zhang L, Wei R, Liu H, Hou R, Zhang Z, Yang K, Zhang S. P-Incorporation Induced Enhancement of Lattice Oxygen Participation in Double Perovskite Oxides to Boost Water Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309091. [PMID: 38247184 DOI: 10.1002/smll.202309091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/24/2023] [Indexed: 01/23/2024]
Abstract
Activating the lattice oxygen in the catalysts to participate in the oxygen evolution reaction (OER), which can break the scaling relation-induced overpotential limitation (> 0.37 V) of the adsorbate evolution mechanism, has emerged as a new and highly effective guide to accelerate the OER. However, how to increase the lattice oxygen participation of catalysts during OER remains a major challenge. Herein, P-incorporation induced enhancement of lattice oxygen participation in double perovskite LaNi0.58Fe0.38P0.07O3-σ (PLNFO) is studied. P-incorporation is found to be crucial for enhancing the OER activity. The current density reaches 1.35 mA cmECSA -2 at 1.63 V (vs RHE), achieving a sixfold increase in intrinsic activity. Experimental evidences confirm the dominant lattice oxygen participation mechanism (LOM) for OER pathway on PLNFO. Further electronic structures reveal that P-incorporation shifts the O p-band center by 0.7 eV toward the Fermi level, making the states near the Fermi level more O p character, thus facilitating LOM and fast OER kinetics. This work offers a possible method to develop high-performance double perovskite OER catalysts for electrochemical water splitting.
Collapse
Affiliation(s)
- Gaoliang Fu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Leilei Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Ruixue Wei
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Huili Liu
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Ruipeng Hou
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Zheng Zhang
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Kun Yang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| | - Shouren Zhang
- Henan Provincial Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan, 450006, China
| |
Collapse
|
21
|
Bai J, Chen C, Lian Y, Deng Y, Xiang M, Zhou Q, Tang Y, Su Y. Role of amorphous engineering and cerium doping in NiFe oxyhydroxide for electrocatalytic water oxidation. J Colloid Interface Sci 2024; 663:280-286. [PMID: 38402822 DOI: 10.1016/j.jcis.2024.02.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/27/2024]
Abstract
Amorphous engineering and atomistic doping provide an effective way to improve the catalytic activity in the oxygen evolution reaction (OER) of transition metal layered double hydroxides. Herein, Cerium (Ce) was introduced into NiFe-based oxyhydroxide using a modified aqueous sol-gel procedure. Ce as an electron acceptor promoted the coupling oxidation of Ni2+/3+ in NiFe oxyhydroxide, and the activated oxyhydroxide showed excellent catalytic activity in OER. The amorphous NiFeCe oxyhydroxide electrocatalyst demonstrated great modified OER catalytic activity under alkaline conditions and excellent cyclic stability, with an overpotential of only 284 mV at 50 mA cm-2, which was significantly better than amorphous NiFe oxyhydroxide and crystalline NiFeCe oxyhydroxide. Theoretical investigations further indicated that the overpotential of the rate-determining step (*OOH deprotonation) decreased from 0.66 to 0.41 V after Ce doping and strong electron interaction, effectively reducing the dependence of proton activity in the solution of OER, and optimizing the adsorption/desorption process of related oxygen-containing species in the reaction. This work also provides a good reference for optimizing OER activity by using rare-earth-metal induced electronic regulation strategies.
Collapse
Affiliation(s)
- Jirong Bai
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China; Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Changfan Chen
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Yuebin Lian
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Yaoyao Deng
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China.
| | - Mei Xiang
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Quanfa Zhou
- Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Yaqiong Su
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
22
|
Govind Rajan A, Martirez JMP, Carter EA. Strongly facet-dependent activity of iron-doped β-nickel oxyhydroxide for the oxygen evolution reaction. Phys Chem Chem Phys 2024; 26:14721-14733. [PMID: 38716632 DOI: 10.1039/d4cp00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Iron (Fe)-doped β-nickel oxyhydroxide (β-NiOOH) is a highly active, noble-metal-free electrocatalyst for the oxygen evolution reaction (OER), with the latter being the bottleneck in electrochemical water splitting for sustainable hydrogen production. The mechanisms underlying how the Fe dopant modulates this host material's water electro-oxidation activity are still not entirely clear. Here, we combine hybrid density functional theory (DFT) and Hubbard-corrected DFT to investigate the OER activity of the most thermodynamically favorable (and therefore, expected to be the majority) crystallographic facets of β-NiOOH, namely (0001) and (101̄0). By considering active sites involving both oxidation and reduction of the transition-metal active center during the redox cycle on these two different facets, we show that six-fold-lattice-coordinated Fe in β-NiOOH is redox inactive towards both oxidation and reduction while five-fold-lattice-coordinated Fe in β-NiOOH does exhibit redox activity. However, the determined redox activity of Fe (or lack of it) is not indicative of good (or bad) performance as a dopant on these two facets. Three of the four active sites investigated (oxo and hydroxo sites on (0001) and a hydrated site on (101̄0)) exhibit only a marginal (<0.1 V) decrease or increase in the thermodynamic overpotential upon doping with Fe. Only one of the redox-active sites investigated, the hydroxo site on (101̄0), exhibits a large attenuation in the thermodynamic overpotential upon doping (to ∼0.52 V from 0.86 V), although the doped overpotential is larger than that observed experimentally for Fe-doped NiOOH. Thus, although pure β-NiOOH facets containing four-, five-, or six-fold lattice-coordinated Ni sites have roughly equal OER activities, yielding similar OER onset potentials (shown in A. Govind Rajan, J. M. P. Martirez and E. A. Carter, J. Am. Chem. Soc., 2020, 142, 3600-3612), only those facets containing four-fold lattice-coordinated Fe (e.g., as shown in J. M. P. Martirez and E. A. Carter, J. Am. Chem. Soc., 2019, 141, 693-705) would be active under analogous conditions for the Fe-doped material. It follows that, while undoped β-NiOOH demonstrates a roughly facet-independent oxygen evolution activity, the activity of Fe-doped β-NiOOH strongly depends on the crystallographic facet. Our study further motivates the investigation of strategies for the selective growth of facets with low iron coordination number to enhance the water splitting activity of Fe-doped β-NiOOH.
Collapse
Affiliation(s)
- Ananth Govind Rajan
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India.
