1
|
Décout JL, Maurel MC. Purine Chemistry in the Early RNA World at the Origins of Life: From RNA and Nucleobases Lesions to Current Key Metabolic Routes. Chembiochem 2025:e2500035. [PMID: 40237374 DOI: 10.1002/cbic.202500035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/25/2025] [Indexed: 04/18/2025]
Abstract
In early life, RNA probably played the central role and, in the corresponding RNA world, the main produced amino acids and small peptides had to react continuously with RNA, ribonucleos(t)ides and nucleobases, especially with purines. A RNA-peptide world and key metabolic pathways have emerged from the corresponding chemical modifications such as the translation process performed by the ribosome. Some interesting reactions of the purine bicycle and of the corresponding ribonucleos(t)ides are performed under plausible prebiotic conditions and described RNA chemical lesions are reviewed with the prospect to highlight their connection with some major steps of the purine and histidine biosynthetic pathways that are, in an intriguingly way, related through two key metabolites, adenosine 5'-triphosphate and the imidazole ribonucleotide 5-aminoimidazole-4-carboxamide ribonucleotide. Ring-opening reactions of purines stand out as efficient accesses to imidazole ribonucleotides and to formamidopyrimidine (Fapy) ribonucleotides suggesting that biosynthetic pathway' first steps have emerged from RNA and ribonucleos(t)ide damages. Also, are summarized the works on the formation and catalytic properties, under plausible prebiotic conditions, of N6-derivatives of the purine base adenine as potential surrogates of histidine in catalysis accordingly to their structural relationship.
Collapse
Affiliation(s)
- Jean-Luc Décout
- Département de Pharmacochimie Moléculaire, UMR 5063, Université Grenoble Alpes, CNRS, Faculté de Pharmacie, 38000, Grenoble, France
| | - Marie-Christine Maurel
- Institut de Systématique, Evolution, Biodiversité (ISyEB), UMR 7205, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, 75005, Paris, France
| |
Collapse
|
2
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
3
|
Gatenby RA, Gallaher J, Subramanian H, Hammarlund EU, Whelan CJ. On the Origin of Information Dynamics in Early Life. Life (Basel) 2025; 15:234. [PMID: 40003644 PMCID: PMC11856217 DOI: 10.3390/life15020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/20/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
We hypothesize that predictable variations in environmental conditions caused by night/day cycles created opportunities and hazards that initiated information dynamics central to life's origin. Increased daytime temperatures accelerated key chemical reactions but also caused the separation of double-stranded polynucleotides, leading to hydrolysis, particularly of single-stranded RNA. Daytime solar UV radiation promoted the synthesis of organic molecules but caused broad damage to protocell macromolecules. We hypothesize that inter-related simultaneous adaptations to these hazards produced molecular dynamics necessary to store and use information. Self-replicating RNA heritably reduced the hydrolysis of single strands after separation during warmer daytime periods by promoting sequences that formed hairpin loops, generating precursors to transfer RNA (tRNA), and initiating tRNA-directed evolutionary dynamics. Protocell survival during daytime promoted sequences in self-replicating RNA within protocells that formed RNA-peptide hybrids capable of scavenging UV-induced free radicals or catalyzing melanin synthesis from tyrosine. The RNA-peptide hybrids are precursors to ribosomes and the triplet codes for RNA-directed protein synthesis. The protective effects of melanin production persist as melanosomes are found throughout the tree of life. Similarly, adaptations mitigating UV damage led to the replacement of Na+ by K+ as the dominant mobile cytoplasmic cation to promote diel vertical migration and selected for homochirality. We conclude that information dynamics emerged in early life through adaptations to predictably fluctuating opportunities and hazards during night/day cycles, and its legacy remains observable in extant life.
Collapse
Affiliation(s)
- Robert A. Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Jill Gallaher
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Integrated Mathematical Oncology Department, Moffitt Cancer Center, Tampa, FL 33612, USA
| | | | - Emma U. Hammarlund
- Department of Experimental Medical Science, Lund University, 221 00 Lund, Sweden;
| | - Christopher J. Whelan
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL 33612, USA; (R.A.G.); (J.G.)
- Metabolism and Physiology Department Moffitt Cancer Center, Tampa, FL 33612, USA
| |
Collapse
|
4
|
Ragab A. Recent advances in the synthesis, reaction, and bio-evaluation potential of purines as precursor pharmacophores in chemical reactions: a review. RSC Adv 2025; 15:3607-3645. [PMID: 39906628 PMCID: PMC11793083 DOI: 10.1039/d4ra08271k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Purines are nitrogenous heterocyclic compounds characterized by the presence of two fused rings: pyrimidine and imidazole. Their significance is underscored by their widespread occurrence in natural products as the metabolic processes of all living organisms heavily rely on purines and their synthetic derivatives. Furthermore, purines exhibit considerable bioactivity, highlighting their importance in biological systems. Given their unique structural characteristics and ability to yield a diverse array of bioactive molecules, purines have attracted substantial attention from researchers. This review illustrates the recent methods for the synthesis of purines from diaminomaleonitrile, urea derivatives, imidazole, and pyrimidine derivatives reported from 2019 to 2024. Additionally, it elucidates the various chemical modifications applied to the purine nucleus, including benzoylation, alkylation, halogenation, amination, selenylation, thiolation, condensation, diazotization, coupling reactions, and other miscellaneous reactions. Moreover, this review discusses several biological evaluations, including the mechanisms of action of purine derivatives as anticancer, antimicrobial, anti-inflammatory, antiviral, antioxidant, and anti-Alzheimer agents. This review aims to assist researchers in synthetic organic and medicinal chemistry toward the development and enhancement of novel methodologies for the synthesis of new purine molecules while supporting biologists in the identification of new targets for bio-evaluation.
Collapse
Affiliation(s)
- Ahmed Ragab
- Chemistry Department, Faculty of Science, Galala University Galala City Suez 43511 Egypt
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University Nasr City Cairo 11884 Egypt
| |
Collapse
|
5
|
Kufner C, Krebs S, Fischaleck M, Philippou-Massier J, Blum H, Bucher DB, Braun D, Zinth W, Mast CB. Selection of Early Life Codons by Ultraviolet Light. ACS CENTRAL SCIENCE 2025; 11:147-156. [PMID: 39866696 PMCID: PMC11758376 DOI: 10.1021/acscentsci.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/28/2025]
Abstract
How life developed in its earliest stages is a central but notoriously difficult question in science. The earliest lifeforms likely used a reduced set of codon sequences that were progressively completed over time, driven by chemical, physical, and combinatorial constraints. However, despite its importance for prebiotic chemistry, UV radiation has not been considered a selection pressure for the evolution of early codon sequences. In this proof-of-principle study, we quantified the UV susceptibility of large pools of DNA protogenomes and tested the timing of evolutionary incorporation of codon sequences using a Monte Carlo method utilizing sequence-context-dependent damage rates previously determined by high throughput sequencing experiments. We traced the UV-radiation selection pressure on early protogenomes comprising a limited number of codon sequences to late protogenomes with access to all codons. The modeling showed that in just minutes under early sunlight, the choice of the first codons determined whether most of the protogenomes remained intact or became damaged entirely. The results correlated with earlier chemical models of the evolution of the genetic code. Our results show how UV could have played a crucial role in the evolution of the early genetic code for a DNA-based genome and provide the concept for future RNA-based studies.
