1
|
Zhang X, Li Y, Li Y, Liu Y, Zhao C, Zang R, Nizamidin P, Dou X. Electronic Effect-Tuned Cooperativity of Multiple Noncovalent Interactions for Specific Detection of ADB-Type Synthetic Cannabinoids. Anal Chem 2025; 97:9819-9826. [PMID: 40315359 DOI: 10.1021/acs.analchem.5c00156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
ADB-type synthetic cannabinoids (SCs), as a major category of new psychoactive substances, have posed global concerns due to their high abuse potential and detrimental health and social stability effects, and their rapid and accurate in situ analysis is particularly challenging when they appear in concealed forms. Here, the strategy of electronic effect tuning cooperativity of multiple noncovalent interactions was proposed for the specific detection of ADB-type SCs, a class of structurally stable yet reactive inert analytes. The optimized probe HBO-Ph, for the first time, achieved ratiometric fluorescence detection of ADB-type SCs by effectively suppressing excited-state intramolecular proton transfer and promoting intramolecular charge transfer, showcasing unparalleled detection capabilities with a low detection limit of 24.3 nM and a rapid response in 1 s. Moreover, a sensor featuring a solid-liquid separation architecture was designed to enable the rapid detection of ADB-type SCs in real-world situations, unaffected by 24 possible interfering substances. This cooperative regulation method is expected to shed light on the exploration of noncovalent interaction-based probe design strategies and provide a new approach to analyzing target molecules with limited active sites, thereby greatly promoting the present drug detection technologies.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang830017, PR China
| | - Yudong Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yingxing Li
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Yuan Liu
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Chuanfang Zhao
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Runqiang Zang
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Patima Nizamidin
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang830017, PR China
| | - Xincun Dou
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, Xinjiang830017, PR China
- Xinjiang Key Laboratory of Trace Chemical Substances Sensing, Xinjiang Joint Laboratory of Illicit Drugs Control, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhang JA, Xiao X, Wang J, Luo S, Lu Y, Pang YY, Tian W. Biomimetic Parallel Vein-like Two-Dimensional Supramolecular Layers Containing Embedded One-Dimensional Conduits Driven by Cation-π Interaction and Hydrogen Bonding to Promote Photocatalytic Hydrogen Evolution. J Am Chem Soc 2025; 147:13447-13460. [PMID: 40198085 DOI: 10.1021/jacs.5c00204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Two-dimensional supramolecular assemblies (2DSAs) with well-defined nanostructures have emerged as promising candidates for diverse applications, particularly in photocatalysis. However, it still remains a significant challenge to simultaneously achieve effective electron transport and multiple active sites in 2DSA, even though this is crucial for enhancing photocatalytic performance. This reason can be attributed to the lack of a suitable structural paradigm that enables both effective intermolecular orbital overlap and increased substrate contact. Inspired by the parallel venation of monocotyledons that can facilitate substrate transfer, we overcome the limitation, in this study, by integrating parallel-arranged one-dimensional (1D) conduits with edge-on packing motifs to construct biomimetic, parallel vein-like two-dimensional supramolecular layers (PV-2DSLs) through the hierarchical self-assembly of cationically modified, rigid multiarmed monomers. The resulting PV-2DSLs exhibit a long-range aromatic cation-π stacking that can facilitate electron transport. Importantly, the unique structural feature of these PV-2DSLs is the orderly and parallel embedding of 1D conduits within the 2D plane, which is significantly different from the conventional channels formed by the vertical stacking of 2D porous materials. These conduits promote multielectron transfer pathways, leading to enhanced charge separation and carrier transport when coupled with long-range aromatic cation-π stacking. As a consequence, these PV-2DSLs exhibit long excited state lifetime, leading to significantly improved hydrogen production rates up to 3.5 mmol g-1 h-1, which is approximately 17.5 times higher than that of the counterpart without 1D conduits (0.2 mmol g-1 h-1).
Collapse
Affiliation(s)
- Ju-An Zhang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xuedong Xiao
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
| | - Jinyi Wang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuai Luo
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yi Lu
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yan-Yu Pang
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology, Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
3
|
Petroselli M, Ballester P. Molecular Balances as Physical Organic Chemistry Tools to Quantify Non-Covalent Interactions. Chemistry 2025; 31:e202404351. [PMID: 39817356 DOI: 10.1002/chem.202404351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/18/2025]
Abstract
Non-covalent interactions are present in numerous synthetic and biological systems, playing an essential role in vital life processes, such as the stabilization of proteins' structures or reversible binding in substrate-receptor complexes. Their study is relevant but faces challenges due to its inherent weak nature. In this context, molecular balances (MBs) are one of the most efficient physical organic chemistry tools to quantify non-covalent interactions, bringing beneficial knowledge regarding their nature and strength. Herein, we report an overview and critical discussion of recent studies related to various MBs in the quantification of a collection of non-covalent interactions, covering from the well-known aryl • • • aryl and CH • • • aryl interaction to the newest fullerene • • • aryl and chalcogen • • • chalcogen interactions.
Collapse
Affiliation(s)
- Manuel Petroselli
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Païs Catalans 16, 43007, Tarragona, Spain
| | - Pablo Ballester
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology (BIST), Av. Païs Catalans 16, 43007, Tarragona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08018, Barcelona, Spain
| |
Collapse
|
4
|
Gong YN, Zhong DC, Lu TB. Porous Supramolecular Crystalline Materials for Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202424452. [PMID: 39777838 DOI: 10.1002/anie.202424452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/07/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Porous supramolecular crystalline materials (PSCMs), such as hydrogen-bonded organic frameworks (HOFs), π frameworks, can be defined as a type of porous supramolecular assemblies stabilized by hydrogen-bonding, π-π stacking and other non-covalent interactions. Benefiting from the unique features of mild synthesis conditions, well-defined and synthetically tailorable structures, easy healing and regeneration, PSCMs have garnered widespread interest in research fields including molecular recognition, sensor, gas storage and separation. Moreover, they have emerged as promising photocatalysts because these PSCMs could be readily endowed with optical function, and the hydrogen-bonding and π-π stacking can offer channels for electron transfer to boost the photocatalytic activity. However, the research on PSCMs for photocatalysis is still at an early stage, and a review on this topic would help to promote the development of supramolecular chemistry. In this Minireview, we first introduce the synthesis methods for PSCMs, and then highlight their advantages in photocatalysis. Subsequently, we summarize the applications of PSCMs in photocatalysis including CO2 reduction, H2 evolution, H2O2 production, organic transformation and pollutant degradation, and we put particular emphasis on delineating the structure-performance relationship. At the end, we discuss the challenges and perspectives in developing high-performance PSCM-based photocatalysts.