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
| | | | - Emily A Carter
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, New Jersey 08544-5263, USA
- Princeton Plasma Physics Laboratory, Princeton, New Jersey 08540-6655, USA
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544-5263, USA.
| |
Collapse
|
23
|
Wen X, Chen T, Yu J, Shi H, Wang L, Xu K, Xu Y. Nanozyme with tailored selectivity and highly catalytic activity for efficient sensing of endotoxin and sourcing gram-negative bacteria. Anal Chim Acta 2024; 1291:342225. [PMID: 38280783 DOI: 10.1016/j.aca.2024.342225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/29/2024]
Abstract
Endotoxin detection is important for determining bacterial contamination and infection in fields of food, pharmaceutical and clinical disease diagnosis. The horseshoe crab deformed cell lysate analysis is regarded as the gold-standard method, but the endangered and high-cost horseshoe crab animals required in sensing process further raise animal ethical issues and hinder their applications. The colorimetric methods based on nanozymes are simple and economical, but the low selectivity and sensitivity are still the bottleneck for their further application. Herein, we successfully developed a phenylboronic acid functionalized iron-based nanozyme with higher selectivity and highly catalytic activity for endotoxin sensing. The as-prepared colorimetric sensor using the obtained nanozyme as sensing probes shows a good linear relationship for endotoxin sensing in the range of 1-20 μg mL-1, with a LOD = 0.42 μg mL-1, along with good selectivity and reproducibility. The sensor can also be well applied to detecting endotoxin in practical samples such as beer and serum. Moreover, the parameters including time and temperature which could affect the endotoxin release from E. coli were also studied and optimized, based on the relationship between endotoxin and Gram-negative bacteria, the as-prepared sensor achieves the qualitative and quantification of E. coli.
Collapse
Affiliation(s)
- Xueyun Wen
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Tao Chen
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Jinping Yu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Hao Shi
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Kaikai Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Science, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
24
|
Ou Y, Twight LP, Samanta B, Liu L, Biswas S, Fehrs JL, Sagui NA, Villalobos J, Morales-Santelices J, Antipin D, Risch M, Toroker MC, Boettcher SW. Cooperative Fe sites on transition metal (oxy)hydroxides drive high oxygen evolution activity in base. Nat Commun 2023; 14:7688. [PMID: 38001061 PMCID: PMC10673886 DOI: 10.1038/s41467-023-43305-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Fe-containing transition-metal (oxy)hydroxides are highly active oxygen-evolution reaction (OER) electrocatalysts in alkaline media and ubiquitously form across many materials systems. The complexity and dynamics of the Fe sites within the (oxy)hydroxide have slowed understanding of how and where the Fe-based active sites form-information critical for designing catalysts and electrolytes with higher activity and stability. We show that where/how Fe species in the electrolyte incorporate into host Ni or Co (oxy)hydroxides depends on the electrochemical history and structural properties of the host material. Substantially less Fe is incorporated from Fe-spiked electrolyte into Ni (oxy)hydroxide at anodic potentials, past the nominally Ni2+/3+ redox wave, compared to during potential cycling. The Fe adsorbed under constant anodic potentials leads to impressively high per-Fe OER turn-over frequency (TOFFe) of ~40 s-1 at 350 mV overpotential which we attribute to under-coordinated "surface" Fe. By systematically controlling the concentration of surface Fe, we find TOFFe increases linearly with the Fe concentration. This suggests a changing OER mechanism with increased Fe concentration, consistent with a mechanism involving cooperative Fe sites in FeOx clusters.
Collapse
Affiliation(s)
- Yingqing Ou
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon, 97403, USA
- School of Chemistry and Chemical Engineering, Chongqing University, 400044, Chongqing, China
| | - Liam P Twight
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon, 97403, USA
| | - Bipasa Samanta
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Lu Liu
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon, 97403, USA
- School of Materials Science and Engineering, Chongqing University, 400044, Chongqing, China
| | - Santu Biswas
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Jessica L Fehrs
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon, 97403, USA
| | - Nicole A Sagui
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon, 97403, USA
| | - Javier Villalobos
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Joaquín Morales-Santelices
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Denis Antipin
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Marcel Risch
- Nachwuchsgruppe Gestaltung des Sauerstoffentwicklungsmechanismus, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Maytal Caspary Toroker
- Department of Materials Science and Engineering, Technion-Israel Institute of Technology, Haifa, 3200003, Israel.
- The Nancy and Stephen Grand Technion Energy Program, Haifa, Israel.
| | - Shannon W Boettcher
- Department of Chemistry and Biochemistry and the Oregon Center for Electrochemistry, University of Oregon, Eugene, Oregon, 97403, USA.
| |
Collapse
|
25
|
Pain T, Singh AK, Tarai A, Mondal S, Indra A, Kar S. C-H Bond Activation by an Antimony(V) Oxo Intermediate Accessed through Electrochemical Oxidation of Antimony(III) Tetrakis(thiocyano)corrole. Inorg Chem 2023; 62:18779-18788. [PMID: 37933554 DOI: 10.1021/acs.inorgchem.3c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
A new class of antimony(III) corroles has been described. The photophysical properties of these newly synthesized tetrakis(thiocyano)corrolatoantimony(III) derivatives having four SCN groups on the bipyrrole unit of corrole are drastically altered compared to their β-unsubstituted corrolatoantimony(III) analogues. The UV-vis and emission spectra of tetrakis(thiocyano)corrolatoantimony(III) derivatives are significantly red-shifted (roughly 30-40 nm) in comparison with their β-unsubstituted corrolatoantimony(III) derivatives. The Q bands are significantly strengthened. The intensity of the most prominent Q band is roughly 70% that of the Soret band and absorbs strongly at the far-red region, i.e., at 700-720 nm. These molecules emit light in the near-infrared region (700-900 nm). Tetrakis(thiocyano)corrolatoantimony(III) undergoes electrochemical anodic oxidation to form SbV═O species, which facilitates electrocatalytic oxygen evolution reaction (OER) and the activation of benzylic C-H to produce benzoic acid selectively. Under optimized conditions, SbIII-corrole@NF (NF = nickel foam) required an overpotential of 380 mV to reach a 50 mA cm-2 current density, comparable with those of other transition-metal-based complexes. On the other hand, replacing the anodic OER with benzyl alcohol oxidation lowered the required potential by 150 mV (at 300 mA cm-2) to improve the energy efficiency of the electrochemical process.