Collapse
Affiliation(s)
- Corinna
L. Kufner
- Harvard-Smithsonian
Center for Astrophysics, Department of Astronomy,
Harvard University, 60
Garden Street, Cambridge, Massachusetts 02138, United States
| | - Stefan Krebs
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Marlis Fischaleck
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Julia Philippou-Massier
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory
for Functional Genome Analysis, Gene Center, Ludwig-Maximilians-University Munich, Feodor-Lynen-Straße 25, 81377 Munich, Germany
| | - Dominik B. Bucher
- Department
of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Dieter Braun
- Systems
Biophysics, Ludwig-Maximilians-University
Munich, Amalienstr. 54, 80799 Munich, Germany
| | - Wolfgang Zinth
- Biomolecular
Optics and Center for Integrated Protein Science, Ludwig-Maximilians-University Munich, Öttingenstrasse 67, 80538 Munich, Germany
| | - Christof B. Mast
- Systems
Biophysics, Ludwig-Maximilians-University
Munich, Amalienstr. 54, 80799 Munich, Germany
| |
Collapse
|
6
|
White S, Rimmer PB. Do-Nothing Prebiotic Chemistry: Chemical Kinetics as a Window into Prebiotic Plausibility. Acc Chem Res 2025; 58:1-10. [PMID: 39699111 PMCID: PMC11713876 DOI: 10.1021/acs.accounts.4c00247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/14/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
ConspectusOrigin of Life research is a fast growing field of study with each year bringing new breakthroughs. Recent discoveries include novel syntheses of life's building blocks, mechanisms of activation and interaction between molecules, and newly identified environments that provide promising conditions for these syntheses and mechanisms. Even with these new findings, firmly grounded in rigorous laboratory experiments, researchers often find themselves uncertain about how to apply them. How can a bridge be built between the laboratory and the geochemical environment? A critical question to ask when seeking to apply new results in origins is: how can this chemistry occur without direct intervention from a chemist? We believe the first step toward answering this question lies in the determination of rate constants and the construction of chemical networks to describe prebiotic chemistry in geochemical environments.So far, our group has measured several rate constants relevant to different prebiotic reaction networks, starting with the synthetic pathways of the cyanosulfidic network. The reactions we explore often involve ultraviolet light-driven photochemistry, facilitated by our StarLab setup that accurately simulates the spectrum of the young Sun and other stars. Our latest work investigates environments with active photochemistry in the absence of cyanide. In this study, we measure the effective rate constant for the production of formate from the reduction of carbon species using sulfite within the context of early Martian waters. The underlying goal of the work done in our group is to predict the likelihood that certain geological conditions will result in a specific set of chemical products. These predictions can be combined with those we have made for the necessary astrophysical conditions in certain origins of life scenarios on extrasolar planets.In the near future we expect that a sufficient number of rate constants will be measured, by our group and others, to allow for aspects of prebiotic chemistry to be predicted using chemical kinetics models. Once these models have been benchmarked against experimental data, our next step will be applying them to natural environments that better mimic the conditions thought to have been present at the onset of life. Following this, we can test these models by comparing their predictions to additional experiments. After refinement, these models will be able to provide guidance on the optimal conditions for conducting laboratory experiments, while helping to minimize and characterize any interference from a chemist.This approach can provide valuable insights into what is possible within geochemical environments, where all chemistry is by necessity do-nothing chemistry.
Collapse
Affiliation(s)
- Skyla
B. White
- Astrophysics Group, Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Paul B. Rimmer
- Astrophysics Group, Cavendish
Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
7
|
Tutolo BM, Perrin R, Lauer R, Bossaer S, Tosca NJ, Hutchings A, Sevgen S, Nightingale M, Ilg D, Mott EB, Wilson T. Groundwater-Driven Evolution of Prebiotic Alkaline Lake Environments. Life (Basel) 2024; 14:1624. [PMID: 39768332 PMCID: PMC11678467 DOI: 10.3390/life14121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/27/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Alkaline lakes are thought to have facilitated prebiotic synthesis reactions on the early Earth because their modern analogs accumulate vital chemical feedstocks such as phosphate through the evaporation of dilute groundwaters. Yet, the conditions required for some building block synthesis reactions are distinct from others, and these conditions are generally incompatible with those permissible for nascent cellular function. However, because current scenarios for prebiotic synthesis have not taken account of the physical processes that drive the chemical evolution of alkaline lakes, the potential for the co-occurrence of both prebiotic synthesis and the origins and early evolution of life in prebiotic alkaline lake environments remains poorly constrained. Here, we investigate the dynamics of active, prebiotically relevant alkaline lakes using near-surface geophysics, aqueous geochemistry, and hydrogeologic modeling. Due to their small size, representative range of chemistry, and contrasting evaporation behavior, the investigated, neighboring Last Chance and Goodenough Lakes in British Columbia, Canada offer a uniquely tractable environment for investigating the dynamics of alkaline lake behavior. The results show that the required, extreme phosphate enrichments in alkaline lake waters demand geomorphologically-driven vulnerability to evaporation, while the resultant contrast between evaporated brines and inflowing groundwaters yields Rayleigh-Taylor instabilities and vigorous surface-subsurface cycling and mixing of lake and groundwaters. These results provide a quantitative basis to reconcile conflicting prebiotic requirements of UV light, salinity, metal concentration, and pH in alkaline lake environments. The complex physical and chemical processing inherent to prebiotic alkaline lake environments thus may have not only facilitated prebiotic reaction networks, but also provided habitable environments for the earliest evolution of life.
Collapse
Affiliation(s)
- Benjamin M. Tutolo
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Robert Perrin
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Rachel Lauer
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Shane Bossaer
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Alec Hutchings
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Serhat Sevgen
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Michael Nightingale
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniel Ilg
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Eric B. Mott
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Thomas Wilson
- Department of Earth, Energy, and Environment, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Song X, Simonis P, Deamer D, Zare RN. Wet-dry cycles cause nucleic acid monomers to polymerize into long chains. Proc Natl Acad Sci U S A 2024; 121:e2412784121. [PMID: 39585974 PMCID: PMC11626162 DOI: 10.1073/pnas.2412784121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/23/2024] [Indexed: 11/27/2024] Open
Abstract
The key first step in the oligomerization of monomers is to find an initiator, which is usually done by thermolysis or photolysis. We present a markedly different approach that initiates acid-catalyzed polymerization at the surface of water films or water droplets, which is the reactive phase during a wet-dry cycle in freshwater hot springs associated with subaerial volcanic landmasses. We apply this method to the oligomerization of different nucleic acids, a topic relevant to how it might be possible to go from simple nucleic acid monomers to long-chain polymers, a key step in forming the building blocks of life. It has long been known that dehydration at elevated temperatures can drive the synthesis of ester and peptide bonds, but this reaction has typically been carried out by incubating dry monomers at elevated temperatures. We report that single or multiple cycles of wetting and drying link mononucleotides by forming phosphodiester bonds. Mass spectrometric analysis reveals uridine monophosphate oligomers up to 53 nucleotides, with an abundance of 35 and 43 nt in length. Long-chain oligomers are also observed for thymidine monophosphate, adenosine monophosphate, and deoxyadenosine monophosphate after exposure to a few wet-dry cycles. Nanopore sequencing confirms that long linear chains are formed. Enzyme digestion shows that the linkage is the phosphodiester bond, which is further confirmed by 31P NMR and Fourier transform infrared spectroscopy. This suggests that nucleic acid oligomers were likely to be present on early Earth in a steady state of synthesis and hydrolysis.
