1
|
Manzanares L, Spurling D, Szalai AM, Schröder T, Büber E, Ferrari G, Dagleish MRJ, Nicolosi V, Tinnefeld P. 2D Titanium Carbide MXene and Single-Molecule Fluorescence: Distance-Dependent Nonradiative Energy Transfer and Leaflet-Resolved Dye Sensing in Lipid Bilayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2411724. [PMID: 39449188 PMCID: PMC11619223 DOI: 10.1002/adma.202411724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Indexed: 10/26/2024]
Abstract
Despite their growing popularity, many fundamental properties and applications of MXene materials remain underexplored. Here, the nonradiative energy transfer properties of 2D titanium carbide MXene are investigated and their application in single-molecule biosensing is explored for the first time. DNA origami positioners are used for single dye placement immobilized by a specific chemistry based on glycine-MXene interactions, allowing precise control of their orientation on the surface. Each DNA origami structure carries a single dye molecule at predetermined heights. Single-molecule fluorescence confocal microscopy reveals that energy transfer of an organic emitter (ATTO 542) on transparent thin films made of spincast Ti3C2Tx flakes follows a cubic distance dependence, where 50% of energy transfer efficiency is reached at 2.7 nm (d0). MXenes are applied as short-distance spectroscopic nanorulers, determining z distances of dye-labeled supported lipid bilayers fused on MXene's hydrophilic surface. Hydration layer (2.1 nm) and lipid bilayer thickness (4.5 nm) values that agree with the literature are obtained. These results highlight titanium carbide MXenes as promising substrates for single-molecule biosensing of ultrathin assemblies, owing to their sensitivity near the interface, a distance regime that is typically inaccessible to other energy transfer tools.
Collapse
Affiliation(s)
- Lorena Manzanares
- Univ. LilleCNRSCentrale LilleUniv. Polytechnique Hauts‐de‐FranceUMR 8520 – IEMN – Institut d'Electronique de Microélectronique et de NanotechnologieLilleF‐59000France
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐UniversityButenandtstraße 5–1381377MunichGermany
| | - Dahnan Spurling
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio‐Engineering Research Centre (AMBER)Trinity College DublinDublin 2Ireland
| | - Alan M. Szalai
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐UniversityButenandtstraße 5–1381377MunichGermany
- Centro de Investigaciones en Bionanociencias (CIBION), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Godoy Cruz 2390Ciudad Autónoma de Buenos AiresC1425FQDArgentina
| | - Tim Schröder
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐UniversityButenandtstraße 5–1381377MunichGermany
| | - Ece Büber
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐UniversityButenandtstraße 5–1381377MunichGermany
| | - Giovanni Ferrari
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐UniversityButenandtstraße 5–1381377MunichGermany
| | - Martin R. J. Dagleish
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐UniversityButenandtstraße 5–1381377MunichGermany
| | - Valeria Nicolosi
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials Bio‐Engineering Research Centre (AMBER)Trinity College DublinDublin 2Ireland
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScienceLudwig‐Maximilians‐UniversityButenandtstraße 5–1381377MunichGermany
| |
Collapse
|
2
|
Xu C, Deng X, Yu P. High-Throughput Computational Study and Machine Learning Prediction of Electronic Properties in Transition Metal Dichalcogenide/Two-Dimensional Layered Halide Perovskite Heterostructures. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39361426 DOI: 10.1021/acsami.4c11973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Heterostructures formed by transition metal dichalcogenides (TMDs) and two-dimensional layered halide perovskites (2D-LHPs) have attracted significant attention due to their unique optoelectronic properties. However, theoretical studies face challenges due to the large number of atoms and the need for lattice matching. With the discovery of more 2D-LHPs, there is an urgent need for methods to rapidly predict and screen TMDs/2D-LHPs heterostructures. This study employs first-principles calculations to perform high-throughput computations on 602 TMDs/2D-LHPs heterostructures. Results show that different combinations exhibit diverse band alignments, with MoS2 and WS2 more likely to form type-II heterostructures with 2D-LHPs. The highest photoelectric conversion efficiency of type-II structures reaches 23.26%, demonstrating potential applications in solar cells. Notably, some MoS2/2D-LHPs form type-S structures, showing promise in photocatalysis. Furthermore, we found that TMDs can significantly affect the conformation of organic molecules in 2D-LHPs, thus modulating the electronic properties of the heterostructures. To overcome computational cost limitations, we constructed a crystal graph convolutional neural network model based on the calculated data to predict the electronic properties of TMDs/2D-LHPs heterostructures. Using this model, we predicted the bandgaps and band alignment types of 9,360 TMDs/2D-LHPs heterostructures, providing a comprehensive theoretical reference for research in this field.
Collapse
Affiliation(s)
- Congsheng Xu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001 Harbin, China
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Xiaomei Deng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Shenzhen, China
| |
Collapse
|
3
|
Herrera Mondragon A, Gonzalez Rodriguez R, Hurley N, Varghese S, Jiang Y, Squires B, Cheng M, Davis B, Jiang Q, Mortazavi M, Kaul AB, Coffer JL, Cui J, Lin Y. Förster Resonance Energy Transfer and Enhanced Emission in Cs 4PbBr 6 Nanocrystals Encapsulated in Silicon Nano-Sheets for Perovskite Light Emitting Diode Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1596. [PMID: 39404323 PMCID: PMC11478374 DOI: 10.3390/nano14191596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
Encapsulating Cs4PbBr6 quantum dots in silicon nano-sheets not only stabilizes the halide perovskite, but also takes advantage of the nano-sheet for a compatible integration with the traditional silicon semiconductor. Here, we report the preparation of un-passivated Cs4PbBr6 ellipsoidal nanocrystals and pseudo-spherical quantum dots in silicon nano-sheets and their enhanced photoluminescence (PL). For a sample with low concentrations of quantum dots in silicon nano-sheets, the emission from Cs4PbBr6 pseudo-spherical quantum dots is quenched and is dominated with Pb2+ ion/silicene emission, which is very stable during the whole measurement period. For a high concentration of Cs4PbBr6 ellipsoidal nanocrystals in silicon nano-sheets, we have observed Förster resonance energy transfer with up to 87% efficiency through the oscillation of two PL peaks when UV excitation switches between on and off, using recorded video and PL lifetime measurements. In an area of a non-uniform sample containing both ellipsoidal nanocrystals and pseudo-spherical quantum dots, where Pb2+ ion/silicene emissions, broadband emissions from quantum dots, and bandgap edge emissions (515 nm) appear, the 515 nm peak intensity increases five times over 30 min of UV excitation, probably due to a photon recycling effect. This irradiated sample has been stable for one year of ambient storage. Cs4PbBr6 quantum dots encapsulated in silicon nano-sheets can lead to applications of halide perovskite light emitting diodes (PeLEDs) and integration with traditional semiconductor materials.