Collapse
Affiliation(s)
- Tanmoy Pain
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ajit Kumar Singh
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Arup Tarai
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Sruti Mondal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
| | - Arindam Indra
- Department of Chemistry, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Sanjib Kar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar 752050, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
26
|
Gan Y, Ye Y, Dai X, Yin X, Cao Y, Cai R, Feng B, Wang Q, Zhang X. La and S Co-Doping Induced the Synergism of Multiphase Nickel-Iron Nanosheets with Rich Oxygen Vacancies to Trigger Large-Current-Density Oxygen Evolution and Urea Oxidation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303250. [PMID: 37464564 DOI: 10.1002/smll.202303250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/15/2023] [Indexed: 07/20/2023]
Abstract
The development of cost-effective electrocatalysts for oxygen evolution reaction (OER) and urea oxidation reaction (UOR) is of great significance for hydrogen production. Herein, La and S co-doped multiphase electrocatalyst (LSFN-63) is fabricated by metal-corrosion process. FeOOH can reduce the formation energy of NiOOH, and enhance the stability of NiOOH as active sites for OER/UOR. The rich oxygen vacancies can increase the number of active sites, optimize the adsorption of intermediates, and improve electrical conductivity. Beyond, La and S co-doping can also regulate the electronic structure of FeOOH. As a result, LSFN-63 presents a low overpotential of 210/450 mV at 100/1000 mA cm-2 , small Tafel slope (32 mV dec-1 ), and outstanding stability under 1000 mA cm-2 @60 h, and can also display excellent OER activity with 180 mV at 250 mA cm-2 and long-term catalytic durability at 250 mA cm-2 @135 h in 30 wt% KOH under 60 °C. Moreover, LSFN-63 demonstrates remarkable UOR performance in 1 m KOH + 0.5 m urea, which just requires an ultra-small overpotential of 140 mV at 100 mA cm-2 , and maintain long-term durability over 120 h. This work opens up a promising avenue for the development of high-efficiency electrocatalysts by a facile metal-corrosion strategy.
Collapse
Affiliation(s)
- Yonghao Gan
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| | - Ying Ye
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| | - Xiaoping Dai
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| | - Xueli Yin
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| | - Yihua Cao
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| | - Run Cai
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| | - Bo Feng
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| | - Qi Wang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| | - Xin Zhang
- College of Chemical Engineering and Environment, China University of Petroleum-Beijing, State Key Laboratory of Heavy Oil Processing, Beijing, 102249, China
| |
Collapse
|
27
|
Hao Y, Kang Y, Wang S, Chen Z, Lei C, Cao X, Chen L, Li Y, Liu Z, Gong M. Electrode/Electrolyte Synergy for Concerted Promotion of Electron and Proton Transfers toward Efficient Neutral Water Oxidation. Angew Chem Int Ed Engl 2023; 62:e202303200. [PMID: 37278979 DOI: 10.1002/anie.202303200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
Neutral water oxidation is a crucial half-reaction for various electrochemical applications requiring pH-benign conditions. However, its sluggish kinetics with limited proton and electron transfer rates greatly impacts the overall energy efficiency. In this work, we created an electrode/electrolyte synergy strategy for simultaneously enhancing the proton and electron transfers at the interface toward highly efficient neutral water oxidation. The charge transfer was accelerated between the iridium oxide and in situ formed nickel oxyhydroxide on the electrode end. The proton transfer was expedited by the compact borate environment that originated from hierarchical fluoride/borate anions on the electrolyte end. These concerted promotions facilitated the proton-coupled electron transfer (PCET) events. Due to the electrode/electrolyte synergy, Ir-O and Ir-OO- intermediates could be directly detected by in situ Raman spectroscopy, and the rate-limiting step of Ir-O oxidation was determined. This synergy strategy can extend the scope of optimizing electrocatalytic activities toward more electrode/electrolyte combinations.
Collapse
Affiliation(s)
- Yaming Hao
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Yikun Kang
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Shaoyan Wang
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Zhe Chen
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Can Lei
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Xueting Cao
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Lin Chen
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Yefei Li
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Zhipan Liu
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| | - Ming Gong
- Department of Chemistry and, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200438, Shanghai, P. R. China
| |
Collapse
|
28
|
Jiao H, Wang C, Zhang ZY, Song YF, Feng BQ, Na P, Wang ZL. Ultrafine NiFe-Based (Oxy)Hydroxide Nanosheet Arrays with Rich Edge Planes and Superhydrophilic-Superaerophobic Characteristics for Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301609. [PMID: 37116125 DOI: 10.1002/smll.202301609] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
NiFe-based (oxy)hydroxides are the benchmark catalysts for the oxygen evolution reaction (OER) in alkaline medium, however, it is still challenging to control their structures and compositions. Herein, molybdates (NiFe(MoO4 )x ) are applied as unique precursors to synthesize ultrafine Mo modified NiFeOx Hy (oxy)hydroxide nanosheet arrays. The electrochemical activation process enables the molybdate ions (MoO4 2- ) in the precursors gradually dissolve, and at the same time, hydroxide ions (OH- ) in the electrolyte diffuse into the precursor and react with Ni2+ and Fe3+ ions in confined space to produce ultrafine NiFeOx Hy (oxy)hydroxides nanosheets (<10 nm), which are densely arranged into microporous arrays and maintain the rod-like morphology of the precursor. Such dense ultrafine nanosheet arrays produce rich edge planes on the surface of NiFeOx Hy (oxy)hydroxides to expose more active sites. More importantly, the capillary phenomenon of microporous structures and hydrophilic hydroxyl groups induce the superhydrophilicity and the rough surface produces the superaerophobic characteristic for bubbles. With these advantages, the optimized catalyst exhibits excellent performance for OER, with a small overpotential of 182 mV at 10 mA cm-2 and long-term stability (200 h) at 200 mA cm-2 . Theoretical calculations show that the modification of Mo enhances the electron delocalization and optimizes the adsorption of intermediates.
Collapse
Affiliation(s)
- Han Jiao
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Chun Wang
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Zi-Yang Zhang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Yi-Fu Song
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Bai-Qi Feng
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Ping Na
- Tianjin Laboratory of Mass Transfer & Separation Process, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| | - Zhong-Li Wang
- Tianjin Key Laboratory of Applied Catalysis Science & Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300354, China
| |
Collapse
|
29
|
Gong ZJ, Hu ZC, Bai ZJ, Yu XA, Liu Z, Wang YQ. Fe 1-xNi x(PO 3) 2/Ni 2P Heterostructure for Boosting Alkaline Oxygen Evolution Reaction in Fresh Water and Real Seawater at High Current Density. Inorg Chem 2023; 62:13338-13347. [PMID: 37599583 DOI: 10.1021/acs.inorgchem.3c01639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Oxygen evolution reaction (OER) is a limiting reaction for highly efficient water electrolysis. Thus, the development of cost-effective and highly efficient OER catalysts is the key to large-scale water electrolysis for hydrogen production. Herein, by using an interfacial engineering strategy, a unique nanoflower-like Fe1-xNix(PO3)2/Ni2P/NF heterostructure with abundant heterogeneous interfaces is successfully fabricated. The catalyst exhibits excellent OER catalytic activity in alkaline fresh water and alkaline natural seawater at high current densities, which only, respectively, requires overpotentials of 318 and 367 mV to drive 1000 mA cm-2 in fresh water and natural seawater both containing 1 M KOH. Furthermore, Fe1-xNix(PO3)2/Ni2P/NF demonstrates excellent durability, which can basically remain stable for 80 h during the electrocatalytic OER processes, respectively, in alkaline fresh water and natural seawater. This work provides a new construction strategy for designing highly efficient electrocatalysts for OER at high current densities both in alkaline fresh water and in natural seawater.