Collapse
Affiliation(s)
- Xiaowei Song
- Department of Chemistry, Stanford University, Stanford, CA94305
| | - Povilas Simonis
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA95064
- Institute of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, VilniusLT-01513, Lithuania
- State Research Institute Center for Physical Sciences and Technology, VilniusLT-02300, Lithuania
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA95064
| | - Richard N. Zare
- Department of Chemistry, Stanford University, Stanford, CA94305
| |
Collapse
|
9
|
López-García A, Manjavacas M, de la Fuente JL, Ruiz-Bermejo M. Solvothermal Polymerization of Diaminomaleonitrile Reveals Optimal Green Solvents for the Production of C=N-Based Polymers. ACS OMEGA 2024; 9:41867-41883. [PMID: 39398125 PMCID: PMC11465270 DOI: 10.1021/acsomega.4c06421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/24/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024]
Abstract
Solvothermal polymerization (STP) of diaminomaleonitrile (DAMN) was evaluated using a wide variety of solvents and in the temperature range from 80 to 170 °C. The highest yields, almost quantitative, were achieved with protic n-alcohols such as n-pentanol or n-hexanol at 130 and 150 °C, respectively. The kinetic behavior was studied by gravimetry and the DAMN consumption was monitored by UV-vis spectroscopy and HPLC. GC-MS identified byproducts of the DAMN hydrolysis and oxidation reactions, which were significantly reduced when n-pentanol or n-hexanol were used with respect to hydrothermal conditions. This led to an exploration of compositional changes and microstructural variations by FTIR and NMR spectroscopy and simultaneous thermal analysis. n-Hexanol appears to be an ideal eco-friendly solvent for the DAMN self-STP. The results presented here are not only of interest for the design of polymeric materials based on C=N structures but also show remarkable implications for prebiotic chemistry.
Collapse
Affiliation(s)
- Antonio López-García
- Dpto.
Evolución Molecular, Centro de Astrobiología
(CAB), CSIC-INTA, Ctra.
Torrejón-Ajalvir, km 4, Torrejón
de Ardoz, Madrid 28850, Spain
| | - Marina Manjavacas
- Centro
de Biotecnología y Genómica de Plantas UPM−INIA
Parque Científico yTecnológico de la UPM Campus
de Montegancedo, Madrid 28223, Spain
| | - José L. de la Fuente
- Instituto
Nacional de Técnica Aeroespacial “Esteban Terradas”
(INTA), Ctra. Torrejón-Ajalvir,
km 4, Torrejón de Ardoz, Madrid 28850, Spain
| | - Marta Ruiz-Bermejo
- Dpto.
Evolución Molecular, Centro de Astrobiología
(CAB), CSIC-INTA, Ctra.
Torrejón-Ajalvir, km 4, Torrejón
de Ardoz, Madrid 28850, Spain
| |
Collapse
|
10
|
Thøgersen J, Madzharova F, Weidner T, Jensen F. Deep-Ultraviolet Photoexcitation of Aqueous Urea Forms Carbamic Acid/Carbamate in Less Than One Picosecond. Chemistry 2024; 30:e202400728. [PMID: 38804868 DOI: 10.1002/chem.202400728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Indexed: 05/29/2024]
Abstract
Urea is believed to have been essential to the synthesis of prebiotic nucleotides and thereby the RNA or DNA of the first lifeforms. Models suggesting that life began in wet-dry cycles around shallow aquatic ponds imply that reactants such as urea were exposed to deep ultraviolet irradiation from the young sun. Detrimental photodissociation of urea induced by deep UV excitation potentially challenges these models. We here follow the primary deep ultraviolet photochemistry of aqueous urea. The data show that urea is barely excited at 200 nm due to weak ultraviolet absorption. The likelihood of photodissociation is further reduced by strong intra-molecular coupling of the CN and CO stretch vibrations accompanied by an efficient dissipation of the excitation energy to the surrounding water molecules mitigated by urea-water hydrogen bonds. We find that 54±5 % of the excited urea molecules dissociate. Reactions between the photoproducts and surrounding solvent molecules form carbamic acid or the carbamate anions within 0.6 ps. The molecules that do not dissociate return to the electronic ground state in 2 ps. Interestingly, the photodissociation processes of urea in the aqueous phase is different from earlier reported reactions observed following the VUV photolysis of urea in noble gas matrices and highlight the potential influence of water on the prebiotic photochemistry.
Collapse
Affiliation(s)
- Jan Thøgersen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Fani Madzharova
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| | - Frank Jensen
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus, Denmark
| |
Collapse
|
11
|
Xu J, Janicki MJ, Szabla R, Sutherland JD. Prebiotic synthesis of dihydrouridine by photoreduction of uridine in formamide. Chem Commun (Camb) 2024; 60:7081-7084. [PMID: 38896044 PMCID: PMC11223185 DOI: 10.1039/d4cc01823k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
In this report, we show that a very common modification (especially in tRNA), dihydrouridine, was efficiently produced by photoreduction of the canonical pyrimidine ribonucleoside, uridine in formamide. Formamide not only acts as a solvent in this reaction, but also as the reductant. The other three components of the canonical alphabet (C, A, G) remained intact under the same conditions, suggesting that dihydrouridine might have coexisted with all four canonical RNA nucleosides (C, U, A, G) at the dawn of life.
Collapse
Affiliation(s)
- Jianfeng Xu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| | - Mikołaj J Janicki
- Department of Physical and Quantum Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| | - Rafał Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge, CB2 0QH, UK.
| |
Collapse
|
12
|
Stolar T, Pearce BK, Etter M, Truong KN, Ostojić T, Krajnc A, Mali G, Rossi B, Molčanov K, Lončarić I, Meštrović E, Užarević K, Grisanti L. Base-pairing of uracil and 2,6-diaminopurine: from cocrystals to photoreactivity. iScience 2024; 27:109894. [PMID: 38783999 PMCID: PMC11112615 DOI: 10.1016/j.isci.2024.109894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
We show that the non-canonical nucleobase 2,6-diaminopurine (D) spontaneously base pairs with uracil (U) in water and the solid state without the need to be attached to the ribose-phosphate backbone. Depending on the reaction conditions, D and U assemble in thermodynamically stable hydrated and anhydrated D-U base-paired cocrystals. Under UV irradiation, an aqueous solution of D-U base-pair undergoes photochemical degradation, while a pure aqueous solution of U does not. Our simulations suggest that D may trigger the U photodimerization and show that complementary base-pairing modifies the photochemical properties of nucleobases, which might have implications for prebiotic chemistry.