Collapse
Affiliation(s)
| | | | - Noah Hurley
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (A.H.M.); (Y.J.); (J.C.)
| | - Sinto Varghese
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (A.H.M.); (Y.J.); (J.C.)
| | - Yan Jiang
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (A.H.M.); (Y.J.); (J.C.)
| | - Brian Squires
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (A.H.M.); (Y.J.); (J.C.)
| | - Maoding Cheng
- Department of Chemistry and Physics, University of Arkansas, Pine Bluff, AR 71601, USA (Q.J.)
| | - Brooke Davis
- Department of Chemistry and Physics, University of Arkansas, Pine Bluff, AR 71601, USA (Q.J.)
| | - Qinglong Jiang
- Department of Chemistry and Physics, University of Arkansas, Pine Bluff, AR 71601, USA (Q.J.)
| | - Mansour Mortazavi
- Department of Chemistry and Physics, University of Arkansas, Pine Bluff, AR 71601, USA (Q.J.)
| | - Anupama B. Kaul
- Department of Materials Science and Engineering, University of North Texas, Denton, TX 76203, USA
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
| | - Jeffery L. Coffer
- Department of Chemistry and Biochemistry, Texas Christian University, TCU Box 298860, Fort Worth, TX 76129, USA
| | - Jingbiao Cui
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (A.H.M.); (Y.J.); (J.C.)
| | - Yuankun Lin
- Department of Physics, University of North Texas, Denton, TX 76203, USA; (A.H.M.); (Y.J.); (J.C.)
- Department of Electrical Engineering, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
4
|
Shen XA, Zhou H, Chen X, Wu J, Su Y, Huang X, Xiong Y. Janus plasmonic-aggregation induced emission nanobeads as high-performance colorimetric-fluorescent probe of immunochromatographic assay for the ultrasensitive detection of staphylococcal enterotoxin B in milk. Biosens Bioelectron 2024; 261:116458. [PMID: 38852321 DOI: 10.1016/j.bios.2024.116458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
Herein, a colorimetric-fluorescent hybrid bifunctional nanobead with Janus structure (J-cf-HBN) was synthesized via one-pot microemulsification. Oleylamine-coated AuNPs and aggregation-induced emission luminogens (AIEgens) were suggested as building blocks to obtain high-performance colorimetric-fluorescent signals. The as-prepared J-cf-HBNs were used as a signal amplification probe to construct an immunochromatographic assay (J-cf-HBNs-ICA) platform for the ultrasensitive detection of staphylococcal enterotoxin B (SEB) in milk samples. Owing to the rational spatial distribution of AuNPs and AIEgens, the J-cf-HBNs present a highly retained photoluminescence and enhanced colorimetric signals. Combined with a pair of highly affinitive anti-SEB antibodies, the J-cf-HBN-ICA platform enabled the fast naked-eye visualization and fluorescent quantitative detection of SEB in various milk matrices. Given the advantages of the dual-mode high-performance J-cf-HBNs, the proposed strip achieved a high sensitivity for SEB qualitative determination with a visual limit of detection (LOD) of 1.56 ng mL-1 and exhibited ultrasensitivity for SEB quantitative detection with a LOD of 0.09 ng mL-1, which is 139-fold lower than that of ELISA using same antibodies. In conclusion, this work provides new insights into the construction of multimode immunochromatographic methods for food safety detection in the field.
Collapse
Affiliation(s)
- Xuan-Ang Shen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Haoxiang Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Xirui Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Jingyu Wu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China
| | - Yu Su
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China.
| | - Xiaolin Huang
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Jiangxi Medicine Academy of Nutrition and Health Management, Nanchang, 330006, PR China; Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
5
|
Fu D, Zhang Y, Chen Z, Pan L, He Y, Luo J. Bulk Photovoltaic Effect Induced by Non-Covalent Interactions in Bilayered Hybrid Perovskite for Efficient Passive X-Ray Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403198. [PMID: 38738744 DOI: 10.1002/smll.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 04/26/2024] [Indexed: 05/14/2024]
Abstract
Hydrogen bonding as a multifunctional tool has always influenced the structure of hybrid perovskites. Compared with the research on hydrogen bonding, the study of halogen-halogen interactions on the structure and properties of hybrid perovskites is still in its early stages. Herein, a polar bilayered hybrid perovskite (IEA)2FAPb2I7 (IEA+ is 2-iodoethyl-1-ammonium, FA is formamidinium) with iodine-substituted spacer is successfully constructed by changing the configuration of interlayer cations and regulating non-covalent interactions at the organic-inorganic interface, which shows a shorter interlayer spacing and higher density (ρ = 3.862 g cm-3). The generation of structure polarity in (IEA)2FAPb2I7 is caused by the synergistic effect of hydrogen bonding and halogen-halogen interactions. Especially, as the length of the carbon chain in organic cations decreases, the I---I interaction in the system gradually strengthens, which may be the main reason for the symmetry-breaking. Polarity-induced bulk photovoltaics (Voc = 1.0 V) and higher density endow the device based on (I-EA)2FAPb2I7 exhibit a high sensitivity of 175.6 µC Gy-1 cm-2 and an ultralow detection limit of 60.4 nGy s-1 at 0 V bias under X-ray irradiation. The results present a facile approach for designing polar multifunctional hybrid perovskites, also providing useful assistance for future research on halogen-halogen interactions.
Collapse
Affiliation(s)
- Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yue Zhang
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Zhuo Chen
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Lin Pan
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Yueyue He
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi, 030006, P. R. China
| | - Junhua Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
6
|
Hu H, Niu G, Jiang J, Wang X, Liu X, Che L, Sui L, Zeng X, Wu G, Yuan K, Yang X. Pressure-Induced Changes in the Phase Distribution and Carrier Dynamics of Quasi-Two-Dimensional Ruddlesden-Popper Perovskites. J Phys Chem Lett 2024; 15:8142-8150. [PMID: 39092613 DOI: 10.1021/acs.jpclett.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Quasi-two-dimensional (quasi-2D) perovskites hold significant potential for diverse design strategies due to their tunable structures, exceptional optical properties, and environmental stability. Due to the complexity of the structure and carrier dynamics, characterization methods such as photoluminescence and absorption spectroscopy can observe but cannot precisely distinguish or identify the phase distribution within quasi-2D perovskite films or correlate phases with carrier dynamics. In this study, we used pressure to modulate the intralayer and interlayer structures of (PEA)2Csn-1PbnBr3n+1 quasi-2D perovskite films, investigating charge carrier dynamics. Steady-state spectroscopy revealed phase transitions at 1.62, 3, and 8 GPa, with free excitons transforming into self-trapped excitons after 8 GPa. Transient absorption spectroscopy elucidated the structural evolution, energy transfer, and pressure-induced transition mechanisms. The results demonstrate that combining pressure and spectroscopy enables the precise identification of phase distribution and pressure response ranges and reveals photophysical mechanisms, providing new insights for optimizing optoelectronic materials.