Collapse
Affiliation(s)
- Zhi-Jiang Gong
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Zhuo-Cheng Hu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Zi-Jian Bai
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Xiang-An Yu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Zhiliang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials, College of Chemistry and Chemical Engineering, Inner Mongolia University, 235 West University Street, Hohhot 010021, P. R. China
| |
Collapse
|
30
|
Ma L, Gong W, Wu Q, Zhou X, Zhao S, Khan A, Li X, Xu A. Permanganate activation with Mn oxides at different oxidation states: Insight into the surface-promoted electron transfer mechanism. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131746. [PMID: 37270959 DOI: 10.1016/j.jhazmat.2023.131746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/06/2023]
Abstract
The development of new strategies to improve the removal of organic pollutants with permanganate (KMnO4) is a hot topic in water treatment. While Mn oxides have been extensively used in Advanced Oxidation Processes through an electron transfer mechanism, the field of KMnO4 activation remains relatively unexplored. Interestingly, this study has discovered that Mn oxides with high oxidation states including γ-MnOOH, α-Mn2O3 and α-MnO2, exhibited excellent performance to degrade phenols and antibiotics in the presence of KMnO4. The MnO4- species initially formed stable complexes with the surface Mn(III/IV) species and showed an increased oxidation potential and electron transfer reactivity, caused by the electron-withdrawing capacity of the Mn species acting as Lewis acids. Conversely, for MnO and γ-Mn3O4 with Mn(II) species, they reacted with KMnO4 to produce cMnO2 with very low activity for phenol degradation. The direct electron transfer mechanism in α-MnO2/KMnO4 system was further confirmed through the inhibiting effect of acetonitrile and the galvanic oxidation process. Moreover, the adaptability and reusability of α-MnO2 in complicated waters indicated its potential for application in water treatment. Overall, the findings shed light on the development of Mn-based catalysts for organic pollutants degradation via KMnO4 activation and understanding of the surface-promoted mechanism.
Collapse
Affiliation(s)
- Lu Ma
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China
| | - Wenqiang Gong
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Qinghong Wu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiong Zhou
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Shuaiqi Zhao
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Aimal Khan
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Xiaoxia Li
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China
| | - Aihua Xu
- School of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, PR China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, PR China.
| |
Collapse
|
31
|
Tang W, Yu Z, Chen H, Jiang R, Huang J, Li S, Hou Y, Wang M, Pang H, Liu J. Amorphous dominated metal hydroxide-organic framework with compositional and structural heterogeneity for enhancing anodic electro-oxidation reactions. J Colloid Interface Sci 2023; 644:358-367. [PMID: 37120884 DOI: 10.1016/j.jcis.2023.04.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
Inorganic-organic hybrids are promising anode catalysts to realize high activity and stability. Herein, an amorphous-dominated transition metal hydroxide-organic framework (MHOF) with isostructural mixed-linker was successfully synthesized on nickel foam (NF) substrate. The designed IML24-MHOF/NF exhibited remarkable electrocatalytic activity with an ultralow overpotential of 271 mV for oxygen evolution reaction (OER) and a potential of 1.29 V vs. reversible hydrogen electrode for urea oxidation reaction (UOR) at 10 mA·cm-2. Furthermore, the IML24-MHOF/NF||Pt-C cell required only 1.31 V for urea electrolysis at 10 mA·cm-2, which was much smaller than traditional water splitting (1.50 V). When coupled with UOR, the hydrogen yield rate was faster (1.04 mmol·h-1) than with OER (0.32 mmol·h-1) at 1.6 V. The structure characterizations, together with operando monitoring, including operando Raman, Fourier transform infrared, electrochemical impedance spectroscopy, and alcohol molecules probe, revealed that: (1) amorphous IML24-MHOF/NF prefers self-adaptive reconstruction into active intermediate species against the external stimulus; (2) pyridine-3,5-dicarboxylate-incorporation into parent framework reconfigures electronic structure of system, thus mediating the absorption of oxygen-containing reactants during anodic oxidation reactions, such as O* and COO*. This work provides a new approach for boosting the catalytic activity of anodic electro-oxidation reactions by trimming the structure of MHOF-based catalysts.
Collapse
Affiliation(s)
- Wenjun Tang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Zebin Yu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China.
| | - Honglei Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Ronghua Jiang
- School of Chemical and Environmental Engineering, Shaoguan University, Shaoguan 512005, PR China
| | - Jun Huang
- College of Civil Engineering & Architecture, Guangxi University, Nanning 530004, PR China
| | - Shuang Li
- School of Environmental Science and Technology, Dalian University of Technology, Dalian 116023, PR China
| | - Yanping Hou
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Mi Wang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Han Pang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| | - Jing Liu
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
32
|
Operando spectroscopies capturing surface reconstruction and interfacial electronic regulation by FeOOH@Fe 2O 3@Ni(OH) 2 heterostructures for robust oxygen evolution reaction. J Colloid Interface Sci 2023; 636:501-511. [PMID: 36652825 DOI: 10.1016/j.jcis.2023.01.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/15/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023]
Abstract
Developing high-performance and low-cost electrocatalysts for oxygen evolution reaction (OER) and understanding the phase evolution in the catalytic process are vital to improving the overall efficiency of electrochemical water splitting. Herein, a hybrid heterogeneous FeOOH@Fe2O3@Ni(OH)2 electrocatalyst with robust OER intrinsic activity and a low overpotential of 269 mV to obtain a current density of 100 mA cm-2 and a Tafel slope value of 60.15 mV dec-1 is effectively prepared. The dynamic surface evolution has been detected by in-situ Raman spectroscopy, which exposes that FeOOH@Fe2O3@Ni(OH)2 is reconstituted as Ni(Fe)OOH demonstrated as catalytically active species under high potential. X-ray photoelectron spectroscopy analysis indicates that partial electrons of Ni in the heterogeneous interface transfer to Fe. Furthermore, partial Fe doping of NiOOH under high potential accompanied by the oxidized Ni3+ with optimized d-orbit electronic configuration for nearly unity eg occupancy results in proper chemisorption bonding strength for oxygen reaction intermediates and is conducive to enhancing OER reaction kinetics. This work provides ideas that multicomponent heterostructure can adjust the electronic structure of iron and nickel to enhance the intrinsic activity of OER, which could help with the design and synthesis of high-performance OER catalysts used in energy storage and conversion.