Collapse
Affiliation(s)
- Yun-Nan Gong
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
5
|
Wang T, Zhang Z, Hao A, Xing P. Engineering perfluoroarenes for enhanced molecular barrier effect and chirality transfer in solutions. Chem Sci 2025; 16:3498-3508. [PMID: 39845871 PMCID: PMC11750069 DOI: 10.1039/d4sc07859d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Noncovalent forces have a significant impact on photophysical properties, and the flexible employment of weak forces facilitates the design of novel luminescent materials with a variety of applications. The arene-perfluoroarene (AP) force, as one type of π-hole/π interaction, shows unique directionality, involving an electron-deficient π-hole interacting with a π-electron-rich region, facilitating precise orientation and stabilization in supramolecular structures. Here we present an amination engineering protocol to build a perfluoroarene library based on an octafluoronaphthalene skeleton with various steric and electronic properties. In diluted solution-based assemblies, the perfluoroarenes perform as efficient molecular barriers to perylene building units, lighting up the luminescence. Enhanced steric effects, hydrophobicity and appended aromatic pendants are pivotal structural factors to boost the molecular barrier effect. Highly affinitive AP coassemblies transfer chirality from perfluoroarenes to achiral perylene moieties, inducing the appearance of chiral microstructures with tailored circularly polarized luminescence. Application as luminescent ink for enhanced water-resistance in displays and anti-counterfeiting is successfully realized. This work greatly extends the potential of molecular engineering in noncovalently bonded luminescent materials, and clearly reveals structure-property correlations.
Collapse
Affiliation(s)
- Tianhao Wang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
| | - Zeyuan Zhang
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University Jinan 250100 PR China
| |
Collapse
|
6
|
Yao Z, Song Z, Yin S, Huang W, Gao T, Yan P, Zhou Y, Li H. Dispersion Forces-Driven Hierarchical Assembly of Protein-Like Lanthanide Octamers and Emergent CPL. Chemistry 2025; 31:e202403976. [PMID: 39607003 DOI: 10.1002/chem.202403976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 11/29/2024]
Abstract
Hierarchical self-assembly driven by non-covalent interactions is a prevalent strategy employed by nature to construct sophisticated biomacromolecules, such as proteins. However, the construction of protein-like superstructures that rely on weaker dispersion forces-driven hierarchical assembly remains largely unexplored. Here, we report the first example of dispersion forces driving the high-order assembly of the lanthanide trinuclear circular helicate [HNEt₃]₃[Eu₃(LL)₆] (ΔΔΔ-1) into a protein-like lanthanide octamer ((ΔΔΔ-1)₈-2). Within the octamer, the forty-eight (48) menthol groups on the ligands and eighty-four (84) 1,4-dioxane solvent molecules contribute to enhanced dispersion forces through conformational adaptation and size-matching effects. These enhanced dispersion forces not only drive the formation of the hierarchical superstructure but also result in a four-level chirality transfer from the menthol to the octamer. Benefiting from the homochirality of Eu3+, the octamer is endowed the strong circularly polarized emission (|glum|=0.34, Φoverall=41 %). This understanding of how dispersion forces drive hierarchical self-assembly provides a foundation for the directed fabrication of more fascinating superstructures.
Collapse
Affiliation(s)
- Zhiwei Yao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Ziye Song
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Sen Yin
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Wenru Huang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Ting Gao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Pengfei Yan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Yanyan Zhou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| | - Hongfeng Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, 74 Xuefu Road, Harbin, 150080, China
| |
Collapse
|
7
|
Schramm B, Gray M, Herbert JM. Substituent and Heteroatom Effects on π-π Interactions: Evidence That Parallel-Displaced π-Stacking is Not Driven by Quadrupolar Electrostatics. J Am Chem Soc 2025; 147:3243-3260. [PMID: 39818769 DOI: 10.1021/jacs.4c13291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Stacking interactions are a recurring motif in supramolecular chemistry and biochemistry, where a persistent theme is a preference for parallel-displaced aromatic rings rather than face-to-face π-stacking. This is typically explained in terms of quadrupole-quadrupole interactions between the arene moieties but that interpretation is inconsistent with accurate calculations, which reveal that the quadrupolar picture is qualitatively wrong. At typical π-stacking distances, quadrupolar electrostatics may differ in sign from an exact calculation based on charge densities of the interacting arenes. We apply symmetry-adapted perturbation theory to dimers composed of substituted benzene and various aromatic heterocycles, which display a wide range of electrostatic interactions, and we investigate the interplay of Pauli repulsion, dispersion, and electrostatics as it pertains to parallel-displaced π-stacking. Profiles of energy components along cofacial slip-stacking coordinates support a prominent role for the "van der Waals model" (dispersion in competition with Pauli repulsion), even for polar monomers where electrostatic interactions are significant. While electrostatic interactions are necessary to explain the optimal face-to-face π-stacking distance and to account for the relative orientation of one polar arene with respect to another, we find no evidence to support continued invocation of quadrupolar electrostatics as a basis for π-stacking. Our results suggest that a driving force for offset-stacking exists even in the absence of electrostatic interactions. Consequently, tuning electrostatics via functionalization does not guarantee that slip-stacking can be avoided. This has implications for rational design of soft materials and other supramolecular architectures.
Collapse
Affiliation(s)
- Brandon Schramm
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Montgomery Gray
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
8
|
Mei JH, Lai S, Gong YN, Shi WJ, Deng JH, Lu TB, Zhong DC. A Supramolecular-Nanocage-Based Framework Stabilized by π-π Stacking Interactions with Enhanced Photocatalysis. Angew Chem Int Ed Engl 2025; 64:e202413413. [PMID: 39243218 DOI: 10.1002/anie.202413413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/28/2024] [Accepted: 09/06/2024] [Indexed: 09/09/2024]
Abstract
π frameworks, defined as a type of porous supramolecular materials weaved from conjugated molecular units by π-π stacking interactions, provide a new direction in photocatalysis. However, such examples are rarely reported. Herein, we report a supramolecular-nanocage-based π framework constructed from a photoactive Cu(I) complex unit. Structurally, 24 Cu(I) complex units stack together through π-π stacking interactions, forming a truncated octahedral nanocage with sodalite topology. The inner diameter of the nanocage is 2.8 nm. By sharing four open faces, each nanocage connects with four equivalent ones, forming a 3D porous π framework (π-2). π-2 shows good thermal and chemical stability, which can adsorb CO2, iodine, and methyl orange molecules. More importantly, π-2 can serve as a photocatalyst for hydrogen evolution reaction. With ultrafine Pt subnanometer particles (0.9±0.1 nm) incorporated into the nanocages as a co-catalyst, the hydrogen evolution rate reaches a record-high value of 524012 μmol/gPt/h in the absence of any additional photosensitizers. The high photocatalytic activity can be ascribed to the ultrafine size of the Pt particles, as well as the fast electron transfer from π-2 to the highly active Pt upon illumination. π-2 represents the unique stable supramolecular-cage-based π framework with excellent photocatalytic activity.