Collapse
Affiliation(s)
- Haiyang Hu
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guangming Niu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Marine Engineering College, Dalian Maritime University, Dalian 116026, P. R. China
| | - Jutao Jiang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiaowei Wang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xin Liu
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, P. R. China
| | - Laizhi Sui
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xiangyu Zeng
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of the Chinese Academy of Sciences, Beijing 100039, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| |
Collapse
|
7
|
Yang W, Dang P, Zhang G, Liu D, Wang Y, Wei Y, Lian H, Li G, Lin J. Multimode Luminescence Tailoring in PMA 4Na(In,Sb)Cl 8 Organic-inorganic Hybrid Metal Halide via Rigid Benzene Ring Induced Local Lattice Distortion. Angew Chem Int Ed Engl 2024:e202411136. [PMID: 39147700 DOI: 10.1002/anie.202411136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/15/2024] [Indexed: 08/17/2024]
Abstract
Low dimensional organic-inorganic hybrid metal halide materials have attracted extensive attention due to their superior optoelectronic properties. However, low photoluminescence quantum yields (PLQYs) caused by parity-forbidden transition hinder their further application in optoelectronic devices. Herein, a novel yellow-emitting PMA4Na(In,Sb)Cl8 (C7H10N+, PMA+) low-dimensional OIMHs single crystal with a PLQY as high as 88 % was successfully designed and synthesized, originating from the fact that the doping of Sb3+ effectively relaxes the parity-forbidden transition by strong spin-orbit (SO) coupling and Jahn-Teller (JT) interaction. The as-prepared crystal shows an efficient dual emission peaking 495 and 560 nm at low temperature, which are ascribed to different levels of 3P1→1S0 transitions of Sb3+ in [SbCl6]3- octahedral caused by JT deformation. Moreover, wide-range luminescence tailoring from cyan to orange can be achieved through adjusting excitation energy and temperature because of flexible [SbCl6]3- octahedral in the PNIC lattice. Based on a relative stiff lattice environment, the 560 nm yellow emission under 350 nm light excitation exhibits abnormal anti-thermal quenching from 8 to 400 K owing to the suppression of non-radiative transition. The multimode luminescence regulation enriches PMA4Na(In,Sb)Cl8 great potential in the field of optoelectronics such as temperature sensing, low temperature anti-counterfeiting and WLED applications.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guodong Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Dongjie Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yingsheng Wang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yi Wei
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hongzhou Lian
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
8
|
Lou X, Li Y, Lei H, Zhang Y, Zhou H, Shi E, Zhu H. Robust and Efficient Out-of-Plane Exciton Transport in Two-Dimensional Perovskites via Ultrafast Förster Energy Transfer. ACS NANO 2024. [PMID: 39041395 DOI: 10.1021/acsnano.4c06336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Two-dimensional (2D) perovskites, comprising inorganic semiconductor layers separated by organic spacers, hold promise for light harvesting and optoelectronic applications. Exciton transport in these materials is pivotal for device performance, often necessitating deliberate alignment of the inorganic layers with respect to the contacting layers to facilitate exciton transport. While much attention has focused on in-plane exciton transport, little has been paid to out-of-plane interlayer transport, which presumably is sluggish and unfavorable. Herein, by time-resolved photoluminescence, we unveil surprisingly efficient out-of-plane exciton transport in 2D perovskites, with diffusion coefficients (up to ∼0.1 cm2 s-1) and lengths (∼100 nm) merely a few times smaller or comparable to their in-plane counterparts. We unambiguously confirm that the out-of-plane exciton diffusion coefficient corresponds to a subpicosecond interlayer exciton transfer, governed by the Förster resonance energy transfer (FRET) mechanism. Intriguingly, in contrast to temperature-sensitive intralayer band-like transport, the interlayer exciton transport exhibits negligible temperature dependence, implying a lowest-lying bright exciton state in 2D perovskites, irrespective of spacer molecules. The robust and ultrafast interlayer exciton transport alleviates the constraints on crystal orientation that are crucial for the design of 2D perovskite-based light harvesting and optoelectronic devices.
Collapse
Affiliation(s)
- Xue Lou
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yahui Li
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Haixin Lei
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Yao Zhang
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Hongzhi Zhou
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| | - Enzheng Shi
- Research Center for Industries of the Future and School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Haiming Zhu
- State Key Laboratory of Extreme Photonics and Instrumentation, Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, China
| |
Collapse
|
9
|
Li H, Zhao Y, Lu J, Feng J, Zhao J, Lin K, Feng W, Jiang L, Wei Z, Du Z, Wu Y. Phase Engineering Reinforced Energy Transfer for High-Performance Blue Perovskite Light-Emitting Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308616. [PMID: 38308333 DOI: 10.1002/smll.202308616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/16/2023] [Indexed: 02/04/2024]
Abstract
Layered metal-halide perovskites, a category of self-assembled quantum wells, are of paramount importance in emerging photonic sources, such as lasers and light-emitting diodes (LEDs). Despite high trap density in two-dimensional (2D) perovskites, efficient non-radiative energy funneling from wide- to narrow-bandgap components, sustained by the Förster resonance energy transfer (FRET) mechanism, contributes to efficient luminescence by light or electrical injection. Herein, it is demonstrated that bandgap extension of layered perovskites to the blue-emitting regime will cause sluggish and inefficient FRET, stemming from the tiny spectral overlap between different phases. Motivated by the importance of blue LEDs and inefficient energy transfer in materials with phase polydispersity, wide-bandgap quasi-2D perovskites with narrow phase distribution, improved crystallinity, and the pure crystal orientation perpendicular to the charge transport layer are developed. Based on this emitter, high-performance blue perovskite LEDs with improved electroluminescence (EL) external quantum efficiency (EQE) of 7.9% at 478 nm, a narrow full width at half-maximum (FWHM) of 22 nm and a more stable EL spectra are achieved. These results provide an important insight into spectrally stable and efficient blue emitters and EL devices based on perovskites.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yingjie Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jianxun Lu
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Jiangang Feng
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Jiahui Zhao
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| | - Kebin Lin
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Wenjing Feng
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zhanhua Wei
- Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zuliang Du
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
| | - Yuchen Wu
- Key Laboratory for Special Functional Materials of Ministry of Education, National & Local Joint Engineering Research Center for High-efficiency Display and Lighting Technology, Henan University, Kaifeng, 475004, P. R. China
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences (UCAS), Beijing, 100049, P. R. China
| |
Collapse
|
10
|
Wang C, Si J, Yan L, Li T, Hou X. Energy transfer enhanced photoluminescence of 2D/3D CsPbBr3 hybrid assemblies. J Chem Phys 2024; 160:034704. [PMID: 38226829 DOI: 10.1063/5.0187699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/17/2024] Open
Abstract
Energy transfer has been proven to be an effective method to optimize optoelectronic conversion efficiency by improving light absorption and mitigating nonradiative losses. We prepared 2D/3D CsPbBr3 hybrid assemblies at different reaction temperatures using the hot injection method and found that the photoluminescence quantum yields (PLQYs) of these hybrids were greatly enhanced from 53.4% to 72.57% compared with 3D nanocrystals (NCs). Femtosecond transient absorption measurements were used to study the PLQY enhancement mechanisms, and it was found that the hot carrier lifetime improved from 0.36 to 1.88 ps for 2D/3D CsPbBr3 hybrid assemblies owing to the energy transfer from 2D nanoplates to 3D NCs. The energy transfer benefits the excited carrier accumulation and prolonged hot carrier lifetime in 3D NCs in hybrid assemblies, as well as PLQY enhancement in materials.