Collapse
|
33
|
Zhao Y, Adiyeri Saseendran DP, Huang C, Triana CA, Marks WR, Chen H, Zhao H, Patzke GR. Oxygen Evolution/Reduction Reaction Catalysts: From In Situ Monitoring and Reaction Mechanisms to Rational Design. Chem Rev 2023; 123:6257-6358. [PMID: 36944098 DOI: 10.1021/acs.chemrev.2c00515] [Citation(s) in RCA: 140] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) are core steps of various energy conversion and storage systems. However, their sluggish reaction kinetics, i.e., the demanding multielectron transfer processes, still render OER/ORR catalysts less efficient for practical applications. Moreover, the complexity of the catalyst-electrolyte interface makes a comprehensive understanding of the intrinsic OER/ORR mechanisms challenging. Fortunately, recent advances of in situ/operando characterization techniques have facilitated the kinetic monitoring of catalysts under reaction conditions. Here we provide selected highlights of recent in situ/operando mechanistic studies of OER/ORR catalysts with the main emphasis placed on heterogeneous systems (primarily discussing first-row transition metals which operate under basic conditions), followed by a brief outlook on molecular catalysts. Key sections in this review are focused on determination of the true active species, identification of the active sites, and monitoring of the reactive intermediates. For in-depth insights into the above factors, a short overview of the metrics for accurate characterizations of OER/ORR catalysts is provided. A combination of the obtained time-resolved reaction information and reliable activity data will then guide the rational design of new catalysts. Strategies such as optimizing the restructuring process as well as overcoming the adsorption-energy scaling relations will be discussed. Finally, pending current challenges and prospects toward the understanding and development of efficient heterogeneous catalysts and selected homogeneous catalysts are presented.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Walker R Marks
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Hang Chen
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Han Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
34
|
Zhao J, Wang F, Lu X, Lv T, Li Y, Hao Q, Liang L, Liu H. In-situ Surface Reconstruction of Single-crystal (NiFe)3Se4 Nano-pyramid Arrays for Efficient Oxygen Evolution. J Colloid Interface Sci 2023; 642:532-539. [PMID: 37028160 DOI: 10.1016/j.jcis.2023.03.176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/07/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Transition metal-based selenides (TMSe) are considered as efficient pre-electrocatalysts towards oxygen evolution reaction (OER). However, the key factor in determining the surface reconstruction of TMSe under OER condition is not yet clear. Herein, we uncover that the crystallinity of TMSe will obviously impact the conversion degree from TMSe to transition metal oxyhydroxides (TMOOH) during OER. A novel single-crystal (NiFe)3Se4 nano-pyramid array grown on NiFe foam is fabricated by a facile one-step polyol process, which exhibits an excellent OER activity and stability, only requiring 170 mV to reach a current density of 10 mA cm-2 and can sustain for more than 300 h. In situ Raman spectrum studies reveals that the single-crystal (NiFe)3Se4 is partially oxidized on its surface during OER, generating a dense heterostructure of (NiFe)OOH/(NiFe)3Se4. Benefiting from the in situ formed heterointerface, the adsorption of OER intermediates on Ni active sites calculated by density functional theory (DFT) analysis is optimized, leading to the reduced energy barrier, which accounts for the enhanced intrinsic activity. This work not only reports a novel single-crystal (NiFe)3Se4 nano-pyramid array electrocatalyst with high-efficient OER performance, but also gains a deep insight into the role of the crystallinity of TMSe on the surface reconstruction during OER.
Collapse
|
35
|
Wu J, Liu X, Hao Y, Wang S, Wang R, Du W, Cha S, Ma XY, Yang X, Gong M. Ligand Hybridization for Electro-reforming Waste Glycerol into Isolable Oxalate and Hydrogen. Angew Chem Int Ed Engl 2023; 62:e202216083. [PMID: 36594790 DOI: 10.1002/anie.202216083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/04/2023]
Abstract
The electro-reforming of glycerol is an emerging technology of simultaneous hydrogen production and biomass valorization. However, its complex reaction network and limited catalyst tunability restrict the precise steering toward high selectivity. Herein, we incorporated the chelating phenanthrolines into the bulk nickel hydroxide and tuned the electronic properties by installing functional groups, yielding tunable selectivity toward formate (max 92.7 %) and oxalate (max 45.3 %) with almost linear correlation with the Hammett parameters. Further combinatory study of intermediate analysis and various spectroscopic techniques revealed the electronic effect of tailoring the valence band that balances between C-C cleavage and oxidation through the key glycolaldehyde intermediate. A two-electrode electro-reforming setup using the 5-nitro-1,10-phenanthroline-nickel hydroxide catalyst was further established to convert crude glycerol into pure H2 and isolable sodium oxalate with high efficiency.
Collapse
Affiliation(s)
- Jianxiang Wu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xiang Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Yaming Hao
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shaoyan Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Ran Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Wei Du
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Shuangshuang Cha
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xian-Yin Ma
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Xuejing Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai, 200438, P. R. China
| | - Ming Gong
- Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, P. R. China
| |
Collapse
|
36
|
Hao Y, Li J, Cao X, Meng L, Wu J, Yang X, Li Y, Liu Z, Gong M. Origin of the Universal Potential-Dependent Organic Oxidation on Nickel Oxyhydroxide. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Affiliation(s)
- Yaming Hao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jili Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xueting Cao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Lingshen Meng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jianxiang Wu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xuejing Yang
- National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China
| | - Yefei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Zhipan Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Ming Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
37
|
Chen P, Li K, Ye Y, Wu D, Tong Y. Self‐Supporting Iron‐Modified Nickel Phosphide Electrode Realizing Superior Bifunctional Performance for Water Splitting. ChemCatChem 2023. [DOI: 10.1002/cctc.202201580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Pengzuo Chen
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Kaixun Li
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Yutong Ye
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Doufeng Wu
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| | - Yun Tong
- Department of Chemistry Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province Zhejiang Sci-Tech University Hangzhou 310018 P. R. China
| |
Collapse
|
38
|
Wu H, Lu Q, Li Y, Zhao M, Wang J, Li Y, Zhang J, Zheng X, Han X, Zhao N, Li J, Liu Y, Deng Y, Hu W. Structural Framework-Guided Universal Design of High-Entropy Compounds for Efficient Energy Catalysis. J Am Chem Soc 2023; 145:1924-1935. [PMID: 36571792 DOI: 10.1021/jacs.2c12295] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
High-entropy compounds with extraordinary properties due to the synergistic effect of multiple components have exhibited great potential and attracted extensive attention in various fields, including physics, mechanical property analysis, and energy storage. Achieving universal stability and synthesis of high-entropy compounds with a wide range of components and structures continues to be difficult due to the high complexity of multicomponent mixing. Here, we propose a design strategy with high generality for realizing the stability and synthesis of high-entropy compounds that one metal site like the framework in the compound structures with bimetallic sites stabilizes another site to accommodate different elements. Several typical metal compounds with bimetallic sites, including perovskite hydroxides, layered double hydroxide, spinel sulfide, perovskite fluoride, and spinel oxides, have been synthesized into high-entropy compounds. High-entropy perovskite hydroxides (HEPHs) as representative compounds have been synthesized with a highly wide range of components even a septenary component and exhibit great oxygen evolution activity. Our work provides a design platform to develop more high-entropy compound systems with promising development potential for electrocatalysts.