Collapse
Affiliation(s)
- Tomislav Stolar
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Straße 11, 12489 Berlin, Germany
| | - Ben K.D. Pearce
- Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Martin Etter
- Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg, Germany
| | - Khai-Nghi Truong
- Rigaku Europe SE, Hugenottenallee 167, 63263 Neu-Isenburg, Germany
| | - Tea Ostojić
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Andraž Krajnc
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Gregor Mali
- National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Barbara Rossi
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5, 34149 Trieste, Italy
| | | | - Ivor Lončarić
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
| | - Ernest Meštrović
- Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, 10000 Zagreb, Croatia
| | | | - Luca Grisanti
- Ruđer Bošković Institute, Bijenička c. 54, 10000 Zagreb, Croatia
- National Research Council - Materials Foundry Institute (CNR-IOM) c/o SISSA (International School for Advanced Studies), Via Bonomea 265, 34136 Trieste, Italy
| |
Collapse
|
13
|
Martínez-Fernández L, Ranković ML, Canon F, Nahon L, Giuliani A, Milosavljević AR, Martin-Somer A. Photodissociation of leucine-enkephalin protonated peptide: an experimental and theoretical perspective. RSC Adv 2024; 14:16809-16820. [PMID: 38784408 PMCID: PMC11112675 DOI: 10.1039/d4ra01690d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
Understanding the competing processes that govern far ultraviolet photodissociation (FUV-PD) of biopolymers such as proteins is a challenge. Here, we report a combined experimental and theoretical investigation of FUV-PD of protonated leucine-enkephalin pentapeptide ([YGGFL + H]+) in the gas-phase. Time-dependent density functional theory (TD-DFT) calculations in combination with experiments and previous results for amino acids and shorter peptides help in rationalizing the evolution of the excited states. The results confirm that fragmentation of [YGGFL + H]+ results mainly from vibrationally excited species in the ground electronic state, populated after internal conversion. We also propose fragmentation mechanisms for specific photo-fragments such as tyrosine side chain loss (with an extra hydrogen) or hydrogen loss. In general, we observe the same mechanisms as for smaller peptides or protonated Tyr and Phe, that are not quenched by the presence of other amino acids. Nevertheless, we also found some differences, as for H loss, in part due to the fact that the charge is solvated by the peptide chain and not only by the COOH terminal group.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química Física de Materiales, Instituto de Química Física de Materiales, Instituto de Química Física Blas Cabrera, CSIC 28006 Madrid Spain
| | - Miloš Lj Ranković
- Institute of Physics Belgrade, University of Belgrade Pregrevica 118 11080 Belgrade Serbia
| | - Francis Canon
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
| | - Laurent Nahon
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
| | - Alexandre Giuliani
- SOLEIL l'Orme des Merisiers, St Aubin, BP48, F-91192 Gif sur Yvette Cedex France
- INRAE, Dpet. Transform UAR1008, Rue de la Géraudière, BP 71627 F-44316 Nantes France
| | | | - Ana Martin-Somer
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid Módulo 14 28049 Spain
| |
Collapse
|
14
|
Todd ZR, Lozano GG, Kufner CL, Ranjan S, Catling DC, Sasselov DD. UV Transmission in Prebiotic Environments on Early Earth. ASTROBIOLOGY 2024; 24:559-569. [PMID: 38768432 DOI: 10.1089/ast.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Ultraviolet (UV) light is likely to have played important roles in surficial origins of life scenarios, potentially as a productive source of energy and molecular activation, as a selective means to remove unwanted side products, or as a destructive mechanism resulting in loss of molecules/biomolecules over time. The transmission of UV light through prebiotic waters depends upon the chemical constituents of such waters, but constraints on this transmission are limited. Here, we experimentally measure the molar decadic extinction coefficients for a number of small molecules used in various prebiotic synthetic schemes. We find that many small feedstock molecules absorb most at short (∼200 nm) wavelengths, with decreasing UV absorption at longer wavelengths. For comparison, we also measured the nucleobase adenine and found that adenine absorbs significantly more than the simpler molecules often invoked in prebiotic synthesis. Our results enable the calculation of UV photon penetration under varying chemical scenarios and allow further constraints on plausibility and self-consistency of such scenarios. While the precise path that prebiotic chemistry took remains elusive, improved understanding of the UV environment in prebiotically plausible waters can help constrain both the chemistry and the environmental conditions that may allow such chemistry to occur.
Collapse
Affiliation(s)
- Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
- Department of Chemistry, Department of Astronomy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabriella G Lozano
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Corinna L Kufner
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| | - Sukrit Ranjan
- Lunar & Planetary Laboratory/Department of Planetary Sciences, University of Arizona, Tucson, Arizona, USA
| | - David C Catling
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Dimitar D Sasselov
- Center for Astrophysics, Harvard and Smithsonian, Cambridge, Massachusetts, USA
| |
Collapse
|
15
|
Rimmer PB, Shorttle O. A Surface Hydrothermal Source of Nitriles and Isonitriles. Life (Basel) 2024; 14:498. [PMID: 38672768 PMCID: PMC11051382 DOI: 10.3390/life14040498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Giant impacts can generate transient hydrogen-rich atmospheres, reducing atmospheric carbon. The reduced carbon will form hazes that rain out onto the surface and can become incorporated into the crust. Once heated, a large fraction of the carbon is converted into graphite. The result is that local regions of the Hadean crust were plausibly saturated with graphite. We explore the consequences of such a crust for a prebiotic surface hydrothermal vent scenario. We model a surface vent fed by nitrogen-rich volcanic gas from high-temperature magmas passing through graphite-saturated crust. We consider this occurring at pressures of 1-1000bar and temperatures of 1500-1700 ∘C. The equilibrium with graphite purifies the leftover gas, resulting in substantial quantities of nitriles (0.1% HCN and 1ppm HC3N) and isonitriles (0.01% HNC) relevant for prebiotic chemistry. We use these results to predict gas-phase concentrations of methyl isocyanide of ∼1 ppm. Methyl isocyanide can participate in the non-enzymatic activation and ligation of the monomeric building blocks of life, and surface or shallow hydrothermal environments provide its only known equilibrium geochemical source.
Collapse
Affiliation(s)
- Paul B. Rimmer
- Cavendish Laboratory, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, UK
| | - Oliver Shorttle
- Institute of Astronomy, University of Cambridge, Cambridge CB3 0HA, UK
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| |
Collapse
|
16
|
Kufner CL, Crucilla S, Ding D, Stadlbauer P, Šponer J, Szostak JW, Sasselov DD, Szabla R. Photoinduced charge separation and DNA self-repair depend on sequence directionality and stacking pattern. Chem Sci 2024; 15:2158-2166. [PMID: 38332835 PMCID: PMC10848779 DOI: 10.1039/d3sc04971j] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/27/2023] [Indexed: 02/10/2024] Open
Abstract
Charge separation is one of the most common consequences of the absorption of UV light by DNA. Recently, it has been shown that this process can enable efficient self-repair of cyclobutane pyrimidine dimers (CPDs) in specific short DNA oligomers such as the GAT[double bond, length as m-dash]T sequence. The mechanism was characterized as sequential electron transfer through the nucleobase stack which is controlled by the redox potentials of nucleobases and their sequence. Here, we demonstrate that the inverse sequence T[double bond, length as m-dash]TAG promotes self-repair with higher quantum yields (0.58 ± 0.23%) than GAT[double bond, length as m-dash]T (0.44 ± 0.18%) in a comparative study involving UV-irradiation experiments. After extended exposure to UV irradiation, a photostationary equilibrium between self-repair and damage formation is reached at 33 ± 13% for GAT[double bond, length as m-dash]T and at 40 ± 16% for T[double bond, length as m-dash]TAG, which corresponds to the maximum total yield of self-repair. Molecular dynamics and quantum mechanics/molecular mechanics (QM/MM) simulations allowed us to assign this disparity to better stacking overlap between the G and A bases, which lowers the energies of the key A-˙G+˙ charge transfer state in the dominant conformers of the T[double bond, length as m-dash]TAG tetramer. These conformational differences also hinder alternative photorelaxation pathways of the T[double bond, length as m-dash]TAG tetranucleotide, which otherwise compete with the sequential electron transfer mechanism responsible for CPD self-repair. Overall, we demonstrate that photoinduced electron transfer is strongly dependent on conformation and the availability of alternative photodeactivation mechanisms. This knowledge can be used in the identification and prediction of canonical and modified DNA sequences exhibiting efficient electron transfer. It also further contributes to our understanding of DNA self-repair and its potential role in the photochemical selection of the most photostable sequences on the early Earth.
