1
|
Xiao L, Hu X, Zhou Z, Xie X, Huang S, Ji M, Xu A, Tian Y. Diverse applications of DNA origami as a cross-disciplinary tool. NANOSCALE 2025; 17:10411-10432. [PMID: 40192061 DOI: 10.1039/d4nr04490h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
As knowledge from a single discipline is no longer sufficient to keep pace with the growing complexity of technological advancements, interdisciplinary collaboration has become a crucial driver of innovation. DNA nanotechnology exemplifies this integration, serving as a field where cross-disciplinary communication is particularly prominent. Since its introduction by Rothemund in 2006, DNA origami has proved to be a powerful tool for interdisciplinary research, offering exceptional structural stability, programmability, and addressability. This review provides an overview of the development of DNA origami technology, highlights its major advances, and explores its innovative applications across various disciplines in recent years, showcasing its vast potential and future prospects. We believe DNA origami is poised for even broader applications, driving progress across multiple fields.
Collapse
Affiliation(s)
- Lingyun Xiao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Xiaoxue Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Zhaoyu Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Xiaolin Xie
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Shujing Huang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Min Ji
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Aobo Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Sun L, Ouyang X. Concept and Development of Metal-Framework Nucleic Acids. Chembiochem 2025; 26:e202401067. [PMID: 40042195 DOI: 10.1002/cbic.202401067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Based on the Watson-Crick base pairing principle, precisely programmable metal-framework nucleic acids (mFNA) have evolved from one-dimensional to three-dimensional nanoscale structures, a technological advancement attributed to progress in DNA nanotechnology. mFNA are a new type of nanomaterial formed by using framework nucleic acids (FNAs) as precise templates to guide the ordered assembly and self-assembly of metal ions, metal salts (such as calcium phosphate, calcium carbonate, etc.), metal nanoclusters, metal nanoparticles, or metal oxide nanoparticles. Compared to traditional FNAs, mFNA not only inherits the powerful programmed self-assembly capabilities of nucleic acids but also incorporates the unique physicochemical properties of inorganic metal nanomaterials. This intersection of organic and inorganic chemistry presents broad application prospects in fields such as biology, chemistry, materials science, and energy science. This review, based on the principles related to FNAs, introduces the concept of mFNA for the first time, aiming to explore the fundamental connections between nanoscale FNAs and metal materials. Additionally, the article focuses on the construction methods and functional characteristics of mFNA. Finally, the current challenges faced by mFNA are reviewed, and their future development is anticipated, providing detailed information for a comprehensive understanding of the research progress in mFNA.
Collapse
Affiliation(s)
- Li Sun
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
3
|
Dong B, Xu X, Guan R, Jiang S, Ma L, Hu H, Ke Y, Liu N, Lan X. Two-Dimensional, Chiral Colloidal Superlattices Engineered with DNA Origami. NANO LETTERS 2025; 25:5705-5712. [PMID: 40135735 DOI: 10.1021/acs.nanolett.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Colloidal crystal engineering is widely recognized as a superior method for creating novel materials in multiple fields. However, achieving chiral superlattices of nanoparticles remains a considerable challenge so far. Here, we spread a two-dimensional (2D), microscale DNA origami array on substrate surfaces to maintain its planar conformation onto which DNA-encoded metal nanoparticles are attached to designated positions, thereby creating 2D chiral superlattices. By designing programmable chiral patterns of DNA sticky ends within the DNA origami units, we realize a variety of 2D chiral superlattices over large areas with well-defined chiral configurations of nanoparticle arrangements. The underlying chiral optical mechanism of the superlattices is revealed, showing the essential role of local plasmonic couplings within the repeating units. This research represents the first example of DNA-programmed 2D chiral superlattices of nanoparticles assembled directly on a substrate surface, with the potential to impact future studies in on-chip integrated metamaterials, photonics, optoelectronics, and related fields.
Collapse
Affiliation(s)
- Bingqian Dong
- State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xin Xu
- State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Rongcheng Guan
- State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Shuoxing Jiang
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210023, China
- Department of Biomedical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Li Ma
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Huatian Hu
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, Via Barsanti 14, 73010 Arnesano (LE), Italy
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| | - Xiang Lan
- State Key Laboratory of Advanced Fiber Materials, Donghua University, Shanghai 201620, China
- Center for Advanced Low-dimension Materials, Donghua University, Shanghai 201620, China
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
4
|
Ren L, Cao S, Guo L, Li J, Jiao K, Wang L. Recent advances in nucleic acid-functionalized metallic nanoparticles. Chem Commun (Camb) 2025; 61:4904-4923. [PMID: 40047804 DOI: 10.1039/d5cc00359h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Nucleic acid-functionalized metallic nanoparticles (N-MNPs) precisely integrate the advantageous characteristics of nucleic acids and metallic nanomaterials, offering various abilities such as resistance to enzymatic degradation, penetration of physiological barriers, controllable mobility, biomolecular recognition, programmable self-assembly, and dynamic structure-function transformation. These properties demonstrate significant potential in the field of biomedical diagnostics and therapeutics. In this review, we examine recent advancements in the construction and theranostic applications of N-MNPs. We briefly summarize the methodologies employed in the conjugation of nucleic acids with metallic nanoparticles and the formation of their superstructural assemblies. We highlight recent representative applications of N-MNPs in biomolecular diagnosis, imaging, and smart delivery of theranostic agents. We also discuss challenges currently faced in this field and provide an outlook on future development directions and application prospects.
Collapse
Affiliation(s)
- Lei Ren
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Shuting Cao
- Jiaxing Key Laboratory of Biosemiconductors, Xiangfu Laboratory, Jiashan 314102, Zhejiang, China
- Nano-translational Medicine Research Center, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Jiaxing 314000, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
5
|
Wei M, Zhu Z, Wan L, Li Y. Nonspecific metal-coordination-driven control over higher-order DNA self-assembly. NANOSCALE 2025; 17:6676-6684. [PMID: 39950942 DOI: 10.1039/d4nr03516j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
The interactions between chemicals and DNA molecules provide effective regulation tools for dynamically controlling the self-assembly of higher-order DNA nanostructures, which mostly rely on non-covalent π-π stacking, hydrogen bonding and electrostatic interactions. If strong covalent interactions could be introduced as a new regulation strategy, the current control toolbox in DNA nanotechnology would be greatly enriched. Herein, we adopt the silver ion (Ag+) to demonstrate a general, versatile coordination-driven regulation strategy for higher-order DNA self-assembly and systematically explore the impacts of Ag+ on the assembly and stability of DNA origami and tile-based nanostructures. The kilobase single-stranded scaffold DNA is condensed into uniform nanoparticles by Ag+, therefore inhibiting the formation of DNA origami during thermal annealing. Switchable disassembly and re-assembly of DNA tile-based architectures through Ag+ and cysteine have been proved. The coordination-driven regulation strategy in this work could in principle be expanded to other metal ions, which might bring unique functions and controls to higher-order DNA self-assembly through metal coordination chemistry.
Collapse
Affiliation(s)
- Mengzhou Wei
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Zhiyuan Zhu
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Lingjun Wan
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| | - Yulin Li
- Anhui Province Engineering Research Center of Flexible and Intelligent Materials, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
6
|
Zhao K, Dong B, Wang Y, Fan X, Wang Q, Xiong Z, Zhang J, He J, Yang K, Qi M, Qin C, Zhang T, Chen M, Wang H, Huang J, Liu K, Huang H, Watanabe K, Taniguchi T, Wang Y, Zhang X, Yang J, Huang Z, Li Y, Wei Z, Zhang J, Jiang S, Han ZV, Liu F. Soft-matter-induced orderings in a solid-state van der Waals heterostructure. Nat Commun 2025; 16:2359. [PMID: 40064923 PMCID: PMC11893783 DOI: 10.1038/s41467-025-57690-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Deoxyribose nucleic acid (DNA), a type of soft matter, is often considered a promising building block to fabricate and investigate hybrid heterostructures with exotic functionalities. However, at this stage, investigations on DNA-enabled nanoelectronics have been largely limited to zero-dimensional (0D) and/or one-dimensional (1D) structures. Exploring their potential in higher dimensions, particularly in combination with hard matter solids such as van der Waals (vdW) two-dimensional (2D) materials, has proven challenging. Here, we show that 2D tessellations of DNA origami thin films, with a lateral size over 10 μm, can function as a sufficiently stiff substrate (Young's modulus of ~4 GPa). We further demonstrate a two-dimensional soft-hard interface of matter (2D-SHIM), in which vdW layers are coupled to the 2D tessellations of DNA origami. In such 2D-SHIM, the DNA film can then serve as a superlattice due to its sub-100 nm sized pitch of the self-assemblies, which modulates the electronic states of the hybrid system. Our findings open up promising possibilities for manipulating the electronic properties in hard matter using soft matter as a super-structural tuning knob, which may find applications in next generation nanoelectronics.