Collapse
Affiliation(s)
- Han Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Qi Lu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Yajing Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Menghan Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Jiajun Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China.,Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City, Fuzhou350207, P. R. China
| | - Yingbo Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Xuerong Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Naiqin Zhao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Jiajun Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China
| | - Yanhui Liu
- Institute of Physics, Chinese Academy of Sciences, Beijing10089, P. R. China
| | - Yida Deng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China.,State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou570228, P. R. China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin300350, P. R. China.,Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University, Binhai New City, Fuzhou350207, P. R. China
| |
Collapse
|
39
|
Xie Q, Ren D, Bai L, Ge R, Zhou W, Bai L, Xie W, Wang J, Grätzel M, Luo J. Investigation of nickel iron layered double hydroxide for water oxidation in different pH electrolytes. CHINESE JOURNAL OF CATALYSIS 2023. [DOI: 10.1016/s1872-2067(22)64190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
40
|
Xue Q, Xia Z, Gou W, Bu J, Li J, Xiao H, Qu Y. Identification and Origination of the O*-Dominated β-NiOOH Intermediates with High Intrinsic Activity for Electrocatalytic Alcohol Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qingyu Xue
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Poly technical University, Xi’an 710072, China
| | - Zhaoming Xia
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wangyan Gou
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Poly technical University, Xi’an 710072, China
| | - Jun Bu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Poly technical University, Xi’an 710072, China
| | - Jiayuan Li
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Poly technical University, Xi’an 710072, China
| | - Hai Xiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yongquan Qu
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Poly technical University, Xi’an 710072, China
| |
Collapse
|
41
|
Wu J, Yang X, Gong M. Recent advances in glycerol valorization via electrooxidation: Catalyst, mechanism and device. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64121-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
42
|
Wang X, Zhong H, Xi S, Lee WSV, Xue J. Understanding of Oxygen Redox in the Oxygen Evolution Reaction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107956. [PMID: 35853837 DOI: 10.1002/adma.202107956] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The electron-transfer process during the oxygen evolution reaction (OER) often either proceeds solely via a metal redox chemistry (adsorbate evolution mechanism (AEM), with metal bands around the Fermi level) or an oxygen redox chemistry (lattice oxygen oxidation mechanism (LOM), with oxygen bands around the Fermi level). Unlike the AEM, the LOM involves oxygen redox chemistry instead of metal redox, which leads to the formation of a direct oxygen-oxygen (OO) bond. As a result, such a process is able to bypass the rate-determining step, that is, OO bonding, in AEM, which highlights the critical advantage of LOM as compared to the conventional AEM. Thus, it has been well reported that LOM-based catalysts are able to demonstrate higher OER activities as compared to AEM-based catalysts. Here, a comprehensive understanding of the oxygen redox in LOM and all documented and possible characterization techniques that can be used to identify the oxygen redox are reviewed. This review will interpret the origins of oxygen redox in the reported LOM-based electrocatalysts and the underlying science of LOM-induced surface reconstruction in transition metal oxides. Finally, perspectives on the future development of LOM electrocatalysts are also provided.
Collapse
Affiliation(s)
- Xiaopeng Wang
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Haoyin Zhong
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, Singapore, 627833, Singapore
| | - Wee Siang Vincent Lee
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| | - Junmin Xue
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117573, Singapore
| |
Collapse
|
43
|
Pivotal role of reversible NiO 6 geometric conversion in oxygen evolution. Nature 2022; 611:702-708. [PMID: 36289339 DOI: 10.1038/s41586-022-05296-7] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/31/2022] [Indexed: 01/20/2023]
Abstract
Realizing an efficient electron transfer process in the oxygen evolution reaction by modifying the electronic states around the Fermi level is crucial in developing high-performing and robust electrocatalysts1-3. Typically, electron transfer proceeds solely through either a metal redox chemistry (an adsorbate evolution mechanism (AEM), with metal bands around the Fermi level) or an oxygen redox chemistry (a lattice oxygen oxidation mechanism (LOM), with oxygen bands around the Fermi level), without the concurrent occurrence of both metal and oxygen redox chemistries in the same electron transfer pathway1-15. Here we report an electron transfer mechanism that involves a switchable metal and oxygen redox chemistry in nickel-oxyhydroxide-based materials with light as the trigger. In contrast to the traditional AEM and LOM, the proposed light-triggered coupled oxygen evolution mechanism requires the unit cell to undergo reversible geometric conversion between octahedron (NiO6) and square planar (NiO4) to achieve electronic states (around the Fermi level) with alternative metal and oxygen characters throughout the oxygen evolution process. Utilizing this electron transfer pathway can bypass the potential limiting steps, that is, oxygen-oxygen bonding in AEM and deprotonation in LOM1-5,8. As a result, the electrocatalysts that operate through this route show superior activity compared with previously reported electrocatalysts. Thus, it is expected that the proposed light-triggered coupled oxygen evolution mechanism adds a layer of understanding to the oxygen evolution research scene.