Collapse
Affiliation(s)
- Jian-Hua Mei
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Shan Lai
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yun-Nan Gong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Wen-Jie Shi
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Ji-Hua Deng
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Tong-Bu Lu
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Di-Chang Zhong
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
9
|
Hao Y, Ji H, Gao L, Qu Z, Zhao Y, Chen J, Wang X, Ma X, Zhang G, Zhang T. Self-assembled carrier-free formulations based on medicinal and food active ingredients. Biomater Sci 2024; 12:6253-6273. [PMID: 39523875 DOI: 10.1039/d4bm00893f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The popularity of medicinal plants, which have a unique system and are mostly used in compound form for the prevention and treatment of a wide range of diseases, is growing worldwide. In recent years, with advances in chemical separation and structural analysis techniques, many of the major bioactive molecules of medicinal plants have been identified. However, the active ingredients in medicinal plants often possess chemical characteristics, including poor water solubility, stability and bioavailability, which limit their therapeutic applications. To address this problem, self-assembly of small molecules from medicinal food sources provides a new strategy. Driven by various types of acting forces, medicinal small molecules with modifiable groups, multiple sites of action, hydrophobic side chains, and rigid backbones with self-assembly properties are able to form various supramolecular network hydrogels, nanoparticles, micelles, and other self-assemblies. This review first summarizes the forms of self-assemblies such as supramolecular network hydrogels, nanoparticles, and micelles at the level of the action site, and discusses the recent studies on the active ingredients in medicinal plants that can be used for self-assembly, in addition to summarizing the advantages of self-assemblies for a variety of disease applications, including wound healing, antitumor, anticancer, and diabetes mellitus. Finally, the problems of self-assemblers and the possible directions for future development are presented. We firmly believe that self-assemblers have the potential to develop effective compounds from drug-food homologous plants, providing valuable information for drug research and new strategies and perspectives for the modernization of Chinese medicine.
Collapse
Affiliation(s)
- Yuan Hao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Haixia Ji
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Li Gao
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Zhican Qu
- Shanxi Nanolattix Health Technology Co., Ltd, Taiyuan 030051, Shanxi, China
| | - Yinghu Zhao
- School of Environment and Safety Engineering, North University of China, Taiyuan 030051, Shanxi, China
| | - Jiahui Chen
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Xintao Wang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Xiaokai Ma
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Guangyu Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| | - Taotao Zhang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, Shanxi, China.
| |
Collapse
|
10
|
Liang K, Liang Y, Tang M, Liu J, Tang ZB, Liu Z. π-Diamond: A Diamondoid Superstructure Driven by π-Interactions. Angew Chem Int Ed Engl 2024; 63:e202409507. [PMID: 38896433 DOI: 10.1002/anie.202409507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/21/2024]
Abstract
Modulating the arrangement of superstructures through noncovalent interactions has a significant impact on macroscopic shape and the expression of unique properties. Constructing π-interaction-driven hierarchical three-dimensional (3D) superstructures poses challenges on account of limited directional control and weak intermolecular interactions. Here we report the construction of a 3D diamondoid superstructure, named π-Diamond, employing a ditopic strained Z-shaped building block comprising a porphyrin unit as bow-limb double-strapped with two m-xylylene units as bowstrings. This superstructure, reminiscent of diamond's tetrahedral carbon composition, is composed of double-walled tetrahedron (DWT) driven solely by π-interactions. Hetero-π-stacking interactions between porphyrin and m-xylylene panels drive the assembly of four building blocks predominantly into a DWT, which undergoes extension to create an adamantane unit and eventually a diamondoid superstructure wherein each porphyrin panel is shared by two neighboring tetrahedra through hetero-π-stacking. π-Diamond exhibits a solid-state fluorescent quantum yield 44 times higher than that of tetraphenylporphyrin along with excellent photocatalytic performance. The precise 3D directionality of π-interactions, achieved through strained multipanel building blocks, revolutionizes the assembly of hierarchical 3D superstructures driven by π-interactions.
Collapse
Affiliation(s)
- Kejiang Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Min Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Jiali Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zheng-Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province. Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, and Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang, 310030, China
- International Institute for Sustainability with Knotted Chiral Meta Matter, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
11
|
Wang R, Ma D, Kong X, Peng F, Cao X, Zhao Y, Lu C, Shi W. Metastable Supramolecular Assembly of Simple Monomers Enabled by Confinement: Towards Aqueous Phase Room Temperature Phosphorescence. Angew Chem Int Ed Engl 2024; 63:e202409162. [PMID: 38860443 DOI: 10.1002/anie.202409162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/12/2024]
Abstract
The application of supramolecular assembly (SA) with room temperature phosphorescence (RTP) in aqueous phase has the potential to revolutionize numerous fields. However, using simple molecules with crystalline RTP to construct SA with aqueous phase RTP is hardly possible from the standpoint of forces. The reason lies in that the transition from crystal to SA involves a structure transformation from highly stable to more dynamic state, leading to increased non-radiative deactivation pathways and silent RTP signal. Here, with the benefit of the confinement from the layered double hydroxide (LDH), various simple molecules (benzene derivatives) can successfully form metastable SA with aqueous phase RTP. The maximum of RTP lifetime and efficiency can reach 654.87 ms and 5.02 %, respectively. Mechanistic studies reveal the LDH energy trap can strengthen the intermolecular interaction, providing the prerequisite for the existence of metastable SA and appearance of aqueous phase RTP. The universality of this strategy will usher exploration into other multifunctional monomer, facilitating the development of SAs with aqueous phase RTP.