Collapse
Affiliation(s)
- Kai Zhao
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
| | - Baojuan Dong
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
- Hefei National Laboratory, Hefei, PR China
| | - Yuang Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Xiaoxue Fan
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
| | - Qi Wang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, PR China
| | - Zhiren Xiong
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
| | - Jing Zhang
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
| | - Jinkun He
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
| | - Kaining Yang
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
| | - Minru Qi
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, PR China
| | - Chengbing Qin
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, PR China
| | - Tongyao Zhang
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China
| | - Maolin Chen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Hanwen Wang
- Liaoning Academy of Materials, Shenyang, PR China
| | - Jianqi Huang
- Liaoning Academy of Materials, Shenyang, PR China
| | - Kai Liu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, PR China
| | - Hanwei Huang
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, The First Hospital of China Medical University, Shenyang, PR China
- Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang, PR China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Yaning Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, PR China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, PR China
| | - Zhenwen Huang
- Bruker (Beijing) Scientific Technology Co. Ltd, Beijing, PR China
| | - Yongjun Li
- Bruker (Beijing) Scientific Technology Co. Ltd, Beijing, PR China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, PR China.
| | - Jing Zhang
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China.
- Hefei National Laboratory, Hefei, PR China.
| | - Shuoxing Jiang
- State Key Laboratory of Coordination Chemistry, Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, PR China.
| | - Zheng Vitto Han
- State Key Laboratory of Quantum Optics Technologies and Devices, Institute of Optoelectronics, Shanxi University, Taiyuan, PR China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, PR China.
- Hefei National Laboratory, Hefei, PR China.
- Liaoning Academy of Materials, Shenyang, PR China.
| | - Funan Liu
- Department of Surgical Oncology and General Surgery, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, The First Hospital of China Medical University, Shenyang, PR China.
- Phase I Clinical Trails Center, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
7
|
Wang F, Yang W, Ding Q, Xing X, Xu L, Lin H, Xu C, Li S. Chiral Au@CeO 2 Helical Nanorods with Spatially Separated Structures for Polarization-Dependent N 2 Photofixation. Angew Chem Int Ed Engl 2025; 64:e202415031. [PMID: 39320103 DOI: 10.1002/anie.202415031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/15/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Chiral photocatalytic nanomaterials possess numerous unique properties and hold promise for various applications in chemical synthesis, environmental protection, energy conversion, and photoelectric devices. Nevertheless, it is uncommon to develop effective means to enhance the asymmetric catalytic performances of chiral plasmonic nanomaterials. In this study, a type of L/D-Au@CeO2 helical nanorods (HNRs) was fabricated by selectively growing CeO2 on the surface of Au HNRs via a facile wet-chemistry construction method. Chiral Au@CeO2 HNRs, featuring Au and CeO2 with spatially separated structures, exhibited the highest photocatalytic performance for N2 fixation, being 50.80±2.64 times greater than that of Au HNRs. Furthermore, when L-Au@CeO2 HNRs were exposed to left circularly polarized light (CPL) and D-Au@CeO2 HNRs were exposed to right CPL, their photocatalytic efficiency was enhanced by 3.06±0.06 times compared to the samples illuminated with the opposite CPL, which can be attributed to the asymmetrical generation of hot carriers upon CPL excitation. This study not only offers a simple approach to enhance the photocatalytic performance of chiral plasmonic nanomaterials but also demonstrates the potential of chiral plasmonic materials for application in specific photocatalytic reactions, such as N2 fixation.
Collapse
Affiliation(s)
- Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Weimin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Xinhe Xing
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, P.R. China
| |
Collapse
|
8
|
Song L, Song X, Li Y, Hao Y, Wang S, Deng Z. Multivalent Weak Protections Ultimately Enable Customizable DNA Grafting on Pristine Ag Colloids for Nanoplasmonics. Angew Chem Int Ed Engl 2025; 64:e202414752. [PMID: 39319779 DOI: 10.1002/anie.202414752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/26/2024]
Abstract
Silver nanoparticles (AgNPs) have superior plasmonic properties surpassing other metals. However, a long-standing difficulty in valence/density-tunable DNA grafting of AgNPs disfavors their use in DNA-directed nanoplasmonics. Herein a close-to-ideal surface protection of pristine AgNPs against various notorious stability issues of Ag is achieved based on multidentate weak nucleobase bindings of non-programming FSDNA (fish sperm DNA). This further allows grafting of thiolated DNA with tunable valence/density on AgNPs. The end-on format of the thiolated DNA grafts and the very thin FSDNA layer benefit DNA hybridization and plasmon coupling, respectively. Significantly promoted optical coupling and Raman enhancing are achieved. The compatibility of FSDNA-capped AgNPs with Au enables DNA-bonded symmetry-broken Au-Ag heterodimers with strong near-field coupling and an easily seen Fano-induced feature. Our work provides a treasured freedom of using AgNPs in DNA-programmed, better-behaving plasmonic devices.
Collapse
Affiliation(s)
- Lei Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- College of Resources and Environment, Anqing Normal University, Anqing, Anhui, 246011, China
| | - Xiaojun Song
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yanjuan Li
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yan Hao
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Song Wang
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhaoxiang Deng
- Center for Bioanalytical Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
9
|
Sample M, Liu H, Diep T, Matthies M, Šulc P. Hairygami: Analysis of DNA Nanostructures' Conformational Change Driven by Functionalizable Overhangs. ACS NANO 2024; 18:30004-30016. [PMID: 39421963 DOI: 10.1021/acsnano.4c10796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
DNA origami is a widely used method to construct nanostructures by self-assembling designed DNA strands. These structures are often used as "pegboards" for templated assembly of proteins, gold nanoparticles, aptamers, and other molecules, with applications ranging from therapeutics and diagnostics to plasmonics and photonics. Imaging these structures using atomic force microscopy (AFM) or transmission electron microscope (TEM) does not capture their full conformation ensemble as they only show their shape flattened on a surface. However, certain conformations of the nanostructure can position guest molecules into distances unaccounted for in their intended design, thus leading to spurious interactions between guest molecules that are designed to be separated. Here, we use molecular dynamics simulations to capture a conformational ensemble of two-dimensional (2D) DNA origami tiles and show that introducing single-stranded overhangs, which are typically used for functionalization of the origami with guest molecules, induces a curvature of the tile structure in the bulk. We show that the shape deformation is of entropic origin, with implications for the design of robust DNA origami breadboards as well as a potential approach to modulate structure shape by introducing overhangs. We then verify experimentally that the DNA overhangs introduce curvature into the DNA origami tiles under divalent as well as monovalent salt buffer conditions. We further experimentally verify that DNA origami functionalized with attached proteins also experiences such induced curvature. We provide the developed simulation code implementing the enhanced sampling to characterize the conformational space of DNA origami as open source software.
Collapse
Affiliation(s)
- Matthew Sample
- School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85281, United States
| | - Hao Liu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
| | - Thong Diep
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
| | - Michael Matthies
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Department of Bioscience, TU Munich, School of Natural Sciences, Garching 85748, Germany
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, 1001 South McAllister Avenue, Tempe, Arizona 85281, United States
- Center for Biological Physics, Arizona State University, Tempe, Arizona 85281, United States
- Department of Bioscience, TU Munich, School of Natural Sciences, Garching 85748, Germany
| |
Collapse
|
10
|
Li G, Chen C, Li Y, Wang B, Wen J, Guo M, Chen M, Zhang XB, Ke G. DNA-Origami-Based Precise Molecule Assembly and Their Biological Applications. NANO LETTERS 2024; 24:11335-11348. [PMID: 39213537 DOI: 10.1021/acs.nanolett.4c03297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Inspired by efficient natural biomolecule assembly with precise control on key parameters such as distance, number, orientation, and pattern, the constructions and applications of artificial precise molecule assembly are highly important in many research areas including chemistry, biology, and medicine. DNA origami, a sophisticated DNA nanotechnology with rational design, can offer a predictable, programmable, and addressable nanoscale scaffold for the precise assembly of various kinds of molecules. Herein, we summarize recent progress, particularly in the last three years, in DNA-origami-based precise molecule assembly and their emerging biological applications. We first introduce DNA origami and the progress on DNA-origami-based precise molecule assembly, including assembly of various kinds of molecules (e.g., nucleic acids, proteins, organic molecules, nanoparticles), and precise control of important parameters (e.g., distance, number, orientation, pattern). Their biological applications in sensing, imaging, therapy, bionics, biophysics, and chemical biology are then summarized, and current challenges and opportunities are finally discussed.
