1
|
Wei D, Yin N, Xu D, Ge L, Gao Z, Zhang Y, Guo R. Complex Droplet Microreactor for Highly Efficient and Controllable Esterification and Cascade Reactions. CHEMSUSCHEM 2024; 17:e202400279. [PMID: 38705858 DOI: 10.1002/cssc.202400279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
A highly efficient complex emulsion microreactor has been successfully developed for multiphasic water-labile reactions, providing a powerful platform for atom economy and spatiotemporal control of reaction kinetics. Complex emulsions, composing a hydrocarbon phase (H) and a fluorocarbon phase (F) dispersed in an aqueous phase (W), are fabricated in batch scale with precisely controlled droplet morphologies. A biphasic esterification reaction between 2-bromo-1,2-diphenylethane-1-ol (BPO) and perfluoro-heptanoic acid (PFHA) is chosen as a reversible and water-labile reaction model. The conversion reaches up to 100 % under mild temperature without agitation, even with nearly equivalent amounts of reactants. This efficiency surpasses all reported single emulsion microreactors, i. e., 84~95 %, stabilized by various emulsifiers with different catalysts, which typically necessitate continuous stirring, a high excess of one reactant, and/or extended reaction time. Furthermore, over 3 times regulation threshold in conversion rate is attained by manipulating the droplet morphologies, including size and topology, e. g., transition from completely engulfed F/H/W double to partially engulfed (F+H)/W Janus. Addition-esterification, serving as a model for triple phasic cascade reaction, is also successfully implemented under agitating-free and mild temperature with controlled reaction kinetics, demonstrating the versatility and effectiveness of the complex emulsion microreactor.
Collapse
Affiliation(s)
- Duo Wei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Nuoqing Yin
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Dehua Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Zihan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Yanyan Zhang
- Testing Center, Yangzhou University, Yangzhou, 225009, People's Republic of China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, People's Republic of China
| |
Collapse
|
2
|
Chen M, Corless EI, Engelward BP, Swager TM. Optical Detection of Interleukin-6 Using Liquid Janus Emulsions Using Hyperthermophilic Affinity Proteins. ACS OMEGA 2024; 9:37076-37085. [PMID: 39246480 PMCID: PMC11375700 DOI: 10.1021/acsomega.4c03959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/08/2024] [Accepted: 08/15/2024] [Indexed: 09/10/2024]
Abstract
When equal volumes of two immiscible liquids are mixed (e.g., a hydrocarbon and a fluorocarbon), Janus droplets can form in an aqueous solution. In a gravity-aligned Janus droplet, the boundary between the two phases is flat and thus optically transparent when viewed from above. When tipped due to interactions with an analyte (i.e., agglutination), the resulting change in refraction and reflection yields an optical signal that can be detected and quantified. This study reports the detection and quantitation of interleukin-6 (IL-6) using emulsions functionalized at the hydrocarbon:aqueous interface with engineered proteins that bind IL-6 at high affinity and specificity. Hyperthermophilic affinity proteins (rcSso7d) are derived from thermophiles, giving them excellent thermal stability. Two rcSso7d affinity protein variants were synthesized with a noncanonical azide-functionalized amino acid to enable click chemistry to novel polymeric anchors embedded in the hydrocarbon phase. The two binding proteins recognize different epitopes, enabling the detection of both monomeric and dimeric IL-6 via agglutination. It is noteworthy that the rsSso7d protein variants, in addition to having superior thermal stability and facile recombinant synthesis in E. coli, show superior performance when compared to commercial antibodies for IL-6.
Collapse
Affiliation(s)
- Michelle Chen
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| | - Elliot I. Corless
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bevin P. Engelward
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Timothy M. Swager
- Department
of Chemistry, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
3
|
Luo Y, Li K, Luo J, Wen Y, Shi S. Nanoparticle Surfactants at Complex Emulsion Interfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401377. [PMID: 38778735 DOI: 10.1002/smll.202401377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/05/2024] [Indexed: 05/25/2024]
Abstract
Using nanoparticle surfactants to stabilize the liquid-liquid interface has attracted significant attention for developing all-liquid constructs including emulsions and liquid devices. Here, an efficient strategy is demonstrated to stabilize complex emulsions that consist of multiphase droplets by using the co-assembly between the cellulose nanocrystal and amine-functionalized polystyrene. Cellulose nanocrystal surfactants (CNCSs) form and assembly in situ at the specified area of emulsion interface, showing a unique pH responsiveness due to their dynamic nature and allowing the reconfiguration of complex emulsion from encapsulated to Janus structures. Such complex emulsions can be further used as the templates to fabricate polymeric particles with hollow, semi-spherical, and spherical shapes on large scale. These findings establish a promising platform for designing intelligent soft matter that can be used in microreactors, sensors, and anisotropic materials.