Collapse
Affiliation(s)
- Chenxu Wang
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Jinhai Si
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Lihe Yan
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Ting Li
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| | - Xun Hou
- Key Laboratory for Physical Electronics and Devices of the Ministry of Education and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an 710049, China
| |
Collapse
|
11
|
Oddo AM, Gao M, Weinberg D, Jin J, Folgueras MC, Song C, Ophus C, Mani T, Rabani E, Yang P. Energy Funneling in a Noninteger Two-Dimensional Perovskite. NANO LETTERS 2023; 23:11469-11476. [PMID: 38060980 DOI: 10.1021/acs.nanolett.3c03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Energy funneling is a phenomenon that has been exploited in optoelectronic devices based on low-dimensional materials to improve their performance. Here, we introduce a new class of two-dimensional semiconductor, characterized by multiple regions of varying thickness in a single confined nanostructure with homogeneous composition. This "noninteger 2D semiconductor" was prepared via the structural transformation of two-octahedron-layer-thick (n = 2) 2D cesium lead bromide perovskite nanosheets; it consisted of a central n = 2 region surrounded by edge-lying n = 3 regions, as imaged by electron microscopy. Thicker noninteger 2D CsPbBr3 nanostructures were obtained as well. These noninteger 2D perovskites formed a laterally coupled quantum well band alignment with virtually no strain at the interface and no dielectric barrier, across which unprecedented intramaterial funneling of the photoexcitation energy was observed from the thin to the thick regions using time-resolved absorption and photoluminescence spectroscopy.
Collapse
Affiliation(s)
- Alexander M Oddo
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Mengyu Gao
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Daniel Weinberg
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jianbo Jin
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Maria C Folgueras
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| | - Chengyu Song
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Colin Ophus
- National Center for Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Tomoyasu Mani
- Department of Chemistry, University of Connecticut, Storrs, Connecticut 06269-3060, United States
| | - Eran Rabani
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- The Raymond and Beverly Sackler Center of Computational Molecular and Materials Science, Tel Aviv University, Tel Aviv 69978, Israel
| | - Peidong Yang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Kavli Energy NanoScience Institute, Berkeley, California 94720, United States
| |
Collapse
|
12
|
Moral RF, Malfatti-Gasperini AA, Bonato LG, Vale BRC, Fonseca AFV, Padilha LA, Oliveira CLP, Nogueira AF. Self-assembly of perovskite nanoplates in colloidal suspensions. MATERIALS HORIZONS 2023; 10:5822-5834. [PMID: 37842783 DOI: 10.1039/d3mh01401k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
In recent years, perovskite nanocrystal superlattices have been reported with collective optical phenomena, offering a promising platform for both fundamental science studies and device engineering. In this same avenue, superlattices of perovskite nanoplates can be easily prepared on different substrates, and they too present an ensemble optical response. However, the self-assembly and optical properties of these aggregates in solvents have not been reported to date. Here, we report on the conditions for this self-assembly to occur and show a simple strategy to induce the formation of these nanoplate stacks in suspension in different organic solvents. We combined wide- and small-angle X-ray scattering and scanning transmission electron microscopy to evaluate CsPbBr3 and CsPbI3 perovskite nanoplates with different thickness distributions. We observed the formation of these stacks by changing the concentration of nanoplates and the viscosity of the colloidal suspensions, without the need for antisolvent addition. We found that, in hexane, the concentration for the formation of the stacks is rather high and approximately 80 mg mL-1. In contrast, in decane, dodecane, and hexadecane, we observe a much easier self-assembly of the nanoplates, presenting a clear correlation between the degree of aggregation and viscosity. We, then, discuss the impact of the self-assembly of perovskite nanoplates on Förster resonant energy transfer. Our predictions suggest an energy transfer efficiency higher than 50% for all the donor-acceptor systems evaluated. In particular, we demonstrate how the aggregation of these particles in hexadecane induces FRET for CsPbBr3 nanowires. For the n = 2 nanowires (donor) to the n = 3 nanowires (acceptor), the FRET rate was found to be 4.1 ns-1, with an efficiency of 56%, in agreement with our own predictions.
Collapse
Affiliation(s)
- Raphael F Moral
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | | | - Luiz G Bonato
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Brener R C Vale
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - André F V Fonseca
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Lazaro A Padilha
- Instituto de Física Gleb Wataghin-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Ana F Nogueira
- Instituto de Química-Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
13
|
Lu J, Zhou C, Zheng F, Ghasemi M, Li Q, Lin KT, Jia B, Wen X. Fabrication and Characterization of 2D Layered Perovskites with a Gradient Band Gap. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37466342 DOI: 10.1021/acsami.3c06850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Vertical gradient band-gap heterostructures of two-dimensional (2D) layered perovskites have attracted considerable research interest due to their superior optoelectronic properties and demonstrated potential for use in optical devices. However, its fabrication has been challenging. In this investigation, 2D Ruddlesden-Popper mixed halide perovskite single crystals with a vertical gradient band gap were synthesized by using a solid-state halide diffusion process. X-ray diffraction (XRD) and scanning electron microscopy (SEM) measurements after diffusion confirm that the crystalline and morphology remain intact. The transmittance and photoluminescence (PL) spectra show the formation of a vertical gradient band gap that is ascribed to gradient halide distribution through halide intermixing. The mixed halide crystal exhibits high stability with completely suppressed phase segregation in the time-dependent PL measurement. The time-resolved photoluminescence (TRPL) spectra prove that the mixed halide sample has an enhanced carrier transport due to the Förster resonance energy transfer (FRET) effect. Besides, the halide diffusion behavior is found to be different from the previously proposed "layer-by-layer" diffusion model in exfoliated crystals. The gradient band-gap structure is critical for various applications in which vertical carrier transport is demanded.
Collapse
Affiliation(s)
- Junlin Lu
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Chunhua Zhou
- College of Physics and Optoelectronics, Key Lab of Advanced Transducers and Intelligent Control System of Ministry of Education, Taiyuan University of Technology, Shanxi, Taiyuan 030024, China
| | - Fei Zheng
- School of Chemistry and ARC Centre of Excellence in Exciton Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mehri Ghasemi
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Qi Li
- School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Keng-Te Lin
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Baohua Jia
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| | - Xiaoming Wen
- School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
14
|
Jin T, Liu Z, Luo J, Yuan JH, Wang H, Xie Z, Pan W, Wu H, Xue KH, Liu L, Hu Z, Zheng Z, Tang J, Niu G. Self-wavelength shifting in two-dimensional perovskite for sensitive and fast gamma-ray detection. Nat Commun 2023; 14:2808. [PMID: 37198176 DOI: 10.1038/s41467-023-38545-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
Lead halide perovskites have recently emerged as promising X/γ-ray scintillators. However, the small Stokes shift of exciton luminescence in perovskite scintillators creates problems for the light extraction efficiency and severely impedes their applications in hard X/γ-ray detection. Dopants have been used to shift the emission wavelength, but the radioluminescence lifetime has also been unwantedly extended. Herein, we demonstrate the intrinsic strain in 2D perovskite crystals as a general phenomenon, which could be utilized as self-wavelength shifting to reduce the self-absorption effect without sacrificing the radiation response speed. Furthermore, we successfully demonstrated the first imaging reconstruction by perovskites for application of positron emission tomography. The coincidence time resolution for the optimized perovskite single crystals (4 × 4 × 0.8 mm3) reached 119 ± 3 ps. This work provides a new paradigm for suppressing the self-absorption effect in scintillators and may facilitate the application of perovskite scintillators in practical hard X/γ-ray detections.