Collapse
Affiliation(s)
- Guize Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Chuangyi Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Yingying Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Bo Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Jialin Wen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mingye Guo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Mei Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
11
|
Chen M, Jiang Y, Zhang Y, Chen X, Xie L, Xie L, Zeng T, Liu Y, Liu H, Wang M, Chen X, Zhang Z, He Y, Qin X, Lu C, Chen Q, Yang H. Visualization of Biomolecular Radiation Damage at the Single-Particle Level Using Lanthanide-Sensitized DNA Origami. NANO LETTERS 2024; 24:11690-11696. [PMID: 39225657 DOI: 10.1021/acs.nanolett.4c03307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Precise monitoring of biomolecular radiation damage is crucial for understanding X-ray-induced cell injury and improving the accuracy of clinical radiotherapy. We present the design and performance of lanthanide-DNA-origami nanodosimeters for directly visualizing radiation damage at the single-particle level. Lanthanide ions (Tb3+ or Eu3+) coordinated with DNA origami nanosensors enhance the sensitivity of X-ray irradiation. Atomic force microscopy (AFM) revealed morphological changes in Eu3+-sensitized DNA origami upon X-ray irradiation, indicating damage caused by ionization-generated electrons and free radicals. We further demonstrated the practical applicability of Eu3+-DNA-origami integrated chips in precisely monitoring radiation-mediated cancer radiotherapy. Quantitative results showed consistent trends with flow cytometry and histological examination under comparable X-ray irradiation doses, providing an affordable and user-friendly visualization tool for preclinical applications. These findings provide new insights into the impact of heavy metals on radiation-induced biomolecular damage and pave the way for future research in developing nanoscale radiation sensors for precise clinical radiography.
Collapse
Affiliation(s)
- Minle Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yijuan Jiang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yongjie Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaoling Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lei Xie
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Lili Xie
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Tao Zeng
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yana Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Hao Liu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Min Wang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xiaofeng Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Zhenzhen Zhang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Yu He
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Xian Qin
- Strait Institute of Flexible Electronics, Fujian Normal University, Fuzhou 350117, China
| | - Chunhua Lu
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Qiushui Chen
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| | - Huanghao Yang
- New Cornerstone Science Laboratory, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350002, China
| |
Collapse
|
12
|
Wang K, Deng P, Lin H, Sun W, Shen J. DNA-Based Conductors: From Materials Design to Ultra-Scaled Electronics. SMALL METHODS 2024:e2400694. [PMID: 39049716 DOI: 10.1002/smtd.202400694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/04/2024] [Indexed: 07/27/2024]
Abstract
Photolithography has been the foundational fabrication paradigm in current high-performance electronics. However, due to the limitation in fabrication resolution, scaling beyond a 20-nm critical dimension for metal conductors presents a significant challenge for photolithography. Structural DNA nanotechnology emerges as a promising alternative to photolithography, allowing for the site-specific assembly of nano-materials at single-molecule resolution. Substantial progresses have been achieved in the ultra-scaled DNA-based conductors, exhibiting novel transport characteristics and small critical dimensions. This review highlights the structure-transport property relationship for various DNA-based conductors and their potential applications in quantum /semiconductor electronics, going beyond the conventional scope focusing mainly on the shape diversity of DNA-templated metals. Different material synthesis methods and their morphological impacts on the conductivities are discussed in detail, with particular emphasis on the conducting mechanisms, such as insulating, metallic conducting, quantum tunneling, and superconducting. Furthermore, the ionic gating effect of self-assembled DNA structures in electrolyte solutions is examined. This review also suggests potential solutions to address current challenges in DNA-based conductors, encouraging multi-disciplinary collaborations for the future development of this exciting area.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Pu Deng
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
| | - Huili Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wei Sun
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing, 100871, China
- Zhangjiang Laboratory, Shanghai, 201210, China
| | - Jie Shen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
Chen X, Ding L, Wang Y, Gao Z, Li J, Liu X, Wang L, Zhu Y, Fan C, Jia S, Yao G. Welded Gold Nanoparticle Assemblies Defined Plasmonic Coupling. NANO LETTERS 2024; 24:8956-8963. [PMID: 38984788 DOI: 10.1021/acs.nanolett.4c01887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Nanoparticle assemblies with interparticle ohmic contacts are crucial for nanodevice fabrication. Despite tremendous progress in DNA-programmable nanoparticle assemblies, seamlessly welding discrete components into welded continuous three-dimensional (3D) configurations remains challenging. Here, we introduce a single-stranded DNA-encoded strategy to customize welded metal nanostructures with tunable morphologies and plasmonic properties. We demonstrate the precise welding of gold nanoparticle assemblies into continuous metal nanostructures with interparticle ohmic contacts through chemical welding in solution. We find that the welded gold nanoparticle assemblies show a consistent morphology with welded efficiency over 90%, such as the rod-like, triangular, and tetrahedral metal nanostructures. Next, we show the versatility of this strategy by welding gold nanoparticle assemblies of varied sizes and shapes. Furthermore, the experiment and simulation show that the welded gold nanoparticle assemblies exhibit defined plasmonic coupling. This single-stranded DNA encoded welding system may provide a new route for accurately building functional plasmonic nanomaterials and devices.
Collapse
Affiliation(s)
- Xiaoliang Chen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Longjiang Ding
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 201800, China
| | - Zhaoshuai Gao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lihua Wang
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Zhu
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sisi Jia
- Zhangjiang Laboratory, Shanghai 201210, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhang Jiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
14
|
Xie C, Chen Z, Chen K, Hu Y, Xu F, Pan L. Diverse Chiral Nanotubes Assembled from Identical DNA Strands. NANO LETTERS 2024; 24:8696-8701. [PMID: 38967319 DOI: 10.1021/acs.nanolett.4c02071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
DNA nanotubes with controllable geometries hold a wide range of interdisciplinary applications. When preparing DNA nanotubes of varying widths or distinct chirality, existing methods require repeatedly designing and synthesizing specific DNA sequences, which can be costly and laborious. Here, we proposed an intercalator-assisted DNA tile assembly method which enables the production of DNA nanotubes of diverse widths and chirality using identical DNA strands. Through adjusting the concentration of intercalators during assembly, the twisting direction and extent of DNA tiles could be modulated, leading to the formation of DNA nanotubes featuring controllable widths and chirality. Moreover, through introducing additional intercalators and secondary annealing, right-handed nanotubes could be reconfigured into distinct left-handed nanotubes. We expect that this method could be universally applied to modulating the self-assembly pathways of various DNA tiles and other chiral materials, advancing the landscape of DNA tile assembly.
Collapse
Affiliation(s)
- Chun Xie
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Zhekun Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Kuiting Chen
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Yingxin Hu
- College of Information Science and Technology, Shijiazhuang Tiedao University, Shijiazhuang 050043 Hebei, China
| | - Fei Xu
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Linqiang Pan
- Key Laboratory of Image Information Processing and Intelligent Control of Education Ministry of China, School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| |
Collapse
|
15
|
Zheng H, Zhou Y, Yan B, Zhou G, Cheng X, Lin S, Duan M, Li J, Wang L, Fan C, Chen J, Shen J. DNA Framework-Guided Self-Limiting Aggregation for Highly Luminescent Metal Cluster Nanoaggregates. J Am Chem Soc 2024; 146:17094-17102. [PMID: 38867462 DOI: 10.1021/jacs.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates. Our approach involves an amphiphilic DNA framework comprising a hydrophobic alkyl core and a rigid DNA framework shell, serving as a nucleation site and providing well-defined nanoconfinements for the self-limiting aggregation of MCs. Through this method, we successfully produced homogeneous MC nanoaggregates (10.1 ± 1.2 nm) with remarkable nanoscale precision. Notably, this strategy proves adaptable to various MCs, leading to a substantial enhancement in emission and quantum yield, up to 3011- and 87-fold, respectively. Furthermore, our investigation using total internal reflection fluorescence microscopy at the single-particle level uncovered a more uniform photon number distribution and higher photostability for MC nanoaggregates compared to template-free counterparts. This DNA-templating strategy introduces a conceptually innovative approach for studying the photoluminescent properties of aggregates with nanoscale precision and holds promise for constructing highly luminescent MC nanoparticles for diverse applications.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingjie Yan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoang Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sicheng Lin
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulin Duan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Chen
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
16
|
Wei Z, Yu L, Feng Y, Gan Z, Shen Y, Peng S, Xiao Y. Bioinspired Heterocoordination in Adaptable Cobalt Metal-Organic Framework for DNA Epigenetic Modification Detection. Anal Chem 2024; 96:9984-9993. [PMID: 38833588 DOI: 10.1021/acs.analchem.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Metal-organic frameworks (MOFs) show unique advantages in simulating the dynamics and fidelity of natural coordination. Inspired by zinc finger protein, a second linker was introduced to affect the homogeneous MOF system and thus facilitate the emergence of diverse functionalities. Under the systematic identification of 12 MOF species (i.e., metal ions, linkers) and 6 second linkers (trigger), a dissipative system consisting of Co-BDC-NO2 and o-phenylenediamine (oPD) was screened out, which can rapidly and in situ generate a high photothermal complex (η = 36.9%). Meanwhile, both the carboxylation of epigenetic modifications and metal ion (Fe3+, Ni2+, Cu2+, Zn2+, Co2+ and Mn2+) screening were utilized to improve the local coordination environment so that the adaptable Co-MOF growth on the DNA strand was realized. Thus, epigenetic modification information on DNA was converted to an amplified metal ion signal, and then oPD was further introduced to generate bimodal dissipative signals by which a simple, high-sensitivity detection strategy of 5-hydroxymethylcytosine (LOD = 0.02%) and 5-formylcytosine (LOD = 0.025‰) was developed. The strategy provides one low-cost method (< 0.01 $/sample) for quantifying global epigenetic modifications, which greatly promotes epigenetic modification-based early disease diagnosis. This work also proposes a general heterocoordination design concept for molecular recognition and signal transduction, opening a new MOF-based sensing paradigm.