Collapse
Affiliation(s)
- Yuzheng Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Kaijuan Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jiaqiu Luo
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yunhui Wen
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
4
|
Cao J, Tao S. Liquid-liquid reactions performed by cellular reactors. Nat Commun 2024; 15:5579. [PMID: 38961117 PMCID: PMC11222485 DOI: 10.1038/s41467-024-49953-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Liquid-liquid reactions play a significant role in organic synthesis. However, control of the phase interface between incompatible two-phase liquids remains challenging. Moreover, separating liquid acid, base and oxidants from the reactor takes a long time and high cost. To address these issues, we draw inspiration from the structure and function of cells in living organisms and develop a biomimetic 3D-printed cellular reactor. The cellular reactor houses an aqueous phase containing the catalyst or oxidant while immersed in the organic phase reactant. This setup controls the distribution of the phase interface within the organic phase and increases the interface area by 2.3 times. Notably, the cellular reactor and the aqueous phase are removed from the organic phase upon completing the reaction, eliminating additional separation steps and preventing direct contact between the reactor and acidic, alkaline, or oxidizing substances. Furthermore, the cellular reactor offers the advantages of digital design feasibility and cost-effective manufacturing.
Collapse
Affiliation(s)
- Jinzhe Cao
- School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, China
| | - Shengyang Tao
- School of Chemistry, Dalian University of Technology, 116024, Dalian, Liaoning, China.
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116024, Dalian, Liaoning, China.
- Frontier Science Center for Smart Materials, Dalian University of Technology, 116024, Dalian, Liaoning, China.
- Dalian Key Laboratory of Intelligent Chemistry, Dalian University of Technology, Dalian, Liaoning, China.
| |
Collapse
|
5
|
Nie G, Wei D, Ding Z, Ge L, Guo R. Controllable enzymatic hydrolysis in reverse Janus emulsion microreactors. J Colloid Interface Sci 2024; 663:591-600. [PMID: 38428116 DOI: 10.1016/j.jcis.2024.02.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/03/2024]
Abstract
HYPOTHESIS The key feature of living cells is multicompartmentalization for enzymatic reactions. Artificial cell-like multicompartments with micro domains are appealing to mimic the biological counterparts. In addition, establishing a sustainable, efficient, and controllable reaction system for enzymatic hydrolysis is imperative for the production of natural fatty acids from animal and plant-based fats. EXPERIMENTS Reverse Janus emulsion microreactors, i.e. (W1 + W2)/O, is constructed through directly using natural fats as continuous phase and aqueous two-phase solutions (ATPS) as inner phases. Enzyme is confined in the compartmented aqueous droplets dominated by the salt of Na2SO4 and polyethylene glycol (PEG). Enzyme catalyzed ester hydrolysis employed as a model reaction is performed under the conditions of agitation-free and mild temperature. Regulation of reaction kinetics is investigated by diverse droplet topology, composition of inner ATPS, and on-demand emulsification. FINDINGS Excellent enzymatic activity toward hydrolysis of plant and animal oils achieves 88.5 % conversion after 3 h. Compartmented micro domains contribute to condense and organize the enzymes spatially. Timely removal of the products away from reaction sites of oil/water interface "pushed" the reaction forward. Distribution and transfer of enzyme in two aqueous lobes provide extra freedom in the regulation of hydrolysis kinetics, with equilibrium conversion controlled freely from 14.5 % to 88.5 %. Reversible "open" and "shut" of hydrolysis is acheived by on-demand emulsification and spontaneous demulsification. This paper paves the way to advancing progress in compartmentalized emulsion as a sustainable and high-efficiency platform for biocatalytic applications.