Collapse
Affiliation(s)
- Ruixing Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Da Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Xianggui Kong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Feifei Peng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Xiaoqing Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Chao Lu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| | - Wenying Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, P. Box 98, 100029, Beijing, P. R. China
| |
Collapse
|
12
|
Habibagahi B, Hoseini SJ, Bahrami M, Nabavizadeh SM, Chen W, De Giglio E, Mesto E, Schingaro E, Rizzuti A, Mastrorilli P. Self-Assembly of a Hierarchical Metal-Organic Framework at the Liquid/Liquid Interface via π-π Stacking Manipulations in Organoplatinum(IV) Complexes for Methanol Fuel Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16303-16319. [PMID: 39029094 DOI: 10.1021/acs.langmuir.4c01470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
This study focuses on the facile synthesis of the hierarchical architecture of zeolitic imidazolate framework-8 (ZIF-8) films containing an ultrasmall amount of Pt(0) by investigating the synthesis of different organoplatinum complexes and manipulating the π-π stacking effect in these complexes at the liquid/liquid interface. The organometallic Pt(IV) precursors were complexes with a formula of [PtXMe2(R)(bpy)] (bpy = 2,2'-bipyridine; for complex 2, R = CH2CH═CHC6H5 and X = Br; for complex 3, R = CH2CH═CH2 and X = Br; for complex 4, R = Me and X = I) prepared by oxidative addition of cinnamyl bromide, allyl bromide, or methyl iodide to [PtMe2(bpy)] (complex 1). Different thin films were synthesized starting from three organometallic Pt(IV) precursors (i) by reduction of the Pt complexes at the toluene/water interface (TF2-TF4), (ii) by encapsulation of the Pt precursors in a ZIF-8 (TF5-TF7), and (iii) by reduction of the Pt precursors onto a ZIF-8 (TF8-TF10). The self-assembly of ZIF-8 and different organoplatinum precursors at the interface of two immiscible liquids leads to the preparation of films with well-engineered structures such as rhombic dodecahedra, nanorods, hierarchical architectures, and nanowires, which are very difficult and complicated to synthesize under normal conditions. The ultralow loading of platinum complexes with different degrees of π-π stacking of dangling moieties has a great impact on the structure and morphology (directing agent), which in turn drastically changes the catalytic properties. The obtained films were applied as electrocatalysts for methanol oxidation in fuel cells. The electrocatalytic performance of organoplatinum containing a cinnamyl group in hierarchical architecture TF8 was found to be superior to those of nonhierarchical structures.
Collapse
Affiliation(s)
- Behnaz Habibagahi
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - S Jafar Hoseini
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Mehrangiz Bahrami
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - S Masoud Nabavizadeh
- Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Wei Chen
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Elvira De Giglio
- Department of Chemistry, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | - Ernesto Mesto
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | - Emanuela Schingaro
- Dipartimento di Scienze della Terra e Geoambientali, Università degli Studi di Bari Aldo Moro, via E. Orabona 4, 70125 Bari, Italy
| | | | | |
Collapse
|
13
|
Yang W, Mo Q, He QT, Li XP, Xue Z, Lu YL, Chen J, Zheng K, Fan Y, Li G, Su CY. Anion Modulation of Ag-Imidazole Cuboctahedral Cage Microenvironments for Efficient Electrocatalytic CO 2 Reduction. Angew Chem Int Ed Engl 2024; 63:e202406564. [PMID: 38766872 DOI: 10.1002/anie.202406564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
How to achieve CO2 electroreduction in high efficiency is a current challenge with the mechanism not well understood yet. The metal-organic cages with multiple metal sites, tunable active centers, and well-defined microenvironments may provide a promising catalyst model. Here, we report self-assembly of Ag4L4 type cuboctahedral cages from coordination dynamic Ag+ ion and triangular imidazolyl ligand 1,3,5-tris(1-benzylbenzimidazol-2-yl) benzene (Ag-MOC-X, X=NO3, ClO4, BF4) via anion template effect. Notably, Ag-MOC-NO3 achieves the highest CO faradaic efficiency in pH-universal electrolytes of 86.1 % (acidic), 94.1 % (neutral) and 95.3 % (alkaline), much higher than those of Ag-MOC-ClO4 and Ag-MOC-BF4 with just different counter anions. In situ attenuated total reflection Fourier transform infrared spectroscopy observes formation of vital intermediate *COOH for CO2-to-CO conversion. The density functional theory calculations suggest that the adsorption of CO2 on unsaturated Ag-site is stabilized by C-H⋅⋅⋅O hydrogen-bonding of CO2 in a microenvironment surrounded by three benzimidazole rings, and the activation of CO2 is dependent on the coordination dynamics of Ag-centers modulated by the hosted anions through Ag⋅⋅⋅X interactions. This work offers a supramolecular electrocatalytic strategy based on Ag-coordination geometry and host-guest interaction regulation of MOCs as high-efficient electrocatalysts for CO2 reduction to CO which is a key intermediate in chemical industry process.
Collapse
Affiliation(s)
- Wenqian Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Qijie Mo
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Qi-Ting He
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Xiang-Ping Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Ziqian Xue
- School of Advanced Energy, Sun Yat-Sen University, 518107, Shenzhen, China
| | - Yu-Lin Lu
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Jie Chen
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Kai Zheng
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Yanan Fan
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| | - Cheng-Yong Su
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, LIFM, IGCME, School of Chemistry, Sun Yat-Sen University, 510275, Guangzhou, China
| |
Collapse
|
14
|
Akhtar H, Amara U, Mahmood K, Hanif M, Khalid M, Qadir S, Peng Q, Safdar M, Amjad M, Saif MZ, Tahir A, Yaqub M, Khalid K. Drug carrier wonders: Synthetic strategies of zeolitic imidazolates frameworks (ZIFs) and their applications in drug delivery and anti-cancer activity. Adv Colloid Interface Sci 2024; 329:103184. [PMID: 38781826 DOI: 10.1016/j.cis.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
With the rapid advancement of nanotechnology, stimuli-responsive nanomaterials have emerged as a feasible choice for the designing of controlled drug delivery systems. Zeolitic imidazolates frameworks are a subclass of Metal-organic frameworks (MOFs) that are recognized by their excellent porosity, structural tunability and chemical modifications make them promising materials for loading targeted molecules and therapeutics agents. The biomedical industry uses these porous materials extensively as nano-carriers in drug delivery systems. These MOFs not only possess excellent targeted imaging ability but also cause the death of tumor cells drawing considerable attention in the current framework of anticancer drug delivery systems. In this review, the outline of stability, porosity, mechanism of encapsulation and release of anticancer drug have been reported extensively. In the end, we also discuss a brief outline of current challenges and future perspectives of ZIFs in the biomedical world.
Collapse
Affiliation(s)
- Hamza Akhtar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Umay Amara
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, China.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Hanif
- Department of Pharmaceutics, faculty of Pharmacy, Bahauddin Zakariya University, Multan 608000, Pakistan.