Collapse
|
44
|
Li X, Wang C, Zheng S, Xue H, Xu Q, Braunstein P, Pang H. Electrochemical activation-induced surface-reconstruction of NiO x microbelt superstructure of core-shell nanoparticles for superior durability electrocatalysis. J Colloid Interface Sci 2022; 624:443-449. [PMID: 35667206 DOI: 10.1016/j.jcis.2022.05.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/24/2022] [Accepted: 05/28/2022] [Indexed: 01/29/2023]
Abstract
The tailoring of intrinsic electronic structures and extrinsic hierarchical morphologies is widely recognized as a promising strategy to enhance the oxygen evolution reaction (OER) performance of electrocatalysts. It is generally accepted that the surface of the transition metal-based electrocatalyst exposed to the alkaline electrolyte is highly oxidized and reconstructed, forming an amorphous layer during the electrochemical process. This amorphous active phase is favorable for OER due to its abundant dangling bonds, vacancies and defects, which is tricky to be rationally prepared by conventional methods. Herein, a facile access to crystalline / amorphous NiOx microbelt superstructure of core-shell nanoparticles is presented, which is assembled of crystalline NiO nanoparticles coated with amorphous Ni3+/Ni2+ oxide layer. Electrochemical activation induces the in-situ surface reconstruction of the NiOx microbelt superstructure, resulting in a thicker outer amorphous Ni3+/Ni2+ layer further facilitating OER. Owing to the optimization of the in-situ surface reconstruction, the NiOx microbelt superstructure with crystalline / amorphous dual phases exhibited both high electrocatalytic activity and superior durability for OER, with the original microbelt superstructure retained after 50000 s I-t test.
Collapse
Affiliation(s)
- Xinran Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China; Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong 518055, China
| | - Changli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shasha Zheng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Qiang Xu
- Department of Materials Science and Engineering and Guangdong-Hong Kong-Macau Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Pierre Braunstein
- Institute of Chemistry (UMR 7177 CNRS), Université de Strasbourg, Strasbourg, Cedex 67081, France
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China.
| |
Collapse
|
45
|
Zhao Y, Wan W, Dongfang N, Triana CA, Douls L, Huang C, Erni R, Iannuzzi M, Patzke GR. Optimized NiFe-Based Coordination Polymer Catalysts: Sulfur-Tuning and Operando Monitoring of Water Oxidation. ACS NANO 2022; 16:15318-15327. [PMID: 36069492 DOI: 10.1021/acsnano.2c06890] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In-depth insights into the structure-activity relationships and complex reaction mechanisms of oxygen evolution reaction (OER) electrocatalysts are indispensable to efficiently generate clean hydrogen through water electrolysis. We introduce a convenient and effective sulfur heteroatom tuning strategy to optimize the performance of active Ni and Fe centers embedded into coordination polymer (CP) catalysts. Operando monitoring then provided the mechanistic understanding as to how exactly our facile sulfur engineering of Ni/Fe-CPs optimizes the local electronic structure of their active centers to facilitate dioxygen formation. The high OER activity of our optimized S-R-NiFe-CPs outperforms the most recent NiFe-based OER electrocatalysts. Specifically, we start from oxygen-deprived Od-R-NiFe-CPs and transform them into highly active Ni/Fe-CPs with tailored sulfur coordination environments and anionic deficiencies. Our operando X-ray absorption spectroscopy analyses reveal that sulfur introduction into our designed S-R-NiFe-CPs facilitates the formation of crucial highly oxidized Ni4+ and Fe4+ species, which generate oxygen-bridged NiIV-O-FeIV moieties that act as the true OER active intermediates. The advantage of our sulfur-doping strategy for enhanced OER is evident from comparison with sulfur-free Od-R-NiFe-CPs, where the formation of essential high-valent OER intermediates is hindered. Moreover, we propose a dual-site mechanism pathway, which is backed up with a combination of pH-dependent performance data and DFT calculations. Computational results support the benefits of sulfur modulation, where a lower energy barrier enables O-O bond formation atop the S-NiIV-O-FeIV-O moieties. Our convenient anionic tuning strategy facilitates the formation of active oxygen-bridged metal motifs and can thus promote the design of flexible and low-cost OER electrocatalysts.
Collapse
Affiliation(s)
- Yonggui Zhao
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Wenchao Wan
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nanchen Dongfang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Carlos A Triana
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Lewis Douls
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chong Huang
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Rolf Erni
- Electron Microscopy Center, Empa, Swiss Federal Laboratories for Materials Science and Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Marcella Iannuzzi
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Greta R Patzke
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| |
Collapse
|
46
|
Fan R, Wang H, Zheng X, Chen J, Ou Y, Wang Y, Mao S. Fe 2 Dimers for Non-Polar Diatomic O 2 Electroreduction. CHEMSUSCHEM 2022; 15:e202200532. [PMID: 35604289 DOI: 10.1002/cssc.202200532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Non-polar diatomic molecule activation is of great significance for catalysis. Despite the high atomic efficiency, the catalytic performance of single-atom catalysts is limited by insufficient receiving sites for diatomic molecule adsorption. Here, Fe2 dimers were successfully synthesized through precisely regulating the metal loading on metal-organic frameworks. The unique role of metal dimers in activating diatomic O2 molecules was explored. In alkaline electrolytes, the specific oxygen reduction reaction activity of Fe2 dimers was 7 times higher than that of Fe1 counterparts. The hydrogen atom transfer probes indicated a different activation mode for O2 on Fe1 and Fe2 dimers, respectively. Theoretical calculation results revealed that Fe2 dimers opened up a new reaction pathway by promoting the direct breaking of O=O bonds, thus avoiding the usual formation of *OOH intermediates, which helped explain the lower H2 O2 yield and higher specific activity.
Collapse
Affiliation(s)
- Ruxue Fan
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Haiyan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Xiaozhong Zheng
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Jiadong Chen
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Yang Ou
- Center of Electron Microscopy and State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P.R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
- Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310028, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Institute of Catalysis, Department of Chemistry, Zhejiang University, Hangzhou, 310028, P. R. China
- Center of Chemistry for Frontier Technologies, Zhejiang University, Hangzhou, 310028, P. R. China
| |
Collapse
|
47
|
Kang Y, Guo Y, Zhao J, Jiang B, Guo J, Tang Y, Li H, Malgras V, Amin MA, Nara H, Sugahara Y, Yamauchi Y, Asahi T. Soft Template-Based Synthesis of Mesoporous Phosphorus- and Boron-Codoped NiFe-Based Alloys for Efficient Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203411. [PMID: 35863911 DOI: 10.1002/smll.202203411] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Controlling the morphology, composition, and crystalline phase of mesoporous nonnoble metal catalysts is essential for improving their performance. Herein, well-defined P- and B-codoped NiFe alloy mesoporous nanospheres (NiFeB-P MNs) with an adjustable Ni/Fe ratio and large mesopores (11 nm) are synthesized via soft-template-based chemical reduction and a subsequent phosphine-vapor-based phosphidation process. Earth-abundant NiFe-based materials are considered promising electrocatalysts for the oxygen evolution reaction (OER) because of their low cost and high intrinsic catalytic activity. The resulting NiFeB-P MNs exhibit a low OER overpotential of 252 mV at 10 mA cm-2 , which is significantly smaller than that of B-doped NiFe MNs (274 mV) and commercial RuO2 (269 mV) in alkaline electrolytes. Thus, this work highlights the practicality of designing mesoporous nonnoble metal structures and the importance of incorporating P in metallic-B-based alloys to modify their electronic structure for enhancing their intrinsic activity.