Collapse
Affiliation(s)
- Guangju Nie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Duo Wei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ziyu Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
6
|
Peng L, Guo H, Wu N, Wang M, Hui Y, Ren H, Ren B, Yang W. Fluorescent sensor based on bismuth metal-organic frameworks (Bi-MOFs) mimic enzyme for H 2O 2 detection in real samples and distinction of phenylenediamine isomers. Talanta 2024; 272:125753. [PMID: 38364560 DOI: 10.1016/j.talanta.2024.125753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Although peroxidase-like nano-enzymes have been widely utilized in biosensors, nano-enzyme based biosensors are seldom used for both quantitative analysis of H2O2 and differentiation of isomers of organic compounds simultaneously. In this study, a dual-functional mimetic enzyme-based fluorescent sensor was constructed using metal-organic frameworks (Bi-MOFs) with exceptional oxidase activity and fluorescence properties. This mimetic enzyme sensor facilitated quantitative analysis of H2O2 and accurate discrimination of phenylenediamine isomers. The sensor exhibited a wide linear range (0.5-400 μM) and low detection limit (0.16 μM) for the detection of H2O2. Moreover, the sensor can also be used for the discrimination of phenylenediamine isomers, in which the presence of o-phenylenediamine (OPD) leads to the appearance of a new fluorescence emission peak at 555 nm, while the presence of p-phenylenediamine (PPD) significantly quenched its fluorescence due to the internal filtration effect. The proposed strategy exhibited a commendable capability in distinguishing phenylenediamine isomers, thereby paving the way for novel applications of MOFs in the field of environmental science.
Collapse
Affiliation(s)
- Liping Peng
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Hao Guo
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| | - Ning Wu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Mingyue Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Yingfei Hui
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Henglong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Borong Ren
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China
| | - Wu Yang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, Key Lab of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, 730070, PR China.
| |
Collapse
|
7
|
Li B, Wu W, Lin JM, Wang T, Hu Q, Yu L. Water in liquid crystal emulsion-based sensing platform for colorimetric detection of organophosphorus pesticide. Food Chem 2024; 436:137732. [PMID: 37857198 DOI: 10.1016/j.foodchem.2023.137732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 07/30/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023]
Abstract
Development of a simple and convenient method for the rapid detection of organophosphorus pesticides (OPs) is particular important for the safety of environmental water and agriculture products. In this work, the water/liquid crystal (W/LC) emulsion is obtained via dispersing an aqueous solution of sodium dodecyl sulfate (SDS) and peroxidase from horseradish (HRP) into a water-immiscible nematic LC and employed as a sensing platform for the detection of dichlorvos (2, 2-dichlorovinyl dimethyl phosphate, DDVP) that is a typical OP with acute toxicity. Remarkably, the stepwise release of the encapsulated cargo HRP from the W/LC emulsion can be triggered upon the addition of the cationic surfactant myristoylcholine chloride (Myr) due to the strong interfacial charge interactions with the anionic surfactant SDS. The released HRP induces an obvious color change of the overlaying bulk aqueous solution via the H2O2-HRP-TMB reaction system. As Myr can be enzymatically cleaved by AChE, the detection of AChE is fulfilled successfully. This approach is also employed to detect DDVP that can irreversibly inhibit the activity of AChE. This assay shows a linear response between the absorbance of the oxidized TMB solution and the DDVP concentration in the range of 0.001-10 μg/mL (R2 = 0.99). The limit of detection (LOD) and the limit of quantity (LOQ) of DDVP are determined to be 1.9 ng/mL and 6.3 ng/mL, respectively. In addition, this strategy also demonstrates excellent performance for the DDVP detection in real samples, the detection recovery rate of DDVP in water samples (lake water and tap water) and vegetables (tomatoes and cole) by this method is 88.0 % ∼112.6 %, the relative standard deviation (RSD) ≤ 7.5 %. These results suggest the W/LC emulsion-based sensing platform shows great potential for visual detection of DDVP in real samples. In conclusion, the proposed approach is scalable for practical application in food safety as well as environmental monitoring fields, and will provide promising solutions for the assay of pesticide residues.
Collapse
Affiliation(s)
- Benyou Li
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China
| | - Wenli Wu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tao Wang
- Petroleum Engineering Technology Research Institute of Shengli Oilfield, Sinopec, Dongying 257000, China
| | - Qiongzheng Hu
- School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Li Yu
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Ministry of Education, Jinan 250100, China.