Collapse
Affiliation(s)
- Tong Jin
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zheng Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jiajun Luo
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jun-Hui Yuan
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Hanqi Wang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zuoxiang Xie
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Weicheng Pan
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Haodi Wu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Kan-Hao Xue
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Linyue Liu
- State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, Xi'an, 710024, China
| | - Zhanli Hu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhiping Zheng
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Guangda Niu
- Wuhan National Laboratory for Optoelectronics and School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Optics Valley Laboratory, Hubei, 430074, China.
| |
Collapse
|
15
|
Hou Z, He Y, Cao W, Fu D. Incorporating an Aromatic Diammonium To Assemble Bilayered Dion-Jacobson Perovskite Crystals for Weak Light Detection. J Phys Chem Lett 2023; 14:4304-4312. [PMID: 37129553 DOI: 10.1021/acs.jpclett.3c00755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Two-dimensional (2D) Dion-Jacobson (DJ) hybrid perovskites with exceptional stability and enhanced out-of-plane carrier transport are regarded as one of the competive candidates for constructing next-generation photodetectors. However, the studies of DJ hybrid perovskites on weak light detection remain scarce, and the devices based on them usually show relatively poor weak light detection ability, with a detection limit of around μW/cm2. Herein, a new DJ hybrid perovskite (3AMPY)(MA)Pb2Br7 [3AMPY is 3-(aminomethyl)pyridinium, and MA is methylammonium] with short interlayer spacing and more lattice rigidity is obtained. The devices based on (3AMPY)(MA)Pb2Br7 crystals exhibit an ultrahigh sensibility to weak light at 377 and 405 nm, with an extremely low detection limit of ∼70 nW/cm2. Moreover, the on/off ratios and detectivity of the devices can reach ∼103 and ∼1012 Jones at both 377 and 405 nm, respectively. This work highlights great potential of DJ hybrid perovskites toward weak light detection.
Collapse
Affiliation(s)
- Zuoming Hou
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Yueyue He
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Wei Cao
- Scientific Instrument Center, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Dongying Fu
- Institute of Crystalline Materials, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
16
|
Qin C, Geng Y, Zhou Z, Song J, Ma S, Jia G, Jiao Z, Zhu Z, Jiang Y. Observation of carrier transfer in a vertical 0D-CsPbBr 3/2D-MoS 2 mixed-dimensional van der Waals heterojunction. OPTICS EXPRESS 2023; 31:2593-2601. [PMID: 36785269 DOI: 10.1364/oe.480651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Two-dimensional transition metal dichalcogenides with outstanding properties open up a new way to develop optoelectronic devices such as phototransistors and light-emitting diodes. Heterostructure with light-harvesting materials can produce many photogenerated carriers via charge and/or energy transfer. In this paper, the ultrafast dynamics of charge transfer in zero-dimensional CsPbBr3 quantum dot/two-dimensional MoS2 van der Waals heterostructures are investigated through femtosecond time-resolved transient absorption spectroscopy. Hole and electron transfers in the ps and fs magnitude at the interfaces between MoS2 and CsPbBr3 are observed by modulating pump wavelengths of the pump-probe configurations. Our study highlights the opportunities for realizing the exciton devices based on quantum dot/two-dimensional semiconductor heterostructures.
Collapse
|
17
|
Marcato T, Krumeich F, Shih CJ. Confinement-Tunable Transition Dipole Moment Orientation in Perovskite Nanoplatelet Solids and Binary Blends. ACS NANO 2022; 16:18459-18471. [PMID: 36350363 DOI: 10.1021/acsnano.2c06600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Tuning the transition dipole moment (TDM) orientation in low-dimensional semiconductors is of fundamental and practical interest, as it enables high-efficiency nanophotonics and light-emitting diodes. However, despite recent progress in nanomaterials physics and chemistry, material systems that allow continuous tuning of the TDM orientation remain rare. Here, combining k-space photoluminescence spectroscopy and multiscale modeling, we demonstrate that the TDM orientation in lead halide perovskite (LHP) nanoplatelet (NPL) solids is largely confinement-tunable through the NPL geometry that regulates the anisotropy of Bloch states, dielectric confinement, and exciton fine structure. We further quantified the role of uniaxial ordering during NPL assembly in modifying the macroscopic emission directionality of thin films, which is especially important in actual optoelectronic devices. Our theoretical framework successfully corroborates the previous prediction of exciton bright level order reversal with experimental evidence of a counterintuitive reduction of in-plane dipole ratio in ultrathin (one- and two-monolayer-thick) NPLs, even at room temperature. More interestingly, the NPLs retain their TDM orientation in binary blends irrespective of interparticle energy transfer, owing to the phase segregation and NPL-NPL decoupling, enabling the design of films whose fluorescence exhibits an intrinsic angle-dependent color gradient.
Collapse
Affiliation(s)
- Tommaso Marcato
- Institute for Chemical and Bioengineering, ETH Zürich, 8093Zürich, Switzerland
| | - Frank Krumeich
- Laboratory of Inorganic Chemistry, ETH Zürich, 8093Zürich, Switzerland
| | - Chih-Jen Shih
- Institute for Chemical and Bioengineering, ETH Zürich, 8093Zürich, Switzerland
| |
Collapse
|
18
|
Ouyang Z, Yan L, You W, Moran AM. Probing drift velocity dispersion in MAPbI 3 photovoltaic cells with nonlinear photocurrent spectroscopy. J Chem Phys 2022; 157:174202. [DOI: 10.1063/5.0116789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conventional time-of-flight (TOF) measurements yield charge carrier mobilities in photovoltaic cells with time resolution limited by the RC time constant of the device, which is on the order of 0.1–1 µs for the systems targeted in the present work. We have recently developed an alternate TOF method, termed nonlinear photocurrent spectroscopy (NLPC), in which carrier drift velocities are determined with picosecond time resolution by applying a pair of laser pulses to a device with an experimentally controlled delay time. In this technique, carriers photoexcited by the first laser pulse are “probed” by way of recombination processes involving carriers associated with the second laser pulse. Here, we report NLPC measurements conducted with a simplified experimental apparatus in which synchronized 40 ps diode lasers enable delay times up to 100 µs at 5 kHz repetition rates. Carrier mobilities of ∼0.025 cm2/V/s are determined for MAPbI3 photovoltaic cells with active layer thicknesses of 240 and 460 nm using this instrument. Our experiments and model calculations suggest that the nonlinear response of the photocurrent weakens as the carrier densities photoexcited by the first laser pulse trap and broaden while traversing the active layer of a device. Based on this aspect of the signal generation mechanism, experiments conducted with co-propagating and counter-propagating laser beam geometries are leveraged to determine a 60 nm length scale of drift velocity dispersion in MAPbI3 films. Contributions from localized states induced by thermal fluctuations are consistent with drift velocity dispersion on this length scale.