Collapse
Affiliation(s)
- Corinna L Kufner
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge MA 02138 USA
| | - Sarah Crucilla
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge MA 02138 USA
- Department of Earth and Planetary Sciences, Harvard University Cambridge Massachusetts 02138 USA
| | - Dian Ding
- Howard Hughes Medical Institute, Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital Boston Massachusetts 02114 USA
- Department of Chemistry and Chemical Biology, Harvard University Cambridge Massachusetts 02138 USA
| | - Petr Stadlbauer
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61200 Brno Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc Slechtitelu 241/27, 783 71, Olomouc - Holice Czech Republic
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences Královopolská 135 61200 Brno Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacky University Olomouc Slechtitelu 241/27, 783 71, Olomouc - Holice Czech Republic
| | - Jack W Szostak
- Howard Hughes Medical Institute, The University of Chicago Chicago IL 60637 USA
- Department of Chemistry, The University of Chicago Chicago Illinois 60637 USA
| | - Dimitar D Sasselov
- Department of Astronomy, Harvard-Smithsonian Center for Astrophysics 60 Garden Street Cambridge MA 02138 USA
| | - Rafał Szabla
- Institute of Advanced Materials, Faculty of Chemistry, Wrocław University of Science and Technology Wybrzeże Wyspiańskiego 27 Wrocław 50-370 Poland
| |
Collapse
|
17
|
Chatgilialoglu C, Barata-Vallejo S, Gimisis T. Radical Reactions in Organic Synthesis: Exploring in-, on-, and with-Water Methods. Molecules 2024; 29:569. [PMID: 38338314 PMCID: PMC10856544 DOI: 10.3390/molecules29030569] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Radical reactions in water or aqueous media are important for organic synthesis, realizing high-yielding processes under non-toxic and environmentally friendly conditions. This overview includes (i) a general introduction to organic chemistry in water and aqueous media, (ii) synthetic approaches in, on, and with water as well as in heterogeneous phases, (iii) reactions of carbon-centered radicals with water (or deuterium oxide) activated through coordination with various Lewis acids, (iv) photocatalysis in water and aqueous media, and (v) synthetic applications bioinspired by naturally occurring processes. A wide range of chemical processes and synthetic strategies under different experimental conditions have been reviewed that lead to important functional group translocation and transformation reactions, leading to the preparation of complex molecules. These results reveal how water as a solvent/medium/reagent in radical chemistry has matured over the last two decades, with further discoveries anticipated in the near future.
Collapse
Affiliation(s)
- Chryssostomos Chatgilialoglu
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
- Center of Advanced Technologies, Adam Mickiewicz University, 61-712 Poznan, Poland
| | - Sebastian Barata-Vallejo
- Istituto per la Sintesi Organica e la Fotoreattività, Consiglio Nazionale delle Ricerche, 40129 Bologna, Italy
- Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Universidad de Buenos Aires, Junin 954, Buenos Aires CP 1113, Argentina
| | - Thanasis Gimisis
- Department of Chemistry, National and Kapodistrian University of Athens, 15771 Athens, Greece
| |
Collapse
|
18
|
Brown SM, Mayer-Bacon C, Freeland S. Xeno Amino Acids: A Look into Biochemistry as We Do Not Know It. Life (Basel) 2023; 13:2281. [PMID: 38137883 PMCID: PMC10744825 DOI: 10.3390/life13122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Would another origin of life resemble Earth's biochemical use of amino acids? Here, we review current knowledge at three levels: (1) Could other classes of chemical structure serve as building blocks for biopolymer structure and catalysis? Amino acids now seem both readily available to, and a plausible chemical attractor for, life as we do not know it. Amino acids thus remain important and tractable targets for astrobiological research. (2) If amino acids are used, would we expect the same L-alpha-structural subclass used by life? Despite numerous ideas, it is not clear why life favors L-enantiomers. It seems clearer, however, why life on Earth uses the shortest possible (alpha-) amino acid backbone, and why each carries only one side chain. However, assertions that other backbones are physicochemically impossible have relaxed into arguments that they are disadvantageous. (3) Would we expect a similar set of side chains to those within the genetic code? Many plausible alternatives exist. Furthermore, evidence exists for both evolutionary advantage and physicochemical constraint as explanatory factors for those encoded by life. Overall, as focus shifts from amino acids as a chemical class to specific side chains used by post-LUCA biology, the probable role of physicochemical constraint diminishes relative to that of biological evolution. Exciting opportunities now present themselves for laboratory work and computing to explore how changing the amino acid alphabet alters the universe of protein folds. Near-term milestones include: (a) expanding evidence about amino acids as attractors within chemical evolution; (b) extending characterization of other backbones relative to biological proteins; and (c) merging computing and laboratory explorations of structures and functions unlocked by xeno peptides.
Collapse
|
19
|
Ravanbodshirazi S, Boutfol T, Safaridehkohneh N, Finkler M, Mohammadi-Kambs M, Ott A. The Nature of the Spark Is a Pivotal Element in the Design of a Miller-Urey Experiment. Life (Basel) 2023; 13:2201. [PMID: 38004341 PMCID: PMC10672138 DOI: 10.3390/life13112201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Miller and Urey applied electric sparks to a reducive mixture of CH4, NH3, and water to obtain a complex organic mixture including biomolecules. In this study, we examined the impact of temperature, initial pressure, ammonia concentration, and the spark generator on the chemical profile of a Miller-Urey-type prebiotic broth. We analyzed the broth composition using Gas Chromatography combined with Mass Spectroscopy (GC/MS). The results point towards strong compositional changes with the nature of the spark. Ammonia exhibited catalytic properties even with non-nitrogen-containing compounds. A more elevated temperature led to a higher variety of substances. We conclude that to reproduce such a broth as well as possible, all the studied parameters need to be tightly controlled, the most difficult and important being spark generation.