| |
Collapse
|
8
|
Liu M, Yang S. Exploiting Molecular Orders at the Interface of Microdroplets for Intelligent Materials. Acc Chem Res 2024; 57:739-750. [PMID: 38403956 DOI: 10.1021/acs.accounts.3c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
ConspectusThe intrinsic molecular order of liquid crystals (LCs) and liquid crystalline elastomers (LCEs) is the origin of their stimuli-responsive properties. The programmable responsiveness and functionality, such as shape morphing and color change under external stimuli, are the key features that attract interest in designing LC- and LCE-based intelligent material platforms. Methods such as mechanical stretching and shearing, surface alignment, and field-assisted alignment have been exploited to program the order of LC molecules for the desired responsiveness. However, the huge size mismatch between the nanometer-sized LC mesogens and the targeted macroscopic objects calls for questions about how to delicately control molecular order for desired performance. Microparticles that can be synthesized with intrinsic molecular order precisely controlled to micrometer size can be used as building blocks for bulk materials, thus offering opportunities to bridge the gap and transcend molecular orders across scales. By taking advantage of the interfacial anchoring effects, we can control and engineer the molecular orders inside the microdroplets, allowing for the realization of various responsive behaviors. Furthermore, designer LC microparticles with multiple responsiveness can be assembled and confined within a matrix, opening a new pathway to engineering LC-enabled intelligent materials.In this Account, we present our recent work on exploiting the molecular order inside microdroplets for the construction of intelligent materials. We briefly introduce the typical chemicals used in the synthesis and the methods developed to control LC molecular alignment within a microdroplets. We then present examples of microparticles synthesized from microdroplets that can transform into complex morphologies upon cooling from the isotropic to nematic phase or due to phase separation within the droplets coupled with the segregation of LC oligomers (LCOs) with polydisperse chain lengths. Furthermore, we show the synthesis of elliptical LCE microparticles and exploit their thermal and magnetic responsiveness to program shape-morphing behaviors and microarrays with switchable optical polarization. By mixing magnetic nanoparticles in cholesteric liquid crystals (CLCs) and silicone oils, we created Janus microparticles capable of color switching for camouflage and information encryption. Moreover, we can engineer complex molecular orders in LCE microparticles by mixing different surfactants, yielding microparticles of diverse anisotropic, temperature-responsive shapes after photopolymerization and extraction of the template LC molecules with different solvents. We conclude the Account with an outlook on the design of intelligent material systems via the design of unprecedented molecular ordering within the microparticles and their coupling with bulk materials.
Collapse
Affiliation(s)
- Mingzhu Liu
- Key Laboratory of Bio-inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing 100191, P. R. China
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
9
|
Cao B, Zhang H, Sun M, Xu C, Kuang H, Xu L. Chiral MoSe 2 Nanoparticles for Ultrasensitive Monitoring of Reactive Oxygen Species In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2208037. [PMID: 36528789 DOI: 10.1002/adma.202208037] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are involved in neurodegenerative diseases, cancer, and acute hepatitis, and quantification of ROS is critical for the early diagnosis of these diseases. In this work, a novel probe is developed, based on chiral molybdenum diselenide (MoSe2 ) nanoparticles (NPs) modified by the fluorescent molecule, cyanine 3 (Cy3). Chiral MoSe2 NPs show intensive circular dichroism (CD) signals at 390 and 550 nm, whereas the fluorescence of Cy3 at 560 nm is quenched by MoSe2 NPs. In the presence of ROS, the probe reacts with the ROS and then oxidates rapidly, resulting in decreased CD signals and the recovery of the fluorescence. Using this strategy, the limit of detection values of CD and fluorescent signals in living cells are 0.0093 nmol/106 cells and 0.024 nmol/106 cells, respectively. The high selectivity and sensitivity to ROS in complex biological environments is attributed to the Mo4+ and Se2- oxidation reactions on the surface of the NPs. Furthermore, chiral MoSe2 NPs are able to monitor the levels of ROS in vivo by the fluorescence. Collectively, this strategy offers a new approach for ROS detection and has the potential to inspire others to explore chiral nanomaterials as biosensors to investigate biological events.
Collapse
Affiliation(s)
- Beijia Cao
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Hongyu Zhang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, Jiangnan University, Wuxi, Jiangsu, 214122, P. R. China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Jiangsu, 214122, P. R. China
| |
Collapse
|
10
|
Wang X, Yu H, Li Q, Tian Y, Gao X, Zhang W, Sun Z, Mou Y, Sun X, Guo Y, Li F. Development of a fluorescent sensor based on TPE-Fc and GSH-AuNCs for the detection of organophosphorus pesticide residues in vegetables. Food Chem 2024; 431:137067. [PMID: 37579609 DOI: 10.1016/j.foodchem.2023.137067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/14/2023] [Accepted: 07/30/2023] [Indexed: 08/16/2023]
Abstract
A novel dual-signal fluorescent sensor was developed for detecting organophosphorus pesticides (OPs). It relies on the catalytic activities of acetylcholinesterase (AChE) and choline oxidase (ChOx) to generate hydrogen peroxide (H2O2) through the conversion of acetylcholine (ACh) to choline·H2O2 then oxidizes ferrocene-modified tetraphenylethylene (TPE-Fc) to its oxidized state (TPE-Fc+), resulting in enhanced cyan fluorescence due to aggregation. Simultaneously, ferrocene oxidation generates hydroxyl radicals (•OH), causing a decrease in orange fluorescence of glutathione-synthesized gold nanoclusters (GSH-AuNCs). The presence of OPs restricts AChE activity, reducing H2O2 production. Increasing OPs concentration leads to decreased cyan fluorescence and increased orange fluorescence, enabling visual OPs detection. The sensor has a linear dynamic range of 10-2000 ng/mL with a detection limit of 2.05 ng/mL. Smartphone-based color identification and a WeChat mini program were utilized for rapid OPs analysis with successful outcomes.