Collapse
Affiliation(s)
- Yunqing Kang
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yanna Guo
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Jingjing Zhao
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Bo Jiang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Jingru Guo
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yi Tang
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Hexing Li
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai, 200234, China
| | - Victor Malgras
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Aix Marseille Université, Université de Toulon, CNRS, IM2NP, UMR 7334, Campus de St. Jérôme, Marseille, 13397, France
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hiroki Nara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Yoshiyuki Sugahara
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
- Department of Applied Chemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| | - Yusuke Yamauchi
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN) and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Toru Asahi
- Department of Life Science and Medical Bioscience, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
- Department of Nanoscience and Nanoengineering, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo, 169-8555, Japan
| |
Collapse
|
48
|
Hu C, Hu Y, Zhu A, Li M, Wei J, Zhang Y, Xie W. Several Key Factors for Efficient Electrocatalytic Water Splitting: Active Site Coordination Environment, Morphology Changes and Intermediates Identification. Chemistry 2022; 28:e202200138. [DOI: 10.1002/chem.202200138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Cejun Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Yanfang Hu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Aonan Zhu
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Mingming Li
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Junli Wei
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Yuying Zhang
- School of Medicine Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| | - Wei Xie
- Key Lab of Advanced Energy Materials Chemistry (Ministry of Education) Haihe Laboratory of Sustainable Chemical Transformations Renewable Energy Conversion and Storage Center College of Chemistry Nankai University Weijin Rd. 94 Tianjin 300071 P. R. China
| |
Collapse
|
49
|
Wang P, Luo Y, Zhang G, Chen Z, Ranganathan H, Sun S, Shi Z. Interface Engineering of Ni xS y@MnO xH y Nanorods to Efficiently Enhance Overall-Water-Splitting Activity and Stability. NANO-MICRO LETTERS 2022; 14:120. [PMID: 35505126 PMCID: PMC9065220 DOI: 10.1007/s40820-022-00860-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/06/2022] [Indexed: 05/08/2023]
Abstract
Three-dimensional (3D) core-shell heterostructured NixSy@MnOxHy nanorods grown on nickel foam (NixSy@MnOxHy/NF) were successfully fabricated via a simple hydrothermal reaction and a subsequent electrodeposition process. The fabricated NixSy@MnOxHy/NF shows outstanding bifunctional activity and stability for hydrogen evolution reaction and oxygen evolution reaction, as well as overall-water-splitting performance. The main origins are the interface engineering of NixSy@MnOxHy, the shell-protection characteristic of MnOxHy, and the 3D open nanorod structure, which remarkably endow the electrocatalyst with high activity and stability. Exploring highly active and stable transition metal-based bifunctional electrocatalysts has recently attracted extensive research interests for achieving high inherent activity, abundant exposed active sites, rapid mass transfer, and strong structure stability for overall water splitting. Herein, an interface engineering coupled with shell-protection strategy was applied to construct three-dimensional (3D) core-shell NixSy@MnOxHy heterostructure nanorods grown on nickel foam (NixSy@MnOxHy/NF) as a bifunctional electrocatalyst. NixSy@MnOxHy/NF was synthesized via a facile hydrothermal reaction followed by an electrodeposition process. The X-ray absorption fine structure spectra reveal that abundant Mn-S bonds connect the heterostructure interfaces of NixSy@MnOxHy, leading to a strong electronic interaction, which improves the intrinsic activities of hydrogen evolution reaction and oxygen evolution reaction (OER). Besides, as an efficient protective shell, the MnOxHy dramatically inhibits the electrochemical corrosion of the electrocatalyst at high current densities, which remarkably enhances the stability at high potentials. Furthermore, the 3D nanorod structure not only exposes enriched active sites, but also accelerates the electrolyte diffusion and bubble desorption. Therefore, NixSy@MnOxHy/NF exhibits exceptional bifunctional activity and stability for overall water splitting, with low overpotentials of 326 and 356 mV for OER at 100 and 500 mA cm-2, respectively, along with high stability of 150 h at 100 mA cm-2. Furthermore, for overall water splitting, it presents a low cell voltage of 1.529 V at 10 mA cm-2, accompanied by excellent stability at 100 mA cm-2 for 100 h. This work sheds a light on exploring highly active and stable bifunctional electrocatalysts by the interface engineering coupled with shell-protection strategy.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada
- The Key Laboratory of Fuel Cell Technology of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, People's Republic of China
| | - Yuanzhi Luo
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Gaixia Zhang
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada.
| | - Zhangsen Chen
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada
| | - Hariprasad Ranganathan
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada
| | - Shuhui Sun
- Énergie Matériaux Télécommunications Research Centre, Institut National de La Recherche Scientifique (INRS), Varennes, Québec, J3X 1P7, Canada.
| | - Zhicong Shi
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
50
|
Qin H, Wei X, Ye Z, Liu X, Mao S. Promotion of Phenol Electro-oxidation by Oxygen Evolution Reaction on an Active Electrode for Efficient Pollution Control and Hydrogen Evolution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5753-5762. [PMID: 35420409 DOI: 10.1021/acs.est.1c08338] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report an electrolysis system using NiFe layered double hydroxide/CoMoO4/nickel foam (NFLDH/CMO/NF) as the anode and CMO/NF as the cathode for simultaneous phenol electro-oxidation and water electrolysis. This system shows high performance for both phenol degradation and hydrogen evolution. We demonstrate that the degradation rate of phenol on the active anode is governed by the mass transfer rate at a low phenol concentration (0.5-2 mM) and by the electro-oxidation rate at a high phenol concentration (5 mM). The anodic oxygen evolution reaction (OER) can promote the phenol degradation through enhanced mass transfer efficiency. More importantly, the common deactivation issue of phenol electro-oxidation on the inert anode can be eliminated by the high OER activity of the active anode. The constructed full electrolytic cell only needs a low potential of 1.498 V to achieve 10 mA/cm2 for water electrolysis. The reported promotion effect of phenol degradation by OER as well as the improved anode resistance to deactivation offer new insights into efficient and robust waste-to-resource electrolysis system for water treatment.
Collapse
Affiliation(s)
- Hehe Qin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiaojie Wei
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ziwei Ye
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiangyun Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Shun Mao
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|