Collapse
Affiliation(s)
- Zhongyu Wei
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Long Yu
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yumin Feng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Zhiwen Gan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Yongjin Shen
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuang Peng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yuxiu Xiao
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (Ministry of Education), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| |
Collapse
|
17
|
Li W, Wang Z, Su Q, Chen J, Wu Q, Sun X, Zhu S, Li X, Wei H, Zeng J, Guo L, Zhang C, He J. A Reconfigurable DNA Framework Nanotube-Assisted Antiangiogenic Therapy. JACS AU 2024; 4:1345-1355. [PMID: 38665667 PMCID: PMC11040663 DOI: 10.1021/jacsau.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/28/2024] [Accepted: 03/15/2024] [Indexed: 04/28/2024]
Abstract
A major limitation of tumor antiangiogenic therapy is the pronounced off-target effect, which can lead to unavoidable injury in multiple organs. Ensuring sufficient delivery and controlled release of these antiangiogenic agents at tumor sites is crucial for realizing their clinical application. Here, we develop a smart DNA-based nanodrug, termed Endo-rDFN, by precisely assembling the antiangiogenic agent, endostar (Endo), into a reconfigurable DNA framework nanotube (rDFN) that could recognize tumor-overexpressed nucleolin to achieve the targeted delivery and controllable release of Endo. Endo-rDFN can not only effectively enhance the tumor-targeting capability of Endo and maintain its efficient accumulation in tumor tissues but also achieve on-demand release of Endo at tumor sites via the specific DNA aptamer for tumor-overexpressed nucleolin, named AS1411. We also found that Endo-rDFN exhibited significant inhibition of angiogenesis and tumor growth, while also providing effective protection against multiorgan injury (heart, liver, spleen, kidney, lung, etc.) to some extent, without compromising the function of these organs. Our study demonstrates that rDFN represents a promising vector for reducing antiangiogenic therapy-induced multiorgan injury, highlighting its potential for promoting the clinical application of antiangiogenic agents.
Collapse
Affiliation(s)
- Wei Li
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
- Department
of Endocrinology and Metabolism, 481 Center for Diabetes and Metabolism
Research, West China 482 Hospital, Sichuan
University, Chengdu 610041, China
| | - Zhongliang Wang
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Qing Su
- Department
of Pharmacy, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Jie Chen
- Department
of Radiation Oncology, Cancer Hospital of
Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Qian Wu
- Department
of Pathology, Beijing Sixth Hospital, Beijing
University, Beijing 100080, China
| | - Xue Sun
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Shuhan Zhu
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Xiaodie Li
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Hao Wei
- Department
of Urology, Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong 266000, China
| | - Jialin Zeng
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Linlang Guo
- Department
of Pathology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Chao Zhang
- Department
of Oncology, Zhujiang Hospital, Southern
Medical University, Guangzhou, Guangdong 510282, China
| | - Jian He
- Department
of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China
| |
Collapse
|
18
|
Li L, Ding Y, Xie G, Luo S, Liu X, Wang L, Shi J, Wan Y, Fan C, Ouyang X. DNA Framework-Templated Fabrication of Ultrathin Electroactive Gold Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202318646. [PMID: 38231189 DOI: 10.1002/anie.202318646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
Generally, two-dimensional gold nanomaterials have unique properties and functions that offer exciting application prospects. However, the crystal phases of these materials tend to be limited to the thermodynamically stable crystal structure. Herein, we report a DNA framework-templated approach for the ambient aqueous synthesis of freestanding and microscale amorphous gold nanosheets with ultrathin sub-nanometer thickness. We observe that extended single-stranded DNA on DNA nanosheets can induce site-specific metallization and enable precise modification of the metalized nanostructures at predefined positions. More importantly, the as-prepared gold nanosheets can serve as an electrocatalyst for glucose oxidase-catalyzed aerobic oxidation, exhibiting enhanced electrocatalytic activity (~3-fold) relative to discrete gold nanoclusters owing to a larger electrochemical active area and wider band gap. The proposed DNA framework-templated metallization strategy is expected to be applicable in a broad range of fields, from catalysis to new energy materials.
Collapse
Affiliation(s)
- Le Li
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Yawen Ding
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Gang Xie
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200025, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lihua Wang
- Institute of Materials Biology, Department of Chemistry, College of Science, Shanghai University, Shanghai, 200444, China
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Jiye Shi
- CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Ying Wan
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiangyuan Ouyang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, Shaanxi, 710127, P. R. China
| |
Collapse
|
19
|
Wang S, Lin PA, DeLuca M, Zauscher S, Arya G, Ke Y. Controlling Silicification on DNA Origami with Polynucleotide Brushes. J Am Chem Soc 2024; 146:358-367. [PMID: 38117542 PMCID: PMC10785815 DOI: 10.1021/jacs.3c09310] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
DNA origami has been used as biotemplates for growing a range of inorganic materials to create novel organic-inorganic hybrid nanomaterials. Recently, the solution-based silicification of DNA has been used to grow thin silica shells on DNA origami. However, the silicification reaction is sensitive to the reaction conditions and often results in uncontrolled DNA origami aggregation, especially when growth of thicker silica layers is desired. Here, we investigated how site-specifically placed polynucleotide brushes influence the silicification of DNA origami. Our experiments showed that long DNA brushes, in the form of single- or double-stranded DNA, significantly suppress the aggregation of DNA origami during the silicification process. Furthermore, we found that double-stranded DNA brushes selectively promote silica growth on DNA origami surfaces. These observations were supported and explained by coarse-grained molecular dynamics simulations. This work provides new insights into our understanding of the silicification process on DNA and provides a powerful toolset for the development of novel DNA-based organic-inorganic nanomaterials.
Collapse
Affiliation(s)
- Shuang Wang
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Po-An Lin
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Marcello DeLuca
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Stefan Zauscher
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Gaurav Arya
- Department
of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
20
|
Luo Y, Niu L, Hao P, Sun X, Zhao Y, Wu N. The controllable patterning of tannic acid on DNA origami. NANOSCALE 2023; 15:19381-19388. [PMID: 38014780 DOI: 10.1039/d3nr04715f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Tannic acid-based patterning is crucial for its applications in bioengineering, including multifunctional coatings, biosensors, and biochips. However, tannic acid (TA) patterning is challenging owing to the rapid polymerization kinetics of tannins and their strong adhesion towards most surfaces or objects. Herein, we report a strategy for controllable TA nanopatterning based on DNA origami templates. Protruding clustered ssDNA (pcDNA) from DNA origami tiles served as indexes for the selective deposition of TA due to the high flexibility of ssDNA and exposed aromatic bases, which provide active sites for TA-DNA interactions. Next, by exploiting the pH-sensitive degradation of TA polymers, controllable 'erasing' and 'rewriting' of TA nanopatterns were performed. Finally, combining the high adhesion and selective deposition, the TA polymers as a glue modified on the edges of origami tiles directed the reversible association/disassociation of origami multimers. Our strategy provides a simple approach for the controllable nanopatterning of TA, enabling its unique properties to tailor surface patterns for applications in materials science and biomedicine.