Collapse
Affiliation(s)
- Xiaoyang Wang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Huajie Yu
- State Key Laboratory for Modification of Chemical Fiber and Polymer Materials, Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Qiuhong Li
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, Shandong 255049, China
| | - Yuhang Tian
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xiaolin Gao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Wanqi Zhang
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Zhicong Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yaoting Mou
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Xia Sun
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Yemin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China
| | - Falan Li
- School of Agricultural Engineering and Food Science, Shandong University of Technology, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China; Shandong Provincial Engineering Research Center of Vegetable Safety and Quality Traceability, No. 12 Zhangzhou Road, Zibo 255049, Shandong Province, China.
| |
Collapse
|
11
|
Baryzewska A, Roth C, Seeberger PH, Zeininger L. In situ Tracking of Exoenzyme Activity Using Droplet Luminescence Concentrators for Ratiometric Detection of Bacteria. ACS Sens 2023; 8:4143-4151. [PMID: 37933952 PMCID: PMC10683504 DOI: 10.1021/acssensors.3c01385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
We demonstrate a novel, rapid, and cost-effective biosensing paradigm that is based on an in situ visualization of bacterial exoenzyme activity using biphasic Janus emulsion droplets. Sensitization of the droplets toward dominant extracellular enzymes of bacterial pathogens is realized via selective functionalization of one hemisphere of Janus droplets with enzyme-cleavable surfactants. Surfactant cleavage results in an interfacial tension increase at the respective droplet interface, which readily transduces into a microscopically detectable change of the internal droplet morphologies. A macroscopic fluorescence read-out of such morphological transitions is obtained via ratiometrically recording the angle-dependent anisotropic emission signatures of perylene-containing droplets from two different angles. The optical read-out method facilitates detection of marginal morphological responses of polydisperse droplet samples that can be easily produced in any environment. The performance of Janus droplets as powerful optical transducers and signal amplifiers is highlighted by rapid (<4 h) and cost-effective antibody and DNA-free identification of three major foodborne pathogens, with detection thresholds of below 10 CFU mL-1 for Salmonella and <102 to 103 CFU mL-1 for Listeria and Escherichia coli.
Collapse
Affiliation(s)
- Agata
W. Baryzewska
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Christian Roth
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Peter H. Seeberger
- Department
of Biomolecular Systems, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Muehlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Frank B, Antonietti M, Giusto P, Zeininger L. Photocharging of Carbon Nitride Thin Films for Controllable Manipulation of Droplet Force Gradient Sensors. J Am Chem Soc 2023; 145. [PMID: 37934048 PMCID: PMC10655103 DOI: 10.1021/jacs.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 11/08/2023]
Abstract
Intentional generation, amplification, and discharging of chemical gradients is central to many nano- and micromanipulative technologies. We describe a straightforward strategy to direct chemical gradients inside a solution via local photoelectric surface charging of organic semiconducting thin films. We observed that the irradiation of carbon nitride thin films with ultraviolet light generates local and sustained surface charges in illuminated regions, inducing chemical gradients in adjacent solutions via charge-selective immobilization of surfactants onto the substrate. We studied these gradients using droplet force gradient sensors, complex emulsions with simultaneous and independent responsive modalities to transduce information on transient gradients in temperature, chemistry, and concentration via tilting, morphological reconfiguration, and chemotaxis. Fine control over the interaction between local, photoelectrically patterned, semiconducting carbon nitride thin films and their environment yields a new method to design chemomechanically responsive materials, potentially applicable to micromanipulative technologies including microfluidics, lab-on-a-chip devices, soft robotics, biochemical assays, and the sorting of colloids and cells.