Collapse
Affiliation(s)
- Zhenyu Ouyang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M. Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
19
|
Qin C, Zhang S, Zhou Z, Han T, Song J, Ma S, Jia G, Jiao Z, Zhu Z, Chen X, Jiang Y. Low amplified spontaneous emission threshold from 2-thiophenemethylammonium quasi-2D perovskites via phase engineering. OPTICS EXPRESS 2022; 30:36541-36551. [PMID: 36258580 DOI: 10.1364/oe.471849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Quasi-2D Ruddlesden-Popper perovskites attract great attention as an optical gain media in lasing applications due to their excellent optoelectronic properties. Herein, a novel quasi-2D Ruddlesden-Popper perovskite based on 2-thiophenemethylammonium (ThMA) is synthesized by a facile solution-processed method. In addition, an anti-solvent treatment method is proposed to tune the phase distribution, and preferential orientation of quasi-2D (ThMA)2Csn-1PbnBr3n+1 thin films. The large-n-dominated narrow domain distribution improves the energy transfer efficiency from small-n to large-n phases. Also, the highly oriented nanocrystals facilitate the efficient Förster energy transfer, beneficial for the carrier population transfer. Furthermore, a green amplified spontaneous emission with a low threshold of 13.92 µJ/cm2 is obtained and a single-mode vertical-cavity laser with an 0.4 nm linewidth emission is fabricated. These findings provide insights into the design of the domain distribution to realize low-threshold multicolor continuous-wave or electrically driven quasi-2D perovskites laser.
Collapse
|
20
|
DuBose JT, Kamat PV. Energy Versus Electron Transfer: Managing Excited-State Interactions in Perovskite Nanocrystal-Molecular Hybrids. Chem Rev 2022; 122:12475-12494. [PMID: 35793168 DOI: 10.1021/acs.chemrev.2c00172] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Energy and electron transfer processes in light harvesting assemblies dictate the outcome of the overall light energy conversion process. Halide perovskite nanocrystals such as CsPbBr3 with relatively high emission yield and strong light absorption can transfer singlet and triplet energy to surface-bound acceptor molecules. They can also induce photocatalytic reduction and oxidation by selectively transferring electrons and holes across the nanocrystal interface. This perspective discusses key factors dictating these excited-state pathways in perovskite nanocrystals and the fundamental differences between energy and electron transfer processes. Spectroscopic methods to decipher between these complex photoinduced pathways are presented. A basic understanding of the fundamental differences between the two excited deactivation processes (charge and energy transfer) and ways to modulate them should enable design of more efficient light harvesting assemblies with semiconductor and molecular systems.
Collapse
Affiliation(s)
- Jeffrey T DuBose
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Prashant V Kamat
- Radiation Laboratory, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.,Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
21
|
Zhan G, Zhang J, Zhang L, Ou Z, Yang H, Qian Y, Zhang X, Xing Z, Zhang L, Li C, Zhong J, Yuan J, Cao Y, Zhou D, Chen X, Ma H, Song X, Zha C, Huang X, Wang J, Wang T, Huang W, Wang L. Stimulating and Manipulating Robust Circularly Polarized Photoluminescence in Achiral Hybrid Perovskites. NANO LETTERS 2022; 22:3961-3968. [PMID: 35507685 DOI: 10.1021/acs.nanolett.2c00482] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Circularly polarized light (CPL) is essential for optoelectronic and chiro-spintronic applications. Hybrid perovskites, as star optoelectronic materials, have demonstrated CPL activity, which is, however, mostly limited to chiral perovskites. Here, we develop a simple, general, and efficient strategy to stimulate CPL activity in achiral perovskites, which possess rich species, efficient luminescence, and tunable bandgaps. With the formation of van der Waals heterojunctions between chiral and achiral perovskites, a nonequilibrium spin population and thus CPL activity are realized in achiral perovskites by receiving spin-polarized electrons from chiral perovskites. The polarization degree of room-temperature CPL in achiral perovskites is at least one order of magnitude higher than in chiral ones. The CPL polarization degree and emission wavelengths of achiral perovskites can be flexibly designed by tuning chemical compositions, operating temperature, or excitation wavelengths. We anticipate that unlimited types of achiral perovskites can be endowed with CPL activity, benefiting their applications in integrated CPL sources and detectors.
Collapse
Affiliation(s)
- Guixiang Zhan
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Junran Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Linghai Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Zhenwei Ou
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Hongyu Yang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yuchi Qian
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xu Zhang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ziyue Xing
- Frontiers Science Center for Flexible Electronics, Key Laboratory of Flexible Electronics, Shaanxi Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Le Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Congzhou Li
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jingxian Zhong
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jiaxiao Yuan
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Yang Cao
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Dawei Zhou
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiaolong Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Huifang Ma
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xuefen Song
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Chenyang Zha
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Xiao Huang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| | - Ti Wang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Key Laboratory of Flexible Electronics, Shaanxi Institute of Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lin Wang
- Key Laboratory of Flexible Electronics and Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
22
|
Zhao F, Ren A, Li P, Li Y, Wu J, Wang ZM. Toward Continuous-Wave Pumped Metal Halide Perovskite Lasers: Strategies and Challenges. ACS NANO 2022; 16:7116-7143. [PMID: 35511058 DOI: 10.1021/acsnano.1c11539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reliable and efficient continuous-wave (CW) lasers have been intensively pursued in the field of optoelectronic integrated circuits. Metal perovskites have emerged as promising gain materials for solution-processed laser diodes. Recently, the performance of CW perovskite lasers has been improved with the optimization of material and device levels. Nevertheless, the realization of CW pumped perovskite lasers is still hampered by thermal runaway, unwanted parasitic species, and poor long-term stability. This review starts with the charge carrier recombination dynamics and fundamentals of CW lasing in perovskites. We examine the potential strategies that can be used to improve the performance of perovskite CW lasers from the materials to device levels. We also propose the open challenges and future opportunities in developing high-performance and stable CW pumped perovskite lasers.