Collapse
Affiliation(s)
- Yuanyuan Luo
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China.
| | - Liqiong Niu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China.
| | - Pengyan Hao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China.
| | - Xiaoya Sun
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China.
| | - Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China.
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Na Wu
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xianning West Road, Xi'an, Shaanxi 710049, P.R. China.
| |
Collapse
|
21
|
Li S, Shi B, He D, Zhou H, Gao Z. DNA origami-mediated plasmonic dimer nanoantenna-based SERS biosensor for ultrasensitive determination of trace diethylstilbestrol. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131874. [PMID: 37379602 DOI: 10.1016/j.jhazmat.2023.131874] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/09/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
Diethylstilbestrol (DES) is a threatening factor to the human endocrine system. Here, we reported a DNA origami-assembled plasmonic dimer nanoantenna-based surface-enhanced Raman scattering (SERS) biosensor for measuring trace DES in foods. A critical factor influencing the SERS effect is interparticle gap modulation of SERS hotspots with nanometer-scale accuracy. DNA origami technology aims to generate naturally perfect structures with nano-scale precision. Exploiting the specificity of base-pairing and spatial addressability of DNA origami to form plasmonic dimer nanoantenna, the designed SERS biosensor generated electromagnetic-enhancement and uniform-enhancement hotspots to improve sensitivity and uniformity. Owing to their high target-binding affinity, aptamer-functionalized DNA origami biosensors transduced the target recognition into dynamic structural transformations of plasmonic nanoantennas, which were further converted to amplified Raman outputs. A broad linear range from 10-10 to 10-5 M was obtained with the detection limit of 0.217 nM. Our findings demonstrate the utility of aptamer-integrated DNA origami-based biosensors as a promising approach for trace analysis of environmental hazards.
Collapse
Affiliation(s)
- Sen Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; Naval Logistics Academy, Tianjin 300451, China
| | - Baodi Shi
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China; State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Defu He
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Huanying Zhou
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Zhixian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| |
Collapse
|
22
|
Dai L, Hu X, Ji M, Ma N, Xing H, Zhu JJ, Min Q, Tian Y. Programming the morphology of DNA origami crystals by magnesium ion strength. Proc Natl Acad Sci U S A 2023; 120:e2302142120. [PMID: 37399399 PMCID: PMC10334761 DOI: 10.1073/pnas.2302142120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/31/2023] [Indexed: 07/05/2023] Open
Abstract
Harnessing the programmable nature of DNA origami for controlling structural features in crystalline materials affords opportunities to bring crystal engineering to a remarkable level. However, the challenge of crystallizing a single type of DNA origami unit into varied structural outcomes remains, given the requirement for specific DNA designs for each targeted structure. Here, we show that crystals with distinct equilibrium phases and shapes can be realized using a single DNA origami morphology with an allosteric factor to modulate the binding coordination. As a result, origami crystals undergo phase transitions from a simple cubic lattice to a simple hexagonal (SH) lattice and eventually to a face-centered cubic (FCC) lattice. After selectively removing internal nanoparticles from DNA origami building blocks, the body-centered tetragonal and chalcopyrite lattice are derived from the SH and FCC lattices, respectively, revealing another phase transition involving crystal system conversions. The rich phase space was realized through the de novo synthesis of crystals under varying solution environments, followed by the individual characterizations of the resulting products. Such phase transitions can lead to associated transitions in the shape of the resulting products. Hexagonal prism crystals, crystals characterized by triangular facets, and twinned crystals are observed to form from SH and FCC systems, which have not previously been experimentally realized by DNA origami crystallization. These findings open a promising pathway toward accessing a rich phase space with a single type of building block and wielding other instructions as tools to develop crystalline materials with tunable properties.
Collapse
Affiliation(s)
- Lizhi Dai
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Xiaoxue Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Min Ji
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Ningning Ma
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha410082, China
| | - Jun-Jie Zhu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Qianhao Min
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing210023, China
| |
Collapse
|
23
|
He Z, Shi K, Li J, Chao J. Self-assembly of DNA origami for nanofabrication, biosensing, drug delivery, and computational storage. iScience 2023; 26:106638. [PMID: 37187699 PMCID: PMC10176269 DOI: 10.1016/j.isci.2023.106638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Since the pioneering work of immobile DNA Holliday junction by Ned Seeman in the early 1980s, the past few decades have witnessed the development of DNA nanotechnology. In particular, DNA origami has pushed the field of DNA nanotechnology to a new level. It obeys the strict Watson-Crick base pairing principle to create intricate structures with nanoscale accuracy, which greatly enriches the complexity, dimension, and functionality of DNA nanostructures. Benefiting from its high programmability and addressability, DNA origami has emerged as versatile nanomachines for transportation, sensing, and computing. This review will briefly summarize the recent progress of DNA origami, two-dimensional pattern, and three-dimensional assembly based on DNA origami, followed by introduction of its application in nanofabrication, biosensing, drug delivery, and computational storage. The prospects and challenges of assembly and application of DNA origami are also discussed.
Collapse
Affiliation(s)
- Zhimei He
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Kejun Shi
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jinggang Li
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Smart Health Big Data Analysis and Location Services Engineering Research Center of Jiangsu Province, School of Geographic and Biologic Information, Nanjing University of Posts & Telecommunications, Nanjing 210023, China
- Corresponding author
| |
Collapse
|
24
|
Zhan P, Peil A, Jiang Q, Wang D, Mousavi S, Xiong Q, Shen Q, Shang Y, Ding B, Lin C, Ke Y, Liu N. Recent Advances in DNA Origami-Engineered Nanomaterials and Applications. Chem Rev 2023; 123:3976-4050. [PMID: 36990451 PMCID: PMC10103138 DOI: 10.1021/acs.chemrev.3c00028] [Citation(s) in RCA: 115] [Impact Index Per Article: 57.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Indexed: 03/31/2023]
Abstract
DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.
Collapse
Affiliation(s)
- Pengfei Zhan
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Andreas Peil
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Qiao Jiang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Dongfang Wang
- School
of Biomedical Engineering and Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou 215123, China
| | - Shikufa Mousavi
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Qiancheng Xiong
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
| | - Qi Shen
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Molecular Biophysics and Biochemistry, Yale University, 266
Whitney Avenue, New Haven, Connecticut 06511, United States
| | - Yingxu Shang
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Baoquan Ding
- National
Center for Nanoscience and Technology, No 11, BeiYiTiao Zhongguancun, Beijing 100190, China
| | - Chenxiang Lin
- Department
of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, Connecticut 06520, United States
- Nanobiology
Institute, Yale University, 850 West Campus Drive, West Haven, Connecticut 06516, United States
- Department
of Biomedical Engineering, Yale University, 17 Hillhouse Avenue, New Haven, Connecticut 06511, United States
| | - Yonggang Ke
- Wallace
H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30322, United States
| | - Na Liu
- 2nd Physics
Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
| |
Collapse
|
25
|
Zhang Y, Yin X, Cui C, He K, Wang F, Chao J, Li T, Zuo X, Li A, Wang L, Wang N, Bo X, Fan C. Prime factorization via localized tile assembly in a DNA origami framework. SCIENCE ADVANCES 2023; 9:eadf8263. [PMID: 37000880 PMCID: PMC10065441 DOI: 10.1126/sciadv.adf8263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Modern cybersecurity built on public-key cryptosystems like Rivest-Shamir-Adleman is compromised upon finding solutions to the prime factorization. Nevertheless, solving the prime factorization problem, given a large N, remains computationally challenging. Here, we design DNA origami frameworks (DOFs) to direct localized assembly of double-crossover (DX) tiles for solving prime factorization with a model consisting of the computing, decision-making, and reporting motifs. The model implementation is based on the sequential assembly of different DX tiles in the DOF cavity that carries overhangs encoding the prime and composite integers. The primes are multiplied and then verified with the composite, and the result is visualized under atomic force microscopy via the presence (success) or absence (failure) of biotin-streptavidin labels on the reporting DX tile. The factorization of semiprimes 6 and 15 is realized with this DOF-based demonstration. Given the potential of massively parallel processing ability of DNA, this strategy opens an avenue to solve complex mathematical puzzles like prime factoring with molecular computing.