Collapse
Affiliation(s)
- Bradley
D. Frank
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Paolo Giusto
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
13
|
Durkin TJ, Barua B, Holmstrom JJ, Karanikola V, Savagatrup S. Functionalized Amphiphilic Block Copolymers and Complex Emulsions for Selective Sensing of Dissolved Metals at Liquid-Liquid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12845-12854. [PMID: 37625160 DOI: 10.1021/acs.langmuir.3c01761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Increasing contamination in potable water supplies necessitates the development of sensing methods that provide the speed and selectivity necessary for safety. One promising method relies on recognition and detection at the liquid-liquid interface of dynamic complex emulsions. These all-liquid materials transduce changes in interfacial tensions into optical signals via the coupling of their chemical, physical, and optical properties. Thus, to introduce selectivity, it is necessary to modify the liquid-liquid interface with an interfacially stable and selective recognition unit. To this end, we report the synthesis and characterization of amphiphilic block copolymers modified with metal chelators to selectively measure the concentrations of dissolved metal ions. We find that significant reduction in interfacial tensions arises upon quantitative addition of metal ions with high affinity toward functionalized chelators. Furthermore, measurements from UV-vis spectroscopy reveal that complexation of the block copolymers with metal ions leads to an increase in surface excess and surfactant effectiveness. We also demonstrate selective detection of iron(III) cations (Fe3+) on the μM levels even through interference from other mono-, di-, or trivalent cations in complex matrices of synthetic groundwater. Our results provide a unique platform that couples selective recognition and modulation of interfacial behaviors and demonstrates a step forward in the development of the multiplexed sensing device needed to deconvolute the complicated array of contaminants that comprise real-world environmental samples.
Collapse
Affiliation(s)
- Tyler J Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Baishali Barua
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Jamie J Holmstrom
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Vasiliki Karanikola
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| |
Collapse
|
14
|
Zeininger L. Responsive Janus droplets as modular sensory layers for the optical detection of bacteria. Anal Bioanal Chem 2023:10.1007/s00216-023-04838-w. [PMID: 37450000 PMCID: PMC10404245 DOI: 10.1007/s00216-023-04838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/28/2023] [Accepted: 06/30/2023] [Indexed: 07/18/2023]
Abstract
The field of biosensor development is fueled by innovations in new functional transduction materials and technologies. Material innovations promise to extend current sensor hardware limitations, reduce analysis costs, and ensure broad application of sensor methods. Optical sensors are particularly attractive because they enable sensitive and noninvasive analyte detection in near real-time. Optical transducers convert physical, chemical, or biological events into detectable changes in fluorescence, refractive index, or spectroscopic shifts. Thus, in addition to sophisticated biochemical selector designs, smart transducers can improve signal transmission and amplification, thereby greatly facilitating the practical applicability of biosensors, which, to date, is often hampered by complications such as difficult replication of reproducible selector-analyte interactions within a uniform and consistent sensing area. In this context, stimuli-responsive and optically active Janus emulsions, which are dispersions of kinetically stabilized biphasic fluid droplets, have emerged as a novel triggerable material platform that provides as a versatile and cost-effective alternative for the generation of reproducible, highly sensitive, and modular optical sensing layers. The intrinsic and unprecedented chemical-morphological-optical coupling inside Janus droplets has facilitated optical signal transduction and amplification in various chemo- and biosensor paradigms, which include examples for the rapid and cost-effective detection of major foodborne pathogens. These initial demonstrations resulted in detection limits that rival the capabilities of current commercial platforms. This trend article aims to present a conceptual summary of these initial efforts and to provide a concise and comprehensive overview of the pivotal kinetic and thermodynamic principles that govern the ability of Janus droplets to sensitively and selectively respond to and interact with bacteria.
Collapse
Affiliation(s)
- Lukas Zeininger
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Muehlenberg 1, 14476, Potsdam, Germany.
| |
Collapse
|
15
|
Barua B, Durkin TJ, Beeley IM, Gadh A, Savagatrup S. Multiplexed and continuous microfluidic sensors using dynamic complex droplets. SOFT MATTER 2023; 19:1930-1940. [PMID: 36807488 DOI: 10.1039/d3sm00074e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Emissive complex droplets with reconfigurable morphology and dynamic optical properties offer exciting opportunities as chemical sensors due to their stimuli-responsive characteristics. In this work, we demonstrated a real-time optical sensing platform that combines poly(dimethylsiloxane) (PDMS) microfluidics and complex droplets as sensing materials. We utilized a mechanism, called directional emission, to transduce changes in interfacial tension into optical signals. We discuss the fabrication and integration of PDMS microfluidics with complex emulsions to facilitate continuous measurement of fluorescent emission and, ultimately, the interfacial tensions. Furthermore, by varying the interfacial functionalization and fluorescent dye with characteristic wavelength, we generate multiple formulations of droplets and obtain differential responses to stimuli that alter interfacial tensions (i.e., composition of surfactants, pH). Our results illustrate a proof-of-concept multiplexed and continuous sensing platform with potential applications in miniaturized, on-site environmental monitoring and biosensing.