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sobia Qadir
- Department of Physics, Govt. Graduate College of Science Multan, 6FFJ+55F, Bosan Rd, Multan, Pakistan
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Safdar
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Amjad
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Zubair Saif
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aniqa Tahir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Kiran Khalid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
15
|
Risa A, Barrios LA, Diego R, Roubeau O, Aleshin DY, Nelyubina Y, Novikov V, Teat SJ, Ribas-Ariño J, Aromí G. Engineered π⋯π interactions favour supramolecular dimers X@[FeL 3] 2 (X = Cl, Br, I): solid state and solution structure. Chem Sci 2024; 15:9047-9053. [PMID: 38903210 PMCID: PMC11186344 DOI: 10.1039/d4sc01365d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/23/2024] [Indexed: 06/22/2024] Open
Abstract
Ditopic bis-pyrazolylpyridine ligands usually react with divalent metal ions (M2+) to produce dinuclear triple-stranded helicates [M2L3]4+ or, via π⋯π interactions, dimers of monoatomic complexes ([ML3]2)4+. The introduction of an additional benzene ring at each end of ligand L increases the number of aromatic contacts within the supramolecular aggregate by 40%, driving the self-recognition process in an irreversible manner. Consequently, the mixing of new bis-pyrazolylquinoline L2 with FeX2 salts leads to crystallization of the tripartite high-spin assemblies (X@[Fe(L2)3]2)3+ (X = Cl, Br or I). The aggregates exhibit exceptional stability, as confirmed by a combination of paramagnetic 1H NMR techniques, demonstrating their persistence in solution. Our investigations further reveal that the guests Br- and I- are retained inside the associate in solution but Cl- is immediately released, resulting in the formation of the empty supramolecular dimer ([Fe(L2)3]2)4+.
Collapse
Affiliation(s)
- Arnau Risa
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
| | - Leoní A Barrios
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| | - Rosa Diego
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| | - Olivier Roubeau
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza Zaragoza Spain
- Departamento de Física de la Materia Condensada, Universidad de Zaragoza Zaragoza Spain
| | - Dmitry Y Aleshin
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences 119991 Moscow Russia
| | - Yulia Nelyubina
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 119991 Moscow Russia
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences Acad. Semenov Str. 1 Chernogolovka 142432 Russia
| | - Valentin Novikov
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences Acad. Semenov Str. 1 Chernogolovka 142432 Russia
| | - Simon J Teat
- Advanced Light Source, Berkeley Laboratory 1 Cyclotron Road Berkeley California 94720 USA
| | - Jordi Ribas-Ariño
- Departament de Química Física, IQTCUB, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Guillem Aromí
- Departament de Química Inorgànica i Orgànica, Secció Química Inorgànica, Universitat de Barcelona Barcelona Spain
- Institute of Nanoscience and Nanotechnology of the University of Barcelona (IN2UB) Barcelona Spain
| |
Collapse
|
16
|
Liu Z, Xie Y, Liu L, Cai X, Yin HQ, Zuo M, Liu Y, Feng S, Huang W, Wu D. π-Sticked Metal‒Organic Monolayers for Single-Metal-Site Dependent CO 2 Photoreduction and Hydrogen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309194. [PMID: 38039490 DOI: 10.1002/smll.202309194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/12/2023] [Indexed: 12/03/2023]
Abstract
Hierarchical self-assembly of 2D metal‒organic layers (MOLs) for the construction of advanced functional materials have witnessed considerable interest, due to the increasing atomic utilizations and well-defined atom‒property relationship. However, the construction of atomically precise MOLs with mono-/few-layered thickness through hierarchical self-assembly process remains a challenge, mostly because the elaborate long-range order is difficult to control via conventional noncovalent interaction. Herein, a quadruple π-sticked metal‒organic layer (πMOL) is reported with checkerboard-like lattice in ≈1.0 nanometre thickness, on which the catalytic selectivity can be manipulated for highly efficient CO2 reduction reaction (CO2RR) and hydrogen evolution reaction (HER) over a single metal site. In saturated CO2 aqueous acetonitrile, Fe-πMOL achieves a highly effective CO2RR with the yield of ≈3.98 mmol g‒1 h‒1 and 91.7% selectivity. In contrast, the isostructural Co-πMOL as well as mixed metallic FeCo-πMOL exhibits a high activity toward HER under similar conditions. DFT calculations reveal that single metal site exhibits the significant difference in CO2 adsorption energy and activation barrier, which triggers highly selective CO2RR for Fe site and HER for Co site, respectively. This work highlights the potential of supramolecular π…π interaction for constructing monolayer MOL materials to uniformly distribute the single metal sites for artificial photosynthesis.
Collapse
Affiliation(s)
- Zhe Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Yangbin Xie
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Xuankun Cai
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Hua-Qing Yin
- Institute for New Energy Materials & Low Carbon Technologies, School of Material Science & Engineering, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Mengkai Zuo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Yang Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Sheng Feng
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, P. R. China
| |
Collapse
|
17
|
Du S, Sun S, Ju Z, Wang W, Su K, Qiu F, Yu X, Xu G, Yuan D. Hierarchical Self-Assembly of Capsule-Shaped Zirconium Coordination Cages with Quaternary Structure. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308445. [PMID: 38229156 PMCID: PMC10953209 DOI: 10.1002/advs.202308445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/07/2024] [Indexed: 01/18/2024]
Abstract
Biological macromolecules exhibit emergent functions through hierarchical self-assembly, a concept that is extended to design artificial supramolecular assemblies. Here, the first example of breaking the common parallel arrangement of capsule-shaped zirconium coordination cages is reported by constructing the hierarchical porous framework ZrR-1. ZrR-1 adopts a quaternary structure resembling protein and contains 12-connected chloride clusters, representing the highest connectivity for zirconium-based cages reported thus far. Compared to the parallel framework ZrR-2, ZrR-1 demonstrated enhanced stability in acidic aqueous solutions and a tenfold increase in BET surface area (879 m2 g-1 ). ZrR-1 also exhibits excellent proton conductivity, reaching 1.31 × 10-2 S·cm-1 at 353 K and 98% relative humidity, with a low activation energy of 0.143 eV. This finding provides insights into controlling the hierarchical self-assembly of metal-organic cages to discover superstructures with emergent properties.