Collapse
Affiliation(s)
- Yinan Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaoyao Yin
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100850, China
| | - Chengjun Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kun He
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100850, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jie Chao
- Key Laboratory for Organic Electronics & Information Displays (KLOEID), Institute of Advanced Materials (IAM) and School of Materials Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Tao Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100850, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Ailing Li
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100850, China
| | - Lihua Wang
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200127, China
| | - Na Wang
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing 100850, China
| | - Xiaochen Bo
- Institute of Health Service and Transfusion Medicine, Beijing 100850, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
26
|
Xie M, Fang W, Qu Z, Hu Y, Zhang Y, Chao J, Shi J, Wang L, Wang L, Tian Y, Fan C, Liu H. High-entropy alloy nanopatterns by prescribed metallization of DNA origami templates. Nat Commun 2023; 14:1745. [PMID: 36990981 PMCID: PMC10060391 DOI: 10.1038/s41467-023-37333-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractHigh-entropy multimetallic nanopatterns with controlled morphology, composition and uniformity hold great potential for developing nanoelectronics, nanophotonics and catalysis. Nevertheless, the lack of general methods for patterning multiple metals poses a limit. Here, we develop a DNA origami-based metallization reaction system to prescribe multimetallic nanopatterns with peroxidase-like activities. We find that strong coordination between metal elements and DNA bases enables the accumulation of metal ions on protruding clustered DNA (pcDNA) that are prescribed on DNA origami. As a result of the condensation of pcDNA, these sites can serve as nucleation site for metal plating. We have synthesized multimetallic nanopatterns composed of up to five metal elements (Co, Pd, Pt, Ag and Ni), and obtained insights on elemental uniformity control at the nanoscale. This method provides an alternative pathway to construct a library of multimetallic nanopatterns.
Collapse
|
27
|
Ye J, Zheng J, Lu X, Wu F, Liu N, Dong Y, Shi Q, Xu L, Liu D. Single-Molecular Poly(propylene oxide) (PPO) Nucleus-Guided Assembly for Hydrophobicity-Dependent Molecular Transport in the Nanopore. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4537-4543. [PMID: 36926892 DOI: 10.1021/acs.langmuir.3c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
By combining DNA nanotechnology and solid-phase nanopore technology, the aggregation behavior of polymer guided by a single-molecular poly(propylene) (PPO) nucleus in a 3D DNA network has been studied. At low temperature, the PPO chain is evenly dispersed in the rigid 3D DNA network; at higher temperature, the PPO chain self-collapses to a single-molecular nucleus; and upon addition of amphiphilic block copolymers below the critical micelle concentration (CMC), the chains tend to aggregate on the isolated hydrophobic nucleus through intermolecular hydrophobic interactions. The process has been characterized by a rheological test and an electrochemical test. This study not only provides a preliminary understanding of the nucleation and growth process of block copolymers but also offers a theoretical basis for the study of protein self-folding and aggregation in the future. On this basis, utilizing this nucleation and growth event, a novel smart nanopore has been developed for hydrophobicity-dependent molecular transport.
Collapse
Affiliation(s)
- Jianhan Ye
- Department of Chemistry, Renmin University of China, Beijing 100872, China
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Zheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Xin Lu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fen Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuanchen Dong
- Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Shi
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Lijin Xu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
28
|
Kemper U, Ye J, Poppitz D, Gläser R, Seidel R. DNA Mold-Based Fabrication of Palladium Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206438. [PMID: 36960479 DOI: 10.1002/smll.202206438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/03/2023] [Indexed: 06/18/2023]
Abstract
DNA origami molds allow a shape-controlled growth of metallic nanoparticles. So far, this approach is limited to gold and silver. Here, the fabrication of linear palladium nanostructures with controlled lengths and patterns is demonstrated. To obtain nucleation centers for a seeded growth, a synthesis procedure of palladium nanoparticles (PdNPs) using Bis(p-sulfonatophenyl)phenylphosphine (BSPP) both as reductant and stabilizer is developed to establish an efficient functionalization protocol of the particles with single-stranded DNA. Attaching the functionalized particles to complementary DNA strands inside DNA mold cavities supports subsequently a highly specific seeded palladium deposition. This provides rod-like PdNPs with diameters of 20-35 nm of grainy morphology. Using an annealing procedure and a post-reduction step with hydrogen, homogeneous palladium nanostructures can be obtained. With the adaptation of the procedure to palladium the capabilities of the mold-based tool-box are expanded. In the future, this may allow a facile adaptation of the mold approach to less noble metals including magnetic materials such as Ni and Co.
Collapse
Affiliation(s)
- Ulrich Kemper
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - Jingjing Ye
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| | - David Poppitz
- Heterogeneous Catalysis, Institute of Chemical Technology, Universität Leipzig, 04103, Leipzig, Germany
| | - Roger Gläser
- Heterogeneous Catalysis, Institute of Chemical Technology, Universität Leipzig, 04103, Leipzig, Germany
| | - Ralf Seidel
- Molecular Biophysics group, Peter Debye Institute for Soft Matter Physics, Universität Leipzig, 04103, Leipzig, Germany
| |
Collapse
|
29
|
Chen X, Yan B, Yao G. Towards atom manufacturing with framework nucleic acids. NANOTECHNOLOGY 2023; 34:172002. [PMID: 36669170 DOI: 10.1088/1361-6528/acb4f2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Atom manufacturing has become a blooming frontier direction in the field of material and chemical science in recent years, focusing on the fabrication of functional materials and devices with individual atoms or with atomic precision. Framework nucleic acids (FNAs) refer to nanoscale nucleic acid framework structures with novel properties distinct from those of conventional nucleic acids. Due to their ability to be precisely positioned and assembled at the nanometer or even atomic scale, FNAs are ideal materials for atom manufacturing. They hold great promise for the bottom-up construction of electronic devices by precisely arranging and integrating building blocks with atomic or near-atomic precision. In this review, we summarize the progress of atom manufacturing based on FNAs. We begin by introducing the atomic-precision construction of FNAs and the intrinsic electrical properties of DNA molecules. Then, we describe various approaches for the fabrication of FNAs templated materials and devices, which are classified as conducting, insulating, or semiconducting based on their electrical properties. We highlight the role of FNAs in the fabrication of functional electronic devices with atomic precision, as well as the challenges and opportunities for atom manufacturing with FNAs.
Collapse
Affiliation(s)
- Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Bingjie Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| |
Collapse
|
30
|
Fu D, Pradeep Narayanan R, Prasad A, Zhang F, Williams D, Schreck JS, Yan H, Reif J. Automated design of 3D DNA origami with non-rasterized 2D curvature. SCIENCE ADVANCES 2022; 8:eade4455. [PMID: 36563147 PMCID: PMC9788767 DOI: 10.1126/sciadv.ade4455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Improving the precision and function of encapsulating three-dimensional (3D) DNA nanostructures via curved geometries could have transformative impacts on areas such as molecular transport, drug delivery, and nanofabrication. However, the addition of non-rasterized curvature escalates design complexity without algorithmic regularity, and these challenges have limited the ad hoc development and usage of previously unknown shapes. In this work, we develop and automate the application of a set of previously unknown design principles that now includes a multilayer design for closed and curved DNA nanostructures to resolve past obstacles in shape selection, yield, mechanical rigidity, and accessibility. We design, analyze, and experimentally demonstrate a set of diverse 3D curved nanoarchitectures, showing planar asymmetry and examining partial multilayer designs. Our automated design tool implements a combined algorithmic and numerical approximation strategy for scaffold routing and crossover placement, which may enable wider applications of general DNA nanostructure design for nonregular or oblique shapes.
Collapse
Affiliation(s)
- Daniel Fu
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Raghu Pradeep Narayanan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ, USA
| | - Dewight Williams
- Erying Materials Center, Office of Knowledge Enterprise Development, Arizona State University, Tempe, AZ, USA
| | - John S. Schreck
- National Center for Atmospheric Research (NCAR), Computational and Information Systems Laboratory, Boulder, CO, USA
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics at Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - John Reif
- Department of Computer Science, Duke University, Durham, NC, USA
| |
Collapse
|
31
|
Dong N, Sun Y, Sun G, Zhang L, Sun S. Chiral DNA Nanotubes Self-Assembled from Building Blocks with Tailorable Curvature and Twist. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2204996. [PMID: 36287092 DOI: 10.1002/smll.202204996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/04/2022] [Indexed: 06/16/2023]
Abstract
DNA nanotubes with prescribed geometry could allow for nanomaterial organization with designed optical or electrical function. As one of the dominating driving forces for DNA nanotube assembly, intrinsic curvature and twist of building blocks can be induced by bending deformation and twisting deformation. However, it is still unknown that how bending and twisting design on nanoscale building blocks affects the geometry of DNA tubes with micrometer length. Here, through targeted base pair deletion or insertion, the amount of bending deformation in building blocks is modulated by length gradient and the amount of twisting deformation is modulated by average twist density. This work systematically explores the independent effect and synergistic effect of two types of deformation on tube geometry, including diameter, chirality, and helical angles, via a streptavidin-labeling technique. The design rules enable the construction of DNA nanotubes with prescribed chirality and tailored diameters.