Collapse
Affiliation(s)
- Baishali Barua
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| | - Tyler J Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| | - Isabel M Beeley
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| | - Aakanksha Gadh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, USA.
| |
Collapse
|
16
|
Wu Y, Balasubramanian P, Wang Z, Coelho JAS, Prslja M, Siebert R, Plenio MB, Jelezko F, Weil T. Detection of Few Hydrogen Peroxide Molecules Using Self-Reporting Fluorescent Nanodiamond Quantum Sensors. J Am Chem Soc 2022; 144:12642-12651. [PMID: 35737900 PMCID: PMC9305977 DOI: 10.1021/jacs.2c01065] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Hydrogen peroxide
(H2O2) plays an important
role in various signal transduction pathways and regulates important
cellular processes. However, monitoring and quantitatively assessing
the distribution of H2O2 molecules inside living
cells requires a nanoscale sensor with molecular-level sensitivity.
Herein, we show the first demonstration of sub-10 nm-sized fluorescent
nanodiamonds (NDs) as catalysts for the decomposition of H2O2 and the production of radical intermediates at the
nanoscale. Furthermore, the nitrogen-vacancy quantum sensors inside
the NDs are employed to quantify the aforementioned radicals. We believe
that our method of combining the peroxidase-mimicking activities of
the NDs with their intrinsic quantum sensor showcases their application
as self-reporting H2O2 sensors with molecular-level
sensitivity and nanoscale spatial resolution. Given the robustness
and the specificity of the sensor, our results promise a new platform
for elucidating the role of H2O2 at the cellular
level.
Collapse
Affiliation(s)
- Yingke Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Priyadharshini Balasubramanian
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Zhenyu Wang
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany.,Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China.,Guangdong-Hong Kong Joint Laboratory of Quantum Matter, Frontier Research Institute for Physics, South China Normal University, Guangzhou 510006, China
| | - Jaime A S Coelho
- Centro de Química Estrutural, Institute of Molecular Sciences, Faculty of Sciences, University of Lisbon, Campo Grande, Lisbon 1749-016, Portugal
| | - Mateja Prslja
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm 89081, Germany
| | - Martin B Plenio
- Institut für Theoretische Physik und IQST, Universität Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Fedor Jelezko
- Institute for Quantum Optics and IQST, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.,Institute of Inorganic Chemistry I, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| |
Collapse
|
17
|
Trinh V, Malloy CS, Durkin TJ, Gadh A, Savagatrup S. Detection of PFAS and Fluorinated Surfactants Using Differential Behaviors at Interfaces of Complex Droplets. ACS Sens 2022; 7:1514-1523. [PMID: 35442626 DOI: 10.1021/acssensors.2c00257] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Contamination of per- and polyfluoroalkyl substances (PFAS) in water supplies will continue to have serious health and environmental consequences. Despite the importance of monitoring the concentrations of PFAS at potential sites of contamination and at treatment plants, there are few suitable and rapid on-site methods. Many nonconventional techniques do not possess the necessary selectivity and sensitivity to distinguish PFAS from other surface-active components and to quantify the low concentrations in real-world conditions. Herein, we report a novel and rapid method for the detection of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) by leveraging their differential behaviors at the interfaces of emissive complex droplets. Measurement of surface and interfacial tensions via a force tensiometer reveals that PFAS preferentially self-assemble at the water-fluorocarbon oil interface (F/W) rather than the water-hydrocarbon oil interface (H/W). We also observe an opposite behavior for hydrocarbon surfactants. This difference in interfacial behavior produces distinct effects on the morphological change and optical emission of biphasic oil-in-water droplets. The change in the intensity of fluorescence emission, measured with a simple spectroscopic setup, correlates with the concentrations of PFAS. We also demonstrate that the range of detection and sensitivity can be tuned by adjusting the initial composition of the complex droplets. Our results illustrate an alternative mode of sensors that may provide a rapid and on-site detection of PFAS.