Collapse
Affiliation(s)
- Shunfu Du
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Shihao Sun
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
| | - Zhanfeng Ju
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Wenjing Wang
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Kongzhao Su
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Fenglei Qiu
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- College of ChemistryFuzhou UniversityFuzhou350108P. R. China
| | - Xuying Yu
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Gang Xu
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| | - Daqiang Yuan
- State Key Laboratory of Structural ChemistryFujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen EnergyFujian Institute of Research on the Structure of MatterThe Chinese Academy of SciencesFuzhouFujian350108P. R. China
- University of the Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
18
|
Wang J, Jiang Z, Yin JF, Zhao H, Dong Q, Li K, Zhong W, Liu D, Yuan J, Yin P, Li Y, Lin Y, Chen M, Wang P. Strain-Induced Heteromorphosis Multi-Cavity Cages: Tension-Driven Self-Expansion Strategy for Controllable Enhancement of Complexity in Supramolecular Assembly. Angew Chem Int Ed Engl 2024; 63:e202317674. [PMID: 38055187 DOI: 10.1002/anie.202317674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/07/2023]
Abstract
Coordinative supramolecular cages with adjustable cavities have found extensive applications in various fields, but the cavity modification strategies for multi-functional structures are still challenging. Here, we present a tension-driven self-expansion strategy for construction of multi-cavity cages with high structural complexity. Under the regulation of strain-induced capping ligands, unprecedented heteromorphosis triple-cavity cages S2 /S4 were obtained based on a metallo-organic ligand (MOL) scaffold. The heteromorphosis cages exhibited significant higher cavity diversity than the homomorphous double-cavity cages S1 /S3 ; all of the cages were thoroughly characterized through various analytical techniques including (1D and 2D) NMR, ESI-MS, TWIM-MS, AFM, and SAXS analyses. Furthermore, the encapsulation of porphyrin in the cavities of these multi-cavity cages were investigated. This research opens up new possibilities for the architecture of heteromorphosis supramolecular cages via precisely controlled "scaffold-capping" assembly with preorganized ligands, which could have potential applications in the development of multifunctional structures with higher complexity.
Collapse
Affiliation(s)
- Jun Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Zhilong Jiang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Jia-Fu Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - He Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Qiangqiang Dong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Kaixiu Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Wanying Zhong
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Yifan Lin
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Mingzhao Chen
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
| | - Pingshan Wang
- Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou, 510006, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
19
|
Das P, N M, Singh N, Datta P. Supramolecular Nanostructures for the Delivery of Peptides in Cancer Therapy. J Pharmacol Exp Ther 2024; 388:67-80. [PMID: 37827700 DOI: 10.1124/jpet.123.001698] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/14/2023] Open
Abstract
Supramolecular nanostructured based delivery systems are emerging as a meaningful approach in the treatment of cancer, offering controlled drug release and improved therapeutic efficacy. The self-assembled structures can be small molecules, polymers, peptides, or proteins, which can be used and functionalized to achieve tailored release and target specific cells, tissues, or organs. These structures can improve the solubility and stability of drugs having low aqueous solubility by encapsulating and protecting them from degradation. Alongside, peptides as natural biomolecules have gained increasing attention as potential candidates in cancer treatment because of their biocompatibility, low cytotoxicity, and high specificity toward tumor cells. The amino acid sequences in peptide molecules are tunable, efficiently controlling the morphology of peptide-based self-assembled nanosystems and offering flexibility to form supramolecular nanostructures (SNs). It is evident from the current literature that the supramolecular nanostructures based delivery of peptide for cancer treatment hold great promise for future cancer therapy, offering potential strategies for personalized medicine with improved patient outcomes. SIGNIFICANCE STATEMENT: This review focuses on fundamentals and various drug delivery mechanisms based on SNs. Different SN approaches and recent literature reviews on peptide delivery are also presented to the readers.
Collapse
Affiliation(s)
- Priyanka Das
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Manasa N
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Nidhi Singh
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| | - Pallab Datta
- Polymer-Based Medical Devices and Complex Drug Delivery Systems Laboratory, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Kolkata, India
| |
Collapse
|
20
|
Wang B, Nan ZA, Li Q, Liu J, Lu ZX, Wang W, Zhuo Z, Li GL, Huang YG. Trapping an Ester Hydrate Intermediate in a π-Stacked Macrocycle with Multiple Hydrogen Bonds. Molecules 2023; 28:5705. [PMID: 37570674 PMCID: PMC10420806 DOI: 10.3390/molecules28155705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/22/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Ester hydrates, as the intermediates of the esterification between acid and alcohol, are very short-lived and challenging to be trapped. Therefore, the crystal structures of ester hydrates have rarely been characterized. Herein, we present that the mono-deprotonated ester hydrates [CH3OSO2(OH)2]-, serving as the template for the self-assembly of a π-stacked boat-shaped macrocycle (CH3OSO2(OH)2)0.67(CH3OSO3)1.33@{[ClLCoII]6}·Cl4·13CH3OH·9H2O (1) (L = tris(2-benzimidazolylmethyl) amine), can be trapped in the host by multiple NH···O hydrogen bonds. In the solution of CoCl2, L, and H2SO4 in MeOH, HSO4- reacts with MeOH, producing [CH3OSO3]- via the ester hydrate intermediate of [CH3OSO3(OH)2]-. Both the product and the intermediate serve as the template directing the self-assembly of the π-stacked macrocycle, in which the short-lived ester hydrate is firmly trapped and stabilized, as revealed by single-crystal analysis.
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Ang Nan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qing Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jin Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zi-Xiu Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhu Zhuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guo-Ling Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - You-Gui Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China; (B.W.); (Z.-A.N.); (Q.L.); (J.L.); (Z.-X.L.); (W.W.); (Z.Z.); (G.-L.L.)
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
21
|
Wang B, Nan ZA, Liu J, Lu ZX, Wang W, Zhuo Z, Li GL, Huang YG. Metalation of a Hierarchical Self-Assembly Consisting of π-Stacked Cubes through Single-Crystal-to-Single-Crystal Transformation. Molecules 2023; 28:4923. [PMID: 37446584 DOI: 10.3390/molecules28134923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Single-crystal-to-single-crystal metalation of organic ligands represents a novel method to prepare metal-organic complexes, but remains challenging. Herein, a hierarchical self-assembly {(H12L8)·([N(C2H5)4]+)3·(ClO4-)15·(H2O)32} (1) (L = tris(2-benzimidazolylmethyl) amine) consisting of π-stacked cubes which are assembled from eight partially protonated L ligands is obtained. By soaking the crystals of compound 1 in the aqueous solution of Co(SCN)2, the ligands coordinate with Co2+ ions stoichiometrically and ClO4- exchange with SCN- via single-crystal-to-single-crystal transformation, leading to {([CoSCNL]+)8·([NC8H20]+)3·(SCN)11·(H2O)13} (2).
Collapse
Affiliation(s)
- Bin Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Ang Nan
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jin Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zi-Xiu Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhu Zhuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guo-Ling Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - You-Gui Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
22
|
Li LL, Huang M, Chen T, Xu XF, Zhuo Z, Wang W, Huang YG. A Porous π-Stacked Self-Assembly of Cup-Shaped Palladium Complex for Iodine Capture. Molecules 2023; 28:molecules28072881. [PMID: 37049644 PMCID: PMC10095786 DOI: 10.3390/molecules28072881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023] Open
Abstract
Acquiring adsorbents capable of effective radioiodine capture is important for nuclear waste treatment; however, it remains a challenge to develop porous materials with high and reversible iodine capture. Herein, we report a porous self-assembly constructed by a cup-shaped PdII complex through intermolecular π···π interactions. This self-assembly features a cubic structure with channels along all three Cartesian coordinates, which enables it to efficiently capture iodine with an adsorption capacity of 0.60 g g-1 for dissolved iodine and 1.81 g g-1 for iodine vapor. Furthermore, the iodine adsorbed within the channels can be readily released upon immersing the bound solid in CH2Cl2, which allows the recycling of the adsorbent. This work develops a new porous molecular material promising for practical iodine adsorption.