Collapse
Affiliation(s)
| | | | | | | | | | - Albrecht Ott
- Biological Experimental Physics, Center for Biophysics, Faculity of Natural Sciences and Technology, Saarland University, Campus B2 1, 66123 Saarbrücken, Germany; (S.R.)
| |
Collapse
|
20
|
Armas-Vázquez MZ, González-Espinoza CE, Segura A, Heredia A, Miranda-Rosete A. Impact of M Dwarfs Ultraviolet Radiation on Prebiotic Chemistry: The Case of Adenine. ASTROBIOLOGY 2023; 23:705-722. [PMID: 37115581 DOI: 10.1089/ast.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To date, several exoplanets have been found to orbit within the habitable zone of main sequence M stars (M dwarfs). These stars exhibit different levels of chromospheric activity that produces ultraviolet (UV) radiation. UV may be harmful to life, but it can also trigger reactions of prebiotic importance on the surface of a potentially habitable planet (PHP). We created a code to obtain the adenine yield for a known adenine synthesis route from diaminomaleonitrile (DAMN). We used computational methods to calculate the reaction coefficient rates (photolysis rate J and rate constant K) for the intermediate molecules DAMN, diaminofumaronitrile (DAFN), and 4-aminoimidazole-5-carbonitrile (AICN) of the adenine synthesis route. We used stellar UV sources and a mercury lamp to compare the theoretical results with experiments performed with lamps. The surface UV flux of planets in the habitable zone of two active M dwarfs (Proxima Centauri and AD Leonis) and the prebiotic Earth was calculated using the photochemical model ATMOS, considering a CO2-N2-H2O atmosphere. We obtained UV absorption coefficients for DAMN and DAFN and thermodynamic parameters that are useful for prebiotic chemistry studies. According to our results, experiments using UV lamps may underestimate the photolysis production of molecules of prebiotic importance. Our results indicate that photolysis reactions are fast with a yield of 50% of AICN in 10 s for the young Sun and ∼1 h for Proxima Centauri b. Planets around active M dwarfs may provide the most favorable environment for UV-mediated production of compounds relevant to the origins of life. The kinetic reaction AICN + HCN adenine is the bottleneck of the pathway with reaction rates <10-22 L/(mol·s).
Collapse
Affiliation(s)
- M Zulema Armas-Vázquez
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | | | - Antígona Segura
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Alejandro Heredia
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| | - Arturo Miranda-Rosete
- Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (UNAM), Ciudad de Mexico, Mexico
| |
Collapse
|
21
|
Green NJ, Russell DA, Tanner SH, Sutherland JD. Prebiotic Synthesis of N-Formylaminonitriles and Derivatives in Formamide. J Am Chem Soc 2023; 145:10533-10541. [PMID: 37146260 DOI: 10.1021/jacs.2c13306] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Amino acids and their derivatives were probably instrumental in the transition of prebiotic chemistry to early biology. Accordingly, amino acid formation under prebiotic conditions has been intensively investigated. Unsurprisingly, most of these studies have taken place with water as the solvent. Herein, we describe an investigation into the formation and subsequent reactions of aminonitriles and their formylated derivatives in formamide. We find that N-formylaminonitriles form readily from aldehydes and cyanide in formamide, even in the absence of added ammonia, suggesting a potentially prebiotic source of amino acid derivatives. Alkaline processing of N-formylaminonitriles proceeds with hydration at the nitrile group faster than deformylation, protecting aminonitrile derivatives from reversion of the Strecker condensation equilibrium during hydration/hydrolysis and furnishing mixtures of N-formylated and unformylated amino acid derivatives. Furthermore, the facile synthesis of N-formyldehydroalanine nitrile is observed in formamide from glycolaldehyde and cyanide without intervention. Dehydroalanine derivatives have been proposed as important compounds for prebiotic peptide synthesis, and we demonstrate both a synthesis suggesting that they are potentially plausible components of a prebiotic inventory, and reactions showing their utility as abiotic precursors to a range of compounds of prebiological interest.
Collapse
Affiliation(s)
- Nicholas J Green
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - David A Russell
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Sasha H Tanner
- Department of Chemistry, University of Otago, Dunedin 9054, New Zealand
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| |
Collapse
|
22
|
Fontecilla-Camps JC. Reflections on the Origin and Early Evolution of the Genetic Code. Chembiochem 2023; 24:e202300048. [PMID: 37052530 DOI: 10.1002/cbic.202300048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Indexed: 04/14/2023]
Abstract
Examination of the genetic code (GeCo) reveals that amino acids coded by (A/U) codons display a large functional spectrum and bind RNA whereas, except for Arg, those coded by (G/C) codons do not. From a stereochemical viewpoint, the clear preference for (A/U)-rich codons to be located at the GeCo half blocks suggests they were specifically determined. Conversely, the overall lower affinity of cognate amino acids for their (G/C)-rich anticodons points to their late arrival to the GeCo. It is proposed that i) initially the code was composed of the eight (A/U) codons; ii) these codons were duplicated when G/C nucleotides were added to their wobble positions, and three new codons with G/C in their first position were incorporated; and iii) a combination of A/U and G/C nucleotides progressively generated the remaining codons.
Collapse
|
23
|
Prebiotic Synthesis of ATP: A Terrestrial Volcanism-Dependent Pathway. Life (Basel) 2023; 13:life13030731. [PMID: 36983886 PMCID: PMC10053121 DOI: 10.3390/life13030731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Adenosine triphosphate (ATP) is a multifunctional small molecule, necessary for all modern Earth life, which must be a component of the last universal common ancestor (LUCA). However, the relatively complex structure of ATP causes doubts about its accessibility on prebiotic Earth. In this paper, based on previous studies on the synthesis of ATP components, a plausible prebiotic pathway yielding this key molecule is constructed, which relies on terrestrial volcanism to provide the required materials and suitable conditions.
Collapse
|
24
|
Martinez V, Stolar T, Karadeniz B, Brekalo I, Užarević K. Advancing mechanochemical synthesis by combining milling with different energy sources. Nat Rev Chem 2022; 7:51-65. [PMID: 37117822 DOI: 10.1038/s41570-022-00442-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2022] [Indexed: 11/23/2022]
Abstract
Owing to its efficiency and unique reactivity, mechanochemical processing of bulk solids has developed into a powerful tool for the synthesis and transformation of various classes of materials. Nevertheless, mechanochemistry is primarily based on simple techniques, such as milling in comminution devices. Recently, mechanochemical reactivity has started being combined with other energy sources commonly used in solution-based chemistry. Milling under controlled temperature, light irradiation, sound agitation or electrical impulses in newly developed experimental setups has led to reactions not achievable by conventional mechanochemical processing. This Perspective describes these unique reactivities and the advances in equipment tailored to synthetic mechanochemistry. These techniques - thermo-mechanochemistry, sono-mechanochemistry, electro-mechanochemistry and photo-mechanochemistry - represent a notable advance in modern mechanochemistry and herald a new level of solid-state reactivity: mechanochemistry 2.0.
Collapse
|
25
|
Saha A, Yi R, Fahrenbach AC, Wang A, Jia TZ. A Physicochemical Consideration of Prebiotic Microenvironments for Self-Assembly and Prebiotic Chemistry. Life (Basel) 2022; 12:1595. [PMID: 36295030 PMCID: PMC9604842 DOI: 10.3390/life12101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The origin of life on Earth required myriads of chemical and physical processes. These include the formation of the planet and its geological structures, the formation of the first primitive chemicals, reaction, and assembly of these primitive chemicals to form more complex or functional products and assemblies, and finally the formation of the first cells (or protocells) on early Earth, which eventually evolved into modern cells. Each of these processes presumably occurred within specific prebiotic reaction environments, which could have been diverse in physical and chemical properties. While there are resources that describe prebiotically plausible environments or nutrient availability, here, we attempt to aggregate the literature for the various physicochemical properties of different prebiotic reaction microenvironments on early Earth. We introduce a handful of properties that can be quantified through physical or chemical techniques. The values for these physicochemical properties, if they are known, are then presented for each reaction environment, giving the reader a sense of the environmental variability of such properties. Such a resource may be useful for prebiotic chemists to understand the range of conditions in each reaction environment, or to select the medium most applicable for their targeted reaction of interest for exploratory studies.