Collapse
Affiliation(s)
- Niuniu Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yishan Sun
- School of Clinical Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Geng Sun
- The College of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Sha Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| |
Collapse
|
32
|
Guselnikova O, Lim H, Kim HJ, Kim SH, Gorbunova A, Eguchi M, Postnikov P, Nakanishi T, Asahi T, Na J, Yamauchi Y. New Trends in Nanoarchitectured SERS Substrates: Nanospaces, 2D Materials, and Organic Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107182. [PMID: 35570326 DOI: 10.1002/smll.202107182] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/23/2022] [Indexed: 06/15/2023]
Abstract
This article reviews recent fabrication methods for surface-enhanced Raman spectroscopy (SERS) substrates with a focus on advanced nanoarchitecture based on noble metals with special nanospaces (round tips, gaps, and porous spaces), nanolayered 2D materials, including hybridization with metallic nanostructures (NSs), and the contemporary repertoire of nanoarchitecturing with organic molecules. The use of SERS for multidisciplinary applications has been extensively investigated because the considerably enhanced signal intensity enables the detection of a very small number of molecules with molecular fingerprints. Nanoarchitecture strategies for the design of new NSs play a vital role in developing SERS substrates. In this review, recent achievements with respect to the special morphology of metallic NSs are discussed, and future directions are outlined for the development of available NSs with reproducible preparation and well-controlled nanoarchitecture. Nanolayered 2D materials are proposed for SERS applications as an alternative to the noble metals. The modern solutions to existing limitations for their applications are described together with the state-of-the-art in bio/environmental SERS sensing using 2D materials-based composites. To complement the existing toolbox of plasmonic inorganic NSs, hybridization with organic molecules is proposed to improve the stability of NSs and selectivity of SERS sensing by hybridizing with small or large organic molecules.
Collapse
Affiliation(s)
- Olga Guselnikova
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Hyunsoo Lim
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Hyun-Jong Kim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Kim
- New & Renewable Energy Research Center, Korea Electronics Technology Institute (KETI), 25, Saenari-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13509, Republic of Korea
| | - Alina Gorbunova
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Miharu Eguchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Pavel Postnikov
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, 634050, Russian Federation
| | - Takuya Nakanishi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Toru Asahi
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Research and Development (R&D) Division, Green Energy Institute, Mokpo, Jeollanamdo, 58656, Republic of Korea
| | - Yusuke Yamauchi
- JST-ERATO Yamauchi Materials Space Tectonics Project, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD, 4072, Australia
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku, Tokyo, 169-0051, Japan
| |
Collapse
|
33
|
Fan X, Walther A. 1D Colloidal chains: recent progress from formation to emergent properties and applications. Chem Soc Rev 2022; 51:4023-4074. [PMID: 35502721 DOI: 10.1039/d2cs00112h] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Integrating nanoscale building blocks of low dimensionality (0D; i.e., spheres) into higher dimensional structures endows them and their corresponding materials with emergent properties non-existent or only weakly existent in the individual building blocks. Constructing 1D chains, 2D arrays and 3D superlattices using nanoparticles and colloids therefore continues to be one of the grand goals in colloid and nanomaterial science. Amongst these higher order structures, 1D colloidal chains are of particular interest, as they possess unique anisotropic properties. In recent years, the most relevant advances in 1D colloidal chain research have been made in novel synthetic methodologies and applications. In this review, we first address a comprehensive description of the research progress concerning various synthetic strategies developed to construct 1D colloidal chains. Following this, we highlight the amplified and emergent properties of the resulting materials, originating from the assembly of the individual building blocks and their collective behavior, and discuss relevant applications in advanced materials. In the discussion of synthetic strategies, properties, and applications, particular attention will be paid to overarching concepts, fresh trends, and potential areas of future research. We believe that this comprehensive review will be a driver to guide the interdisciplinary field of 1D colloidal chains, where nanomaterial synthesis, self-assembly, physical property studies, and material applications meet, to a higher level, and open up new research opportunities at the interface of classical disciplines.
Collapse
Affiliation(s)
- Xinlong Fan
- Institute for Macromolecular Chemistry, Albert-Ludwigs-University Freiburg, Stefan-Meier-Str. 31, 79104, Freiburg, Germany.
| | - Andreas Walther
- A3BMS Lab, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany.
| |
Collapse
|
34
|
Chen X, Wang Y, Dai X, Ding L, Chen J, Yao G, Liu X, Luo S, Shi J, Wang L, Nechushtai R, Pikarsky E, Willner I, Fan C, Li J. Single-Stranded DNA-Encoded Gold Nanoparticle Clusters as Programmable Enzyme Equivalents. J Am Chem Soc 2022; 144:6311-6320. [PMID: 35353520 DOI: 10.1021/jacs.1c13116] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Nanozymes have emerged as a class of novel catalytic nanomaterials that show great potential to substitute natural enzymes in various applications. Nevertheless, spatial organization of multiple subunits in a nanozyme to rationally engineer its catalytic properties remains to be a grand challenge. Here, we report a DNA-based approach to encode the organization of gold nanoparticle clusters (GNCs) for the construction of programmable enzyme equivalents (PEEs). We find that single-stranded (ss-) DNA scaffolds can self-fold into nanostructures with prescribed poly-adenine (polyA) loops and double-stranded stems and that the polyA loops serve as specific sites for seed-free nucleation and growth of GNCs with well-defined particle numbers and interparticle spaces. A spectrum of GNCs, ranging from oligomers with discrete particle numbers (2-4) to polymer-like chains, are in situ synthesized in this manner. The polymeric GNCs with multiple spatially organized nanoparticles as subunits show programmable peroxidase-like catalytic activity that can be tuned by the scaffold size and the inter-polyA spacer length. This study thus opens new routes to the rational design of nanozymes for various biological and biomedical applications.
Collapse
Affiliation(s)
- Xiaoliang Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, University of Chinese Academy of Sciences, Beijing 100049, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Xinpei Dai
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longjiang Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jielin Chen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shihua Luo
- Department of Traumatology, Ruijin Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Jiye Shi
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lihua Wang
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China.,Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200127, China
| | - Rachel Nechushtai
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Eli Pikarsky
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, University of Chinese Academy of Sciences, Beijing 100049, China.,The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| |
Collapse
|
35
|
Chen P, Wang G, Hao C, Ma W, Xu L, Kuang H, Xu C, Sun M. Peptide-Directed Synthesis of Chiral nano-bipyramides for Controllable antibacterial application. Chem Sci 2022; 13:10281-10290. [PMID: 36277618 PMCID: PMC9473524 DOI: 10.1039/d2sc03443c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 11/21/2022] Open
Abstract
The emergence of antibiotic resistance makes the therapeutic effect of traditional antibiotics far from satisfactory. Here, chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology are reported, and used in the fight against bacterial infection. Specifically, the dipeptide of d-/l-Cys-Phe (CF) caused the nano-bipyramids to form a spike shape with an optical anisotropy factor of 0.102 at 573 nm. The antibacterial effects showed that d-GBPs and l-GBPs could efficiently destroy bacteria with a death ratio of 98% and 70% in vitro. Also, both in vivo skin infection and sepsis models showed that the chiral GBPs could effectively promote wound healing and prevent sepsis in mice. Mechanistic studies showed that the binding affinity of d-GBPs (1.071 ± 0.023 × 108 M−1) was 12.39-fold higher than l-GBPs (8.664 ± 0.251 × 106 M−1) to protein A of Staphylococcus aureus, which caused further adsorption of d-GBPs onto the bacterial surface. Moreover, the physical destruction of the bacterial cell wall caused by the spike chiral GBPs, resulted in a stronger antibacterial effect for d-GBPs than l-GBPs. Furthermore, the excellent PTT of d-/l-GBPs further exacerbated the death of bacteria without any side-effect. Overall, chiral nano-bipyramids have opened a new avenue for improved antibacterial efficacy in the treatment of bacterial infections. Chiral gold nano-bipyramids (GBPs) with sea cucumber-like morphology and an optical anisotropy factor of 0.102 at 573 nm are reported, and used in the fight against bacterial infection both in vitro and in vivo.![]()
Collapse
Affiliation(s)
- Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Gaoyang Wang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Wei Ma
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Technology, School of Food Science and Technology, Jiangnan University Wuxi Jiangsu 214122 People's Republic of China
| |
Collapse
|
36
|
Xie M, Hu Y, Yin J, Zhao Z, Chen J, Chao J. DNA Nanotechnology-Enabled Fabrication of Metal Nanomorphology. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9840131. [PMID: 35935136 PMCID: PMC9275100 DOI: 10.34133/2022/9840131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/24/2022] [Indexed: 11/09/2022]
Abstract
In recent decades, DNA nanotechnology has grown into a highly innovative and widely established field. DNA nanostructures have extraordinary structural programmability and can accurately organize nanoscale materials, especially in guiding the synthesis of metal nanomaterials, which have unique advantages in controlling the growth morphology of metal nanomaterials. This review started with the evolution in DNA nanotechnology and the types of DNA nanostructures. Next, a DNA-based nanofabrication technology, DNA metallization, was introduced. In this section, we systematically summarized the DNA-oriented synthesis of metal nanostructures with different morphologies and structures. Furthermore, the applications of metal nanostructures constructed from DNA templates in various fields including electronics, catalysis, sensing, and bioimaging were figured out. Finally, the development prospects and challenges of metal nanostructures formed under the morphology control by DNA nanotechnology were discussed.