Collapse
Affiliation(s)
- Lin-Lin Li
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Min Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350002, China
| | - Ting Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350002, China
| | - Xiao-Feng Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhu Zhuo
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Wei Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - You-Gui Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- Xiamen Institute of Rare Earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
23
|
Liu Y, Wu Y, Luo Z, Li M. Designing supramolecular self-assembly nanomaterials as stimuli-responsive drug delivery platforms for cancer therapy. iScience 2023; 26:106279. [PMID: 36936787 PMCID: PMC10014307 DOI: 10.1016/j.isci.2023.106279] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Stimuli-responsive nanomaterials have attracted substantial interest in cancer therapy, as they hold promise to deliver anticancer agents to tumor sites in a precise and on-demand manner. Interestingly, supramolecular chemistry is a burgeoning discipline that entails the reversible bonding between components at the molecular and nanoscale levels, and the recent advances in this area offer the possibility to design nanotherapeutics with improved controllability and functionality for cancer therapy. Herein, we provide a comprehensive summary of typical non-covalent interaction modes, which primarily include hydrophobic interaction, hydrogel bonding, host-guest interaction, π-π stacking, and electrostatic interaction. Special emphasis is placed on the implications of these interaction modes to design novel stimuli-responsive drug delivery principles and concepts, aiming to enhance the spatial, temporal, and dosage precision of drug delivery to cancer cells. Finally, future perspectives are discussed to highlight current challenges and future opportunities in self-assembly-based stimuli-responsive drug delivery nanotechnologies for cancer therapy.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Yunyun Wu
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing 400042, China
| | - Zhong Luo
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| | - Menghuan Li
- School of Life Science, Chongqing University, Chongqing 400044, P. R. China
| |
Collapse
|
24
|
Hu B, Wen WY, Sun HY, Wang YQ, Du KZ, Ma W, Zou GD, Wu ZF, Huang XY. Single-Crystal Superstructures via Hierarchical Assemblies of Giant Rubik's Cubes as Tertiary Building Units. Angew Chem Int Ed Engl 2023; 62:e202219025. [PMID: 36646648 DOI: 10.1002/anie.202219025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/18/2023]
Abstract
Intricate superstructures possess unusual structural features and promising applications. The preparation of superstructures with single-crystalline nature are conducive to understanding the structure-property relationship, however, remains an intriguing challenge. Herein we put forward a new hierarchical assembly strategy towards rational and precise construction of intricate single-crystal superstructures. Firstly, two unprecedented superclusters in Rubik's cube's form with a size of ≈2×2×2 nm3 are constructed by aggregation of eight {Pr4 Sb12 } oxohalide clusters as secondary building units (SBUs). Then, the Rubik's cubes further act as isolable tertiary building units (TBUs) to assemble diversified single-crystal superstructures. Importantly, intermediate assembly states are captured, which helps illustrate the evolution of TBU-based superstructures and thus provides a profound understanding of the assembly process of superstructures at the atomic level.
Collapse
Affiliation(s)
- Bing Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei-Yang Wen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350002, P. R. China
| | - Hai-Yan Sun
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yan-Qi Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, 32 Shangsan Road, Fuzhou, Fujian, 350007, P. R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Guo-Dong Zou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Zhao-Feng Wu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
25
|
Li Z, Song W, Zhu Y, Yan L, Zhong X, Zhang M, Li H. The Full Cytosine-Cytosine Base Paring: Self-Assembly and Crystal Structure. Chemistry 2023; 29:e202203979. [PMID: 36757279 DOI: 10.1002/chem.202203979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/10/2023]
Abstract
The synthesis of self-assembly systems that can mimic partial biological behaviours require ingenious and delicate design. For decades, scientists are committed to exploring new base pairing patterns using hydrogen bonds directed self-assembly of nucleotides. A fundamental question is the adaptive circumstance of the recognition between base pairs, namely, how solvent conditions affect the domain of base pairs. Towards this question, three nucleotide complexes based on 2'-deoxycytidine-5'-monophosphate (dCMP) and cytidine-5'-monophosphate (CMP) were synthesized in different solvents and pH values, and an unusual cytosine-cytosine base paring pattern (named full C : C base pairing) has been successfully obtained. Systematic single crystal analysis and 1 H NMR titration spectra have been performed to explore factors influencing the formation of base paring patterns. Moreover, supramolecular chirality of three complexes were studied using circular dichroism (CD) spectroscopy in solution and solid-state combined with crystal structure analysis.
Collapse
Affiliation(s)
- Zhongkui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wenjing Song
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yanhong Zhu
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Li Yan
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xue Zhong
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Menglei Zhang
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hui Li
- Key Laboratory of Medicinal Molecule Science and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
26
|
Sarkar C, Sk S, Majumder A, Haldar S, Vijaykumar G, Bera M. Synthesis, structure, thermal and magnetic properties of new tetranuclear copper(II) complex supported by multidentate ligand and glutarate functionality. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Sawanaka Y, Yamashina M, Ohtsu H, Toyota S. A self-complementary macrocycle by a dual interaction system. Nat Commun 2022; 13:5648. [PMID: 36163173 PMCID: PMC9512892 DOI: 10.1038/s41467-022-33357-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Self-complementary assembly is one of the most promising phenomena for the formation of discrete assemblies, e.g., proteins and capsids. However, self-complementary assembly based on multiple host-guest systems has been scarcely reported due to the difficulty in controlling each assembly. Herein, we report a dual interaction system in which the key assembly direction is well regulated by both π-π stacking and hydrogen bonding to construct a self-complementary macrocycle. Continuous host-guest behavior of anthracene-based molecular tweezers during crystallization leads to successful construction of a cyclic hexamer, which is reminiscent of Kekulé’s monkey model. Furthermore, the cyclic hexamer in a tight and triple-layered fashion shows hierarchical assembly into cuboctahedron and rhombohedral assemblies in the presence of trifluoroacetic acid. Our findings would be potentially one of metal-free strategies for constructing anthracene-based supramolecular assemblies with higher-order structure. In nature, HIV capsid consists of single class of protein unit by self-complementarity. Here, the authors find that a molecular tweezer forms a cyclic hexamer by its continuous host-guest behavior, and constructs a large cuboctahedron by hierarchical assembly.