Collapse
Affiliation(s)
- Arpita Saha
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Albert C. Fahrenbach
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tony Z. Jia
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
26
|
Xie M, Sun X, Li W, Guan J, Liang Z, Hu Y. A Facile Route for the Formation of Complex Nitrogen-Containing Prebiotic Molecules in the Interstellar Medium. J Phys Chem Lett 2022; 13:8207-8213. [PMID: 36006401 DOI: 10.1021/acs.jpclett.2c01857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Prebiotic molecules have often been identified in the interstellar medium and meteorite samples. However, we still have only a fragmentary knowledge of the mechanism of the evolutionary process of these prebiotic molecules. With the aid of state-of-the-art vacuum ultraviolet (VUV)-infrared (IR) spectroscopy and ab initio calculations, we reveal a new pathway leading to the formation of the biorelevant molecules carrying amine groups or peptide bonds via the single-photon ionization induced Michael/cyclization reaction of acrylonitrile (AN)-alcohol heterodimer complexes in the gas phase. In the reactions, not only N-H nitrilium cations with H+-N≡C-R Lewis structure but also cyclic amine cations with a peptide bond can be formed when the AN reacts with alcohols of increasing molecular size (such as ethanol, propanol, or butanol). This study suggests the possibility of unsaturated nitriles being reduced by ionized alcohols in space, which can further drive sequential Michael addition/cyclization reactions to form more complex biorelevant molecules.
Collapse
Affiliation(s)
- Min Xie
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Xiaonan Sun
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Weixing Li
- Department of Chemistry, Fudan University, Songhu Rd. 2005, 200438 Shanghai, China
| | - Jiwen Guan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, P. R. China
| | - Zhenhao Liang
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Yongjun Hu
- MOE Key Laboratory of Laser Life Science & Guangdong Provincial Key Laboratory of Laser Life Science, Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
27
|
Todd ZR. Sources of Nitrogen-, Sulfur-, and Phosphorus-Containing Feedstocks for Prebiotic Chemistry in the Planetary Environment. Life (Basel) 2022; 12:1268. [PMID: 36013447 PMCID: PMC9410288 DOI: 10.3390/life12081268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/13/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
Biochemistry on Earth makes use of the key elements carbon, hydrogen, oxygen, nitrogen, phosphorus, and sulfur (or CHONPS). Chemically accessible molecules containing these key elements would presumably have been necessary for prebiotic chemistry and the origins of life on Earth. For example, feedstock molecules including fixed nitrogen (e.g., ammonia, nitrite, nitrate), accessible forms of phosphorus (e.g., phosphate, phosphite, etc.), and sources of sulfur (e.g., sulfide, sulfite) may have been necessary for the origins of life, given the biochemistry seen in Earth life today. This review describes potential sources of nitrogen-, sulfur-, and phosphorus-containing molecules in the context of planetary environments. For the early Earth, such considerations may be able to aid in the understanding of our own origins. Additionally, as we learn more about potential environments on other planets (for example, with upcoming next-generation telescope observations or new missions to explore other bodies in our Solar System), evaluating potential sources for elements necessary for life (as we know it) can help constrain the potential habitability of these worlds.
Collapse
Affiliation(s)
- Zoe R Todd
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
28
|
Mondragón-Solórzano G, Sandoval-Lira J, Nochebuena J, Cisneros GA, Barroso-Flores J. Electronic Structure Effects Related to the Origin of the Remarkable Near-Infrared Absorption of Blastochloris viridis' Light Harvesting 1-Reaction Center Complex. J Chem Theory Comput 2022; 18:4555-4564. [PMID: 35767461 PMCID: PMC10408377 DOI: 10.1021/acs.jctc.2c00497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Various photosynthetic organisms have evolved to absorb light in different regions of the visible light spectrum, thus adapting to the various lighting conditions available on Earth. While most of these autotrophic organisms absorb wavelengths around the 700-800 nm region, some are capable of red-shifted absorptions above this range, but none as remarkably as Blastochloris viridis whose main absorption is observed at 1015 nm, approximately 220 nm (0.34 eV) lower in energy than their main constituent pigments, BChl-b, whose main absorption is observed at 795 nm. The structure of its light harvesting 1-reaction center was recently elucidated by cryo-EM; however, the electronic structure details behind this red-shifted absorption remain unattended. We used hybrid quantum mechanics/molecular mechanics (QM/MM) calculations to optimize one of the active centers and performed classical molecular dynamics (MD) simulations to sample conformations beyond the optimized structure. We did excited state calculations with the time-dependent density functional theory method at the CAM-B3LYP/cc-pVDZ level of theory. We reproduced the near IR absorption by sequentially modifying the number of components involved in our systems using representative structures from the calculated MD ensemble. Natural transition orbital analysis reveals the participation of the BChl-b fragments to the main transition in the native structure and the structures obtained from the QM/MM and MD simulations. H-bonding pigment-protein interactions play a role on the conformation stabilization and orientation; however, the bacteriochlorin ring conformations and the exciton delocalization are the most relevant factors to explain the red-shifting phenomenon.
Collapse
Affiliation(s)
- Gustavo Mondragón-Solórzano
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM. Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano. Toluca de Lerdo 50200, México
- Instituto de Química. Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
| | - Jacinto Sandoval-Lira
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM. Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano. Toluca de Lerdo 50200, México
- Instituto de Química. Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
- Departamento de Ingeniería Ambiental, Instituto Tecnológico Superior de San Martín Texmelucan, TecNM, Camino a la Barranca de Pesos, C.P. 74120 San Martín Texmelucan, Puebla, México
| | - Jorge Nochebuena
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75801, United States
| | - G Andrés Cisneros
- Department of Physics, University of Texas at Dallas, Richardson, Texas 75801, United States
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas 75801, United States
| | - Joaquín Barroso-Flores
- Centro Conjunto de Investigación en Química Sustentable UAEM-UNAM. Carretera Toluca-Atlacomulco Km. 14.5, Unidad San Cayetano. Toluca de Lerdo 50200, México
- Instituto de Química. Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, CDMX 04510, México
| |
Collapse
|
29
|
Nader S, Sebastianelli L, Mansy SS. Protometabolism as out-of-equilibrium chemistry. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20200423. [PMID: 35599565 PMCID: PMC9125230 DOI: 10.1098/rsta.2020.0423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 05/06/2023]
Abstract
It is common to compare life with machines. Both consume fuel and release waste to run. In biology, the engine that drives the living system is referred to as metabolism. However, attempts at deciphering the origins of metabolism do not focus on this energetic relationship that sustains life but rather concentrate on nonenzymatic reactions that produce all the intermediates of an extant metabolic pathway. Such an approach is akin to studying the molecules produced from the burning of coal instead of deciphering how the released energy drives the movement of pistons and ultimately the train when investigating the mechanisms behind locomotion. Theories that do explicitly invoke geological chemical gradients to drive metabolism most frequently feature hydrothermal vent conditions, but hydrothermal vents are not the only regions of the early Earth that could have provided the fuel necessary to sustain the Earth's first (proto)cells. Here, we give examples of prior reports on protometabolism and highlight how more recent investigations of out-of-equilibrium systems may point to alternative scenarios more consistent with the majority of prebiotic chemistry data accumulated thus far. This article is part of the theme issue 'Emergent phenomena in complex physical and socio-technical systems: from cells to societies'.