Collapse
Affiliation(s)
- Mo Xie
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jue Yin
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ziwei Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jing Chen
- The Interdisciplinary Research Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
37
|
Dai X, Chen X, Jing X, Zhang Y, Pan M, Li M, Li Q, Liu P, Fan C, Liu X. DNA Origami‐Encoded Integration of Heterostructures. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xinpei Dai
- Shanghai Institute of Applied Physics Chinese Academy of Sciences Division of Physical Biology CHINA
| | - Xiaoliang Chen
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xinxin Jing
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yinan Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Muchen Pan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Mingqiang Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Qian Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences Biodesign Center 300307 Tianjin CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering No. 800, Dongchuan Road 200240 Shanghai CHINA
| | - Xiaoguo Liu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine No. 800 Dongchuan road 200240 Shanghai CHINA
| |
Collapse
|
38
|
Dai X, Chen X, Jing X, Zhang Y, Pan M, Li M, Li Q, Liu P, Fan C, Liu X. DNA Origami-Encoded Integration of Heterostructures. Angew Chem Int Ed Engl 2021; 61:e202114190. [PMID: 34962699 DOI: 10.1002/anie.202114190] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Indexed: 11/09/2022]
Abstract
Integrating dissimilar materials at the nanoscale is crucial for modern electronics and optoelectronics. The structural DNA nanotechnology provides a universal platform for precision assembly of materials; nevertheless, heterogeneous integration of dissimilar materials with DNA nanostructures has yet to be explored. Here we report a DNA origami-encoded strategy for integrating silica-metal heterostructures. Theoretical and experimental studies reveal distinctive mechanisms for the binding and aggregation of silica and metal clusters on protruding double-stranded DNA (dsDNA) strands that are prescribed on the DNA origami template. In particular, the binding energy differences of silica/metal clusters and DNA molecules underlies the accessibilities of dissimilar material areas on DNA origami. We find that, by programming the densities and lengths of protruding dsDNA strands on DNA origami, silica and metal materials can be independently deposited at their predefined areas with a high vertical precision of 2 nm. We demonstrate the integration of silica-gold and silica-silver heterostructures with high site addressability. This DNA nanotechnology-based strategy is thus applicable for integrating various types of dissimilar materials, which opens new routes for bottom-up electronics.
Collapse
Affiliation(s)
- Xinpei Dai
- Shanghai Institute of Applied Physics Chinese Academy of Sciences, Division of Physical Biology, CHINA
| | - Xiaoliang Chen
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Xinxin Jing
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Yinan Zhang
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Muchen Pan
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Mingqiang Li
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Qian Li
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, CHINA
| | - Pi Liu
- Tianjin Institute of Industrial Biotechnology Chinese Academy of Sciences, Biodesign Center, 300307, Tianjin, CHINA
| | - Chunhai Fan
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, No. 800, Dongchuan Road, 200240, Shanghai, CHINA
| | - Xiaoguo Liu
- Shanghai Jiao Tong University, School of Chemistry and Chemical Engineering, and Institute of Molecular Medicine, Renji Hospital, School of Medicine, No. 800 Dongchuan road, 200240, Shanghai, CHINA
| |
Collapse
|
39
|
Heuer-Jungemann A, Linko V. Engineering Inorganic Materials with DNA Nanostructures. ACS CENTRAL SCIENCE 2021; 7:1969-1979. [PMID: 34963890 PMCID: PMC8704036 DOI: 10.1021/acscentsci.1c01272] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 05/25/2023]
Abstract
Nucleic acid nanotechnology lays a foundation for the user-friendly design and synthesis of DNA frameworks of any desirable shape with extreme accuracy and addressability. Undoubtedly, such features make these structures ideal modules for positioning and organizing molecules and molecular components into complex assemblies. One of the emerging concepts in the field is to create inorganic and hybrid materials through programmable DNA templates. Here, we discuss the challenges and perspectives of such DNA nanostructure-driven materials science engineering and provide insights into the subject by introducing various DNA-based fabrication techniques including metallization, mineralization, lithography, casting, and hierarchical self-assembly of metal nanoparticles.
Collapse
Affiliation(s)
- Amelie Heuer-Jungemann
- Max
Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
- Center
for Nanoscience, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Veikko Linko
- Biohybrid
Materials, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| |
Collapse
|
40
|
Feng Y, Liu Q, Chen M, Zhao X, Wang L, Liu L, Chen X. Framework nucleic acid programmed combinatorial delivery nanocarriers for parallel and multiplexed analysis. Chem Commun (Camb) 2021; 57:10935-10938. [PMID: 34596190 DOI: 10.1039/d1cc04691h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Herein we report a framework nucleic acid programmed strategy to develop nanocarriers to precisely and independently package multiple homo- and heterogeneous cargos in vitro and in vivo, thereby enabling multiplexed analysis of aptamer-ligand complexes to distinguish normal people and patients with prostate enlargement via simple serum tests, as well as favorable imaging and discrimination of MCF-7, PC-3 and A549 cancer cells and normal QSG-7701 cells.
Collapse
Affiliation(s)
- Yinghui Feng
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Qi Liu
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Miao Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China. .,College of Life Science, Central South University, Changsha 410083, Hunan, China
| | - Xinyi Zhao
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Lumin Wang
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| | - Longfei Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, the Hunan Provincial Key Laboratory of Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, Hunan, China.
| |
Collapse
|
41
|
Templating chiral silver assemblies in three dimensions. Commun Chem 2021; 4:109. [PMID: 36697636 PMCID: PMC9814702 DOI: 10.1038/s42004-021-00546-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
42
|
Adampourezare M, Dehghan G, Hasanzadeh M, Hosseinpoure Feizi MA. Application of lateral flow and microfluidic bio-assay and biosensing towards identification of DNA-methylation and cancer detection: Recent progress and challenges in biomedicine. Biomed Pharmacother 2021; 141:111845. [PMID: 34175816 DOI: 10.1016/j.biopha.2021.111845] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation is an important epigenetic alteration that results from the covalent transfer of a methyl group to the fifth carbon of a cytosine residue in CpG dinucleotides by DNA methyltransferase. This modification mostly happens in the promoter region and the first exon of most genes and suppresses gene expression. Therefore, aberrant DNA methylation cause tumor progression, metastasis, and resistance to current anti-cancer therapies. So, the detection of DNA methylation is an important issue in diagnosis and therapy of most diseases. Conventional methods for the assay of DNA methylation and activity of DNA methyltransferases are time consuming. So, we need to multiplex operations and expensive instrumentation. To overcome the limitations of conventional methods, new methods such as microfluidic platforms and lateral flow tests have been developed to evaluate DNA methylation. The microfluidic tests are based on optical and electrical biosensing. These tests able us to can analyze DNA methylation with high efficiency and sensitivity without the need for expensive equipment and skilled people. Lateral flow strip tests are another type of rapid, simple, and sensitive test with advanced technology used to assess DNA methylation. Lateral flow strip tests are based on optical biosensors. This review attempts to evaluate new methods for assessing DNA extraction, DNA methylation and DNA methyltransferase activity as well as recent developments in microfluidic technology application for bisulfite treatment and restriction enzyme (bisulfite free), and lateral flow relying on their application in the field of recognition of DNA methylation in blood and body fluids. Also, the advantages and disadvantages of each test are reviewed. Finally, future prospects for the development of the microfluidics biodevices for the detection of DNA methylation is briefly discussed.
Collapse
Affiliation(s)
- Mina Adampourezare
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | |
Collapse
|