Collapse
Affiliation(s)
- Yuta Sawanaka
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Masahiro Yamashina
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan.
| | - Hiroyoshi Ohtsu
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan
| | - Shinji Toyota
- Department of Chemistry, School of Science, Tokyo Institute of Technology, Tokyo, Japan.
| |
Collapse
|
28
|
Wang J, Wang X, Yang K, Hu S, Wang W. Self-Assembly of Small Organic Molecules into Luminophores for Cancer Theranostic Applications. BIOSENSORS 2022; 12:683. [PMID: 36140068 PMCID: PMC9496225 DOI: 10.3390/bios12090683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 11/17/2022]
Abstract
Self-assembled biomaterials have been widely explored for real-time fluorescence imaging, imaging-guided surgery, and targeted therapy for tumors, etc. In particular, small molecule-based self-assembly has been established as a reliable strategy for cancer theranostics due to the merits of small-sized molecules, multiple functions, and ease of synthesis and modification. In this review, we first briefly introduce the supramolecular chemistry of small organic molecules in cancer theranostics. Then, we summarize and discuss advanced small molecule-based self-assembly for cancer theranostics based on three types, including peptides, amphiphilic molecules, and aggregation-induced emission luminogens. Finally, we conclude with a perspective on future developments of small molecule-based self-assembled biomaterials integrating diagnosis and therapy for biomedical applications. These applications highlight the opportunities arising from the rational design of small organic molecules with self-assembly properties for precision medicine.
Collapse
Affiliation(s)
- Jing Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Xueliang Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Sijun Hu
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
| | - Wanhe Wang
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, 45 South Gaoxin Road, Shenzhen 518057, China
- Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
- Collaborative Innovation Center of NPU, Shanghai 201100, China
- Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing 400000, China
| |
Collapse
|
29
|
Zhou MY, Tong J, Lu HL, Wang XY, Yu SY. Hierarchical self-assembly and packing models of dipalladium(II,II)-based metallacapsules and metallacages based on amide-functionalized multi-pyrazoles. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Constructing Supramolecular Frameworks Based Imidazolate-Edge-Bridged Metallacalix[3]arenes via Hierarchical Self-Assemblies. CRYSTALS 2022. [DOI: 10.3390/cryst12020212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Hierarchical self-assembly of novel supramolecular structures has obtained increasing attention. Herein we design and synthesize the palladium(II)-based molecular basket-like structures, as structural analog of metallacalix[3]arene [M3L3]3+ (M = (dmbpy)Pd, (phen)Pd; dmbpy = 4,4’-dimethyl-bipyridine; phen = 1,10-phenanthroline), by coordination-driven self-assembly from imidazolate-containing ligand [4,5-bis(2,5-dimethylthiophen-3-yl)-1H-imidazole (HL) with palladium(II) nitrate precursors (dmbpy)Pd(NO3)2 and (phen)Pd(NO3)2. The difference of the palladium(II) nitrate precursors with π-surface in complex produces variations of the two-dimensional (2-D) and three-dimensional (3-D) high-ordered supramolecular architectures, constructed by π···π packing and hydrogen bonding interactions, with metallacalixarenes as building blocks. These results provide perceptions of further exploring the hierarchical assembly of supramolecular structures based on π···π packing and multiple hydrogen bonding.
Collapse
|
31
|
Wang D, Zhang L, Zhao Y. Template-Free Synthesis of an Interlocked Covalent Organic Molecular Cage. J Org Chem 2022; 87:2767-2772. [DOI: 10.1021/acs.joc.1c02688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| | - Lin Zhang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, 266000 Qingdao, China
| |
Collapse
|
32
|
Guan X, Meng F, Tan H, Wang X, Li J, Wei J, Ouyang J, Na N. Modular and hierarchical self-assembly of siRNAs into supramolecular nanomaterials for soft and homogeneous siRNA loading and precise and visualized intracellular delivery. Chem Sci 2022; 13:8657-8666. [PMID: 35974751 PMCID: PMC9337723 DOI: 10.1039/d2sc02488h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/02/2022] [Indexed: 12/04/2022] Open
Abstract
siRNA therapeutics are challenged by homogeneous and efficient loading, maintenance of biological activities, and precise, dynamic and monitorable site-release. Herein, supramolecular nanomaterials of WP5⊃G–siRNA were constructed by modular and hierarchical self-assembly of siRNA with guest (3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione derivative, G) and host (pillar[5]arene, WP5) molecules in the same system. Demonstrated by experiments and theoretical calculations, WP5⊃G–siRNA was constructed via comprehensive weak interactions including electrostatic, hydrophobic–hydrophilic, host–guest and π–π interactions. Therefore, siRNAs were efficiently loaded, maintaining good stability, bioactivities and biocompatibilities. At pH 6.8, G was protonated to give weak acidic-responsive “turn-on” fluorescent signals, which realized the precise location of cancer sites. This triggered a subsequent delivery and a dynamic release of siRNA in cancer cells under acidic conditions for the entire collapse of WP5⊃G–siRNA by the protonation of both WP5 and G. By both in vitro and in vivo experiments, precise and visualized delivery to cancer sites was achieved to exhibit effective tumour inhibition. This provided an efficient and soft strategy of siRNA therapies and expanded the application of supramolecular nanomaterials in diagnosis and treatment. Supramolecular nanomaterials of WP5⊃G–siRNA were constructed by modular and hierarchical self-assembly of siRNA with guest and host molecules, initiating weak acidic-responsive, precise and visualized intracellular delivery for efficient therapies.![]()
Collapse
Affiliation(s)
- Xiaowen Guan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fanqi Meng
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hongwei Tan
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xiaoni Wang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jingjing Li
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Juanjuan Wei
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin Ouyang
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Na Na
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Liang XW, Zhang LL, Zhang T, Zhao JP, liu F. Supramolecular Isomorphic Dodecanuclear Cobalt Clusters with Same Metal Shell but Different Core Ligands. Dalton Trans 2022; 51:8491-8496. [DOI: 10.1039/d2dt00915c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, we report two supramolecular isomorphic dodecanuclear cobalt complexes, [Co12(mtz)3(L)6(NO3)2(OH)(N3)3]•(OH)3 (1) and [Co12(mtz)3(L)6(NO3)2(OH)(N3)(OAc)]•(OH)4 (2), (Hmtz = 5-Methyl-1H-tetrazole, H2L = 7,7′-(ethane-1,1-diyl) diquinolin-8-ol) crystallizing in space group with the same...
Collapse
|