Collapse
Affiliation(s)
- Feiyun Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Aobo Ren
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Peihang Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Yan Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Jiang Wu
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| | - Zhiming M Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, PR China
| |
Collapse
|
23
|
Jiang T, Min H, Zou R, Wang M, Wen K, Lai J, Xu L, Wang Y, Xu W, Wang C, Wei K, Medhekar NV, Peng Q, Chang J, Huang W, Wang J. Molecularly Controlled Quantum Well Width Distribution and Optoelectronic Properties in Quasi-2D Perovskite Light-Emitting Diodes. J Phys Chem Lett 2022; 13:4098-4103. [PMID: 35502873 DOI: 10.1021/acs.jpclett.2c00360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Owing to their excellent optoelectronic properties, quasi-2D perovskites with self-assembled multiple quantum well (MQW) structures have shown great potential in light-emitting diode (LED) applications. Understanding the correlation between the bulky cation, quantum well assembly, and optoelectronic properties of a quasi-2D perovskite is important. Here, we demonstrate that the dipole moment of the bulky cation can be one of the fundamental factors that controls the distribution and crystallinity of different quantum wells. We find that the bulky cation with a moderate dipole moment leads to moderately distributed well-width MQWs, resulting in a superior device efficiency due to the simultaneous achievement of favorable optical and electronic properties. The peak external quantum efficiency and the maximum luminance of the champion device are 10.8% and 19082 cd m-2, respectively, positioning it among the best-performing quasi-2D green perovskite LEDs without further surface passivation or additive doping. This work provides a perspective on the rational design of bulky cations in quasi-2D perovskite LEDs, which is also essential for the development of other mixed-dimensional perovskite optoelectronic devices.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Hao Min
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Renmeng Zou
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Mingchao Wang
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
- Centre for Theoretical and Computational Molecular Science, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Saint Lucia, QLD 4072, Australia
| | - Kaichuan Wen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Jingya Lai
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Lei Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Ying Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Wenjie Xu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Chengcheng Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Kang Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Nikhil V Medhekar
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Qiming Peng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Jin Chang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi 710072, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| | - Jianpu Wang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, Jiangsu 211816, China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian 350117, China
| |
Collapse
|
24
|
Wang Z, Meng F, Feng Q, Shi S, Qiu L, Sun G, Chen Z, Zeng Q, Zhu W, Su SJ. Efficient Green Quasi-Two-Dimensional Perovskite Light-Emitting Diodes Based on Mix-Interlayer. Front Chem 2022; 9:825822. [PMID: 35111732 PMCID: PMC8802909 DOI: 10.3389/fchem.2021.825822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Recently, quasi-two-dimensional (Q-2D) perovskites have received much attention due to their excellent photophysical properties. Phase compositions in Q-2D perovskites have obvious effect on the device performance. Here, efficient green perovskite light-emitting diodes (PeLEDs) were fabricated by employing o-fluorophenylethylammonium bromide (o-F-PEABr) and 2-aminoethanol hydrobromide (EOABr) as the mix-interlayer ligands. Phase compositions are rationally optimized through composition and interlayer engineering. Meanwhile, non-radiative recombination is greatly suppressed by the introduction of mix-interlayer ligands. Thus, green PeLEDs with a peak photoluminescence quantum yield (PLQY) of 81.4%, a narrow full width at half maximum (FWHM) of 19 nm, a maximum current efficiency (CE) of 27.7 cd/A, and a maximum external quantum efficiency (EQE) of 10.4% were realized. The results are expected to offer a feasible method to realize high-efficiency PeLEDs.
Collapse
Affiliation(s)
- Zirong Wang
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Fanyuan Meng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
- *Correspondence: Fanyuan Meng, ; Zhao Chen, ; Qingguang Zeng,
| | - Qi Feng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Shengxuan Shi
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Langwen Qiu
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
| | - Guanwei Sun
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, China
| | - Zhao Chen
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
- *Correspondence: Fanyuan Meng, ; Zhao Chen, ; Qingguang Zeng,
| | - Qingguang Zeng
- School of Applied Physics and Materials, Wuyi University, Jiangmen, China
- *Correspondence: Fanyuan Meng, ; Zhao Chen, ; Qingguang Zeng,
| | - Weiguo Zhu
- Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou, China
| |
Collapse
|
25
|
Ouyang Z, Zhou N, McNamee M, Yan L, Williams OF, Gan Z, Gao R, You W, Moran AM. Origin of Layered Perovskite Device Efficiencies Revealed by Multidimensional Time-of-Flight Spectroscopy. J Chem Phys 2021; 156:084202. [DOI: 10.1063/5.0072976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Zhenyu Ouyang
- University of North Carolina at Chapel Hill, United States of America
| | - Ninghao Zhou
- Chemistry, University of North Carolina at Chapel Hill, United States of America
| | - Meredith McNamee
- University of North Carolina at Chapel Hill, The University of North Carolina at Chapel Hill, United States of America
| | - Liang Yan
- Chemistry, University of North Carolina at Chapel Hill, United States of America
| | | | - Zijian Gan
- University of Science and Technology of China School of Chemistry and Materials Science, China
| | - Ran Gao
- Chemistry, University of North Carolina at Chapel Hill Department of Chemistry, United States of America
| | - Wei You
- University of North Carolina, Chapel Hill, United States of America
| | - Andrew M Moran
- Chemistry, The University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
26
|
Vasileiadou ES, Kanatzidis MG. Structure‐Property Relationships and Idiosyncrasies of Bulk, 2D Hybrid Lead Bromide Perovskites. Isr J Chem 2021. [DOI: 10.1002/ijch.202100052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Guo Z, Zhang Y, Wang B, Wang L, Zhou N, Qiu Z, Li N, Chen Y, Zhu C, Xie H, Song T, Song L, Xue H, Tao S, Chen Q, Xing G, Xiao L, Liu Z, Zhou H. Promoting Energy Transfer via Manipulation of Crystallization Kinetics of Quasi-2D Perovskites for Efficient Green Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102246. [PMID: 34396606 DOI: 10.1002/adma.202102246] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Quasi-2D (Q-2D) perovskites are promising materials applied in light-emitting diodes (LEDs) due to their high exciton binding energy and quantum confinement effects. However, Q-2D perovskites feature a multiphase structure with abundant grain boundaries and interfaces, leading to nonradiative loss during the energy-transfer process. Here, a more efficient energy transfer in Q-2D perovskites is achieved by manipulating the crystallization kinetics of different-n phases. A series of alkali-metal bromides is utilized to manipulate the nucleation and growth of Q-2D perovskites, which is likely associated with the Coulomb interaction between alkali-metal ions and the negatively charged PbBr6 4- frames. The incorporation of K+ is found to restrict the nucleation of high-n phases and allows the subsequent growth of low-n phases, contributing to a spatially more homogeneous distribution of different-n phases and promoted energy transfer. As a result, highly efficient green Q-2D perovskites LEDs with a champion EQE of 18.15% and a maximum brightness of 25 800 cd m-2 are achieved. The findings affirm a novel method to optimize the performance of Q-2D perovskite LEDs.