Collapse
Affiliation(s)
- Vivian Trinh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Cameron S. Malloy
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Tyler J. Durkin
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Aakanksha Gadh
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| | - Suchol Savagatrup
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E. James E. Rogers Way, Tucson, Arizona 85721, United States
| |
Collapse
|
18
|
Liu H, He Y, Mu J, Cao K. Structure engineering of silicon nanoparticles with dual signals for hydrogen peroxide detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 266:120421. [PMID: 34624814 DOI: 10.1016/j.saa.2021.120421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Fluorescent silicon nanoparticles (SiNPs) were synthesized by a one-step, simple, and green method with 3-Aminopropyltriethoxysilane (APTES) and ascorbic acid (AA) as reaction agents. Subsequently, the SiNPs and AgNPs nanocomplex (SiNPs@AgNPs) was constructed as the probe for hydrogen peroxide (H2O2) detection. The fluorescence of SiNPs was quenched due to the surface plasmonic-enhanced energy transfer between SiNPs and AgNPs. Meanwhile, the color tends to be yellow due to the existence of AgNPs. As the AgNPs were etched by H2O2, the fluorescence recovers and color fadings. Based on the well-designed structure, the "off-on" fluorescence sensing and "on-off" color sensing platforms for H2O2 were fabricated. The as-synthesized materials were characterized by Fourier transform infrared (FT-IR) spectroscopy, dynamic light scattering (DLS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Fluorescence and UV-vis absorption spectra were used to evaluate the optical performance. The fabricated sensor exhibited a linear range of 1.0-100.0 μM, with a limit of detection of 0.36 μM for the fluorescence sensing of H2O2. Additionally, a linear range of 1.0-50.0 μM and a limit of detection of 0.45 μM were displayed for the detection of H2O2 by colorimetric assay. The feasibility in complex medium of the fabricated fluorescent and colorimetric dual-signal sensor was evaluated by the detection of H2O2 in phosphate buffer saline (PBS) and lake water samples.
Collapse
Affiliation(s)
- Huiqiao Liu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China.
| | - Yanan He
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Jiping Mu
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| | - Kangzhe Cao
- College of Chemistry and Chemical Engineering, Xinyang Key Laboratory of Functional Nanomaterials for Bioanalysis, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
19
|
Dervisevic E, Voelcker NH, Risbridger G, Tuck KL, Cadarso VJ. Colorimetric Detection of Extracellular Hydrogen Peroxide Using an Integrated Microfluidic Device. Anal Chem 2022; 94:1726-1732. [PMID: 35014786 DOI: 10.1021/acs.analchem.1c04312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is well known that hydrogen peroxide (H2O2) is a signaling molecule essential for vital physiological reactions in mammalian cells, such as cell survival, intercellular communication, and cancer metabolism. However, to fully understand the function of H2O2, it is critical to monitor its intracellular and/or extracellular concentrations. Current techniques implemented to address this need require large sample volumes, expensive instrumentation, and long sample preparation and analysis times, inapplicable to inline or online monitoring. In this paper, a new integrated microfluidic device capable of overcoming these limitations is demonstrated for the colorimetric detection of extracellular hydrogen peroxide H2O2. The device contains an optical waveguide to determine absorbance changes and micromixers to enable complete mixing of reagents using a passive approach. This novel H2O2-sensing device has allowed the detection of H2O2 in the range of 0.5-60 μM with a detection limit of 167 ± 5.8 nM and a sensitivity of 13.5 ± 0.1 AU/mM. Proof of concept of the device was demonstrated by quantifying H2O2 release from benign prostatic epithelial (BPH-1) cells upon stimulation with phorbol 12-myristate 13-acetate (PMA). Results show that this integrated device can be potentially utilized to continuously monitor cell-released metabolites autonomously without constant human supervision during the process. Furthermore, this can be achieved without interfering with the cell culture conditions, as only a very small volume of conditioned media (less than 0.4 μL), and not the cells, is required.
Collapse
Affiliation(s)
- Esma Dervisevic
- Department of Mechanical and Aerospace Engineering, Monash University, Room 227, New Horizons Building, 20 Research Way, Clayton, Melbourne, Victoria 3800, Australia
| | - Nicolas H Voelcker
- Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 381 Royal Parade, Parkville, Melbourne, Victoria 3052, Australia.,The Melbourne Centre for Nanofabrication, Victorian Node - Australian National Fabrication Facility, Clayton, Melbourne, Victoria 3800, Australia.,Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Melbourne, Victoria 3168, Australia
| | - Gail Risbridger
- Prostate Cancer Translational Research Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia.,Cancer Program, Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Clayton, Melbourne, Victoria 3800, Australia.,Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | - Kellie L Tuck
- School of Chemistry, Monash University, Clayton, Melbourne, Victoria 3800, Australia
| | - Victor J Cadarso
- Department of Mechanical and Aerospace Engineering, Monash University, Room 227, New Horizons Building, 20 Research Way, Clayton, Melbourne, Victoria 3800, Australia.,The Melbourne Centre for Nanofabrication, Victorian Node - Australian National Fabrication Facility, Clayton, Melbourne, Victoria 3800, Australia.,Centre to Impact Antimicrobial Resistance─Sustainable Solutions, Monash University, Clayton, Melbourne, Victoria 3800 Australia
| |
Collapse
|