Collapse
Affiliation(s)
- Zhenyu Guo
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yu Zhang
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Bingzhe Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Liding Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ning Zhou
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Zhiwen Qiu
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Nengxu Li
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yihua Chen
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Cheng Zhu
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Haipeng Xie
- Hunan Key Laboratory for Super-Microstructure and Ultrafast Process, College of Physics and Electronics, Central South University, Changsha, 410083, China
| | - Tinglu Song
- Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Song
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, the Netherlands
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, the Netherlands
| | - Haibo Xue
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, the Netherlands
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, the Netherlands
| | - Shuxia Tao
- Materials Simulation and Modelling, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, the Netherlands
- Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, MB, 5600, the Netherlands
| | - Qi Chen
- Beijing Key Laboratory of Nanophotonics and Ultrafine Optoelectronic Systems School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, China
| | - Lixin Xiao
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, Department of Physics, Peking University, Beijing, 100871, China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare Earth Materials Chemistry and Applications, Beijing Engineering Technology Research Centre of Active Display, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Huanping Zhou
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
28
|
Li B, Liu Y, Wan Y, Zhu L, Shi Y, Liu C, Jin M, Gao J, Ding D. Förster resonance energy transfer outpaces Auger recombination in CdTe/CdS quantum dots-rhodamine101 molecules system upon compression. OPTICS EXPRESS 2021; 29:27171-27180. [PMID: 34615138 DOI: 10.1364/oe.434341] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Förster resonance energy transfer (FRET) and Auger recombination in quantum dots (QDs)-molecules system are important mechanisms for affecting performance of their optoelectronic and photosynthesis devices. However, exploring an effective strategy to promote FRET and suppress Auger recombination simultaneously remains a daunting challenge. Here, we report that FRET process is promoted and Auger recombination process is suppressed in CdTe/CdS QDs-Rhodamine101 (Rh101) molecules system upon compression. The greatly improved FRET is attributed to the shortened donor-acceptor distance and increased the number of molecules attached to QDs induced by pressure. The reduced Auger recombination is ascribed to the formation of an alloy layer at the core/shell interface. The FRET can occur 70 times faster than Auger recombination under a high pressure of 0.9 GPa. Our findings demonstrate that high pressure is a robust tool to boost FRET and simultaneously suppress Auger recombination, and provides a new route to QDs-molecules applications.
Collapse
|
29
|
Ghimire S, Klinke C. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. NANOSCALE 2021; 13:12394-12422. [PMID: 34240087 DOI: 10.1039/d1nr02769g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskites are promising materials for light-emitting and light-harvesting applications. In this context, two-dimensional perovskites such as nanoplatelets or Ruddlesden-Popper and Dion-Jacobson layered structures are important because of their structural flexibility, electronic confinement, and better stability. This review article brings forth an extensive overview of the recent developments of two-dimensional halide perovskites both in the colloidal and non-colloidal forms. We outline the strategy to synthesize and control the shape and discuss different crystalline phases and optoelectronic properties. We review the applications of two-dimensional perovskites in solar cells, light-emitting diodes, lasers, photodetectors, and photocatalysis. Besides, we also emphasize the moisture, thermal, and photostability of these materials in comparison to their three-dimensional analogs.
Collapse
Affiliation(s)
- Sushant Ghimire
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.
| | | |
Collapse
|
30
|
Kim D, Vasileiadou ES, Spanopoulos I, Kanatzidis MG, Tu Q. In-Plane Mechanical Properties of Two-Dimensional Hybrid Organic-Inorganic Perovskite Nanosheets: Structure-Property Relationships. ACS APPLIED MATERIALS & INTERFACES 2021; 13:31642-31649. [PMID: 34189905 DOI: 10.1021/acsami.1c06140] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In-plane strains are commonly found in two-dimensional (2D) metal halide organic-inorganic perovskites (HOIPs). The in-plane mechanical properties of 2D HOIPs are vital for mitigating the strain-induced stability issues of 2D HOIPs, yet their structure and mechanical property relationship largely remains unknown. Here, we employed atomic force microscope indentation to systematically investigate the in-plane Young's moduli E∥ of 2D lead halide Ruddlesden-Popper HOIPs with a general formula of (R-NH3)2PbX4, where the spacer molecules R-NH3+ are linear alkylammonium cations (CmH2m+1-NH3+, m = 4, 6, 8, or 12) and X = I, Br, or Cl. Fixing the spacer molecule to butylammonium, we discovered that the E∥ of 2D HOIPs generally follows the trend of Pb-X bond strength, different from the tendency found in the out-of-plane moduli E⊥, showing more prominent effects of the metal halide inorganic framework on E∥ than E⊥. E∥ exhibits nonmonotonic dependence on the chain length of the linear alkyl spacer molecules, which would first decrease and plateau but then increase again. This is likely due to the competition of the bond strength and structural distortion in the inorganic layer, the relative fraction of the soft organic spacers, and the interfacial mechanical coupling associated with the interdigitation of the alkyl chains. The mechanical anisotropy of 2D HOIPs, marked by E∥/E⊥, shows wide tunability based on structural composition, particularly for iodide-based 2D HOIPs. Our results provide valuable insights into the structure-property relationships regarding the mechanical anisotropy and in-plane mechanical behaviors of 2D HOIPs, which can guide the materials design and device optimization to achieve required mechanical performance in 2D HOIP-based applications.
Collapse
Affiliation(s)
- Doyun Kim
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Eugenia S Vasileiadou
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Ioannis Spanopoulos
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Mercouri G Kanatzidis
- Department of Chemistry, Northwestern University, Evanston, Illinois 60201, United States
| | - Qing Tu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| |
Collapse
|
31
|
Ouyang Z, Zhou N, McNamee MG, Yan L, Williams OF, You W, Moran AM. Multidimensional time-of-flight spectroscopy. J Chem Phys 2021; 154:220901. [PMID: 34241190 DOI: 10.1063/5.0047382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Experimental methods based on a wide range of physical principles are used to determine carrier mobilities for light-harvesting materials in photovoltaic cells. For example, in a time-of-flight experiment, a single laser pulse photoexcites the active layer of a device, and the transit time is determined by the arrival of carriers at an acceptor electrode. With inspiration from this conventional approach, we present a multidimensional time-of-flight technique in which carrier transport is tracked with a second intervening laser pulse. Transient populations of separate material components of an active layer may then be established by tuning the wavelengths of the laser pulses into their respective electronic resonances. This experimental technique is demonstrated using photovoltaic cells based on mixtures of organohalide perovskite quantum wells. In these "layered perovskite" systems, charge carriers are funneled between quantum wells with different thicknesses because of staggered band alignments. Multidimensional time-of-flight measurements show that these funneling processes do not support long-range transport because of carrier trapping. Rather, our data suggest that the photocurrent is dominated by processes in which the phases of the thickest quantum wells absorb light and transport carriers without transitions into domains occupied by quantum wells with smaller sizes. These same conclusions cannot be drawn using conventional one-dimensional techniques for measuring carrier mobilities. Advantages and disadvantages of multidimensional time-of-flight experiments are discussed in the context of a model for the signal generation mechanism.
Collapse
Affiliation(s)
- Zhenyu Ouyang
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Ninghao Zhou
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Meredith G McNamee
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Liang Yan
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Olivia F Williams
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Wei You
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Andrew M Moran
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|