Collapse
Affiliation(s)
- Serge Nader
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| | - Lorenzo Sebastianelli
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| | - Sheref S. Mansy
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB, Canada T6G 2G2
| |
Collapse
|
30
|
Martínez RF, Cuccia LA, Viedma C, Cintas P. On the Origin of Sugar Handedness: Facts, Hypotheses and Missing Links-A Review. ORIGINS LIFE EVOL B 2022; 52:21-56. [PMID: 35796896 DOI: 10.1007/s11084-022-09624-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
Abstract
By paraphrasing one of Kipling's most amazing short stories (How the Leopard Got His Spots), this article could be entitled "How Sugars Became Homochiral". Obviously, we have no answer to this still unsolved mystery, and this perspective simply brings recent models, experiments and hypotheses into the homochiral homogeneity of sugars on earth. We shall revisit the past and current understanding of sugar chirality in the context of prebiotic chemistry, with attention to recent developments and insights. Different scenarios and pathways will be discussed, from the widely known formose-type processes to less familiar ones, often viewed as unorthodox chemical routes. In particular, problems associated with the spontaneous generation of enantiomeric imbalances and the transfer of chirality will be tackled. As carbohydrates are essential components of all cellular systems, astrochemical and terrestrial observations suggest that saccharides originated from environmentally available feedstocks. Such substances would have been capable of sustaining autotrophic and heterotrophic mechanisms integrating nutrients, metabolism and the genome after compartmentalization. Recent findings likewise indicate that sugars' enantiomeric bias may have emerged by a transfer of chirality mechanisms, rather than by deracemization of sugar backbones, yet providing an evolutionary advantage that fueled the cellular machinery.
Collapse
Affiliation(s)
- R Fernando Martínez
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| | - Louis A Cuccia
- Department of Chemistry and Biochemistry, Quebec Centre for Advanced Materials (QCAM/CQMF), FRQNT, Concordia University, 7141 Sherbrooke St. West, Montreal, QC, H4B 1R6, Canada
| | - Cristóbal Viedma
- Department of Crystallography and Mineralogy, University Complutense, 28040, Madrid, Spain
| | - Pedro Cintas
- Departamento de Química Orgánica E Inorgánica, Facultad de Ciencias, and Instituto Universitario de Investigación del Agua, Cambio Climático Y Sostenibilidad, (IACYS), Universidad de Extremadura, Avenida de Elvas s/n, 06006, Badajoz, Spain.
| |
Collapse
|
31
|
Bizzarri BM, Fanelli A, Cesarini S, Saladino R. A Three‐Way Regioselective Synthesis of Amino‐Acid Decorated Imidazole, Purine and Pyrimidine Derivatives by Multicomponent Chemistry Starting from Prebiotic Diaminomaleonitrile. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Bruno Mattia Bizzarri
- Universita degli Studi della Tuscia Scienze Ecologiche e Biologiche Via Camillo de Lellis snc 01100 VITERBO ITALY
| | - Angelica Fanelli
- Università degli Studi della Tuscia: Universita degli Studi della Tuscia Scienze Ecologiche e Biologiche ITALY
| | - Silvia Cesarini
- Università degli Studi della Tuscia: Universita degli Studi della Tuscia Scienze Ecologiche e Biologiche ITALY
| | - Raffaele Saladino
- Università degli Studi della Tuscia: Universita degli Studi della Tuscia Scienze Ecologiche e Biologiche ITALY
| |
Collapse
|
32
|
Riente P, Fianchini M, Pericàs MA, Noel T. Accelerating the Photocatalytic Atom Transfer Radical Addition Reaction Induced by Bi2O3 with Amines: Experiment and Computation. ChemCatChem 2022. [DOI: 10.1002/cctc.202200319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Riente
- University of Amsterdam Faculty of Science: Universiteit van Amsterdam Faculteit der Natuurwetenschappen Wiskunde en Informatica Chemistry NETHERLANDS
| | - Mauro Fianchini
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Miquel A. Pericàs
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry SPAIN
| | - Timothy Noel
- University of Amsterdam Van't Hoff Institute for Molecular Science PO Box 94157Science Park 904 1090 GD Amsterdam NETHERLANDS
| |
Collapse
|
33
|
Kodura D, Rodrigues LL, Walden SL, Goldmann AS, Frisch H, Barner-Kowollik C. Orange-Light-Induced Photochemistry Gated by pH and Confined Environments. J Am Chem Soc 2022; 144:6343-6348. [PMID: 35364816 DOI: 10.1021/jacs.2c00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We introduce a new photochemically active compound, i.e., pyridinepyrene (PyPy), entailing a pH-active moiety that effects a significant halochromic shift into orange-light (λ = 590 nm) activatable photoreactivity while concomitantly exerting control over its reaction pathways. With blue light (λ = 450 nm) in neutral to basic pH, a [2 + 2] photocycloaddition can be triggered to form a cyclobutene ring in a reversible fashion. If the pH is decreased to acidic conditions, resulting in a halochromic absorption shift, photocycloaddition on the small-molecule level is blocked due to repulsive interactions and exclusive trans-cis isomerization is observed. Through implementation of PyPy into the confined environment of a single-chain nanoparticle (SCNP) design, one can overcome the repulsive forces and exploit the halochromic shift for orange light (λ = 590 nm)-induced cycloaddition and formation of macromolecular three-dimensional (3D) architectures.
Collapse
Affiliation(s)
- Daniel Kodura
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Leona L Rodrigues
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Sarah L Walden
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Anja S Goldmann
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Hendrik Frisch
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Queensland University of Technology (OUT), 2 George Street, Brisbane, QLD 4000, Australia.,Centre for Materials Science, Queensland University of Technology, 2 George Street, Brisbane, QLD 4000, Australia.,Institute of Nanotechnology, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
34
|
Ranjan S, Kufner CL, Lozano GG, Todd ZR, Haseki A, Sasselov DD. UV Transmission in Natural Waters on Prebiotic Earth. ASTROBIOLOGY 2022; 22:242-262. [PMID: 34939825 PMCID: PMC8968845 DOI: 10.1089/ast.2020.2422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 09/28/2021] [Indexed: 05/10/2023]
Abstract
Ultraviolet (UV) light plays a key role in surficial theories of the origin of life, and numerous studies have focused on constraining the atmospheric transmission of UV radiation on early Earth. However, the UV transmission of the natural waters in which origins-of-life chemistry (prebiotic chemistry) is postulated to have occurred is poorly constrained. In this work, we combine laboratory and literature-derived absorption spectra of potential aqueous-phase prebiotic UV absorbers with literature estimates of their concentrations on early Earth to constrain the prebiotic UV environment in marine and terrestrial natural waters, and we consider the implications for prebiotic chemistry. We find that prebiotic freshwaters were largely transparent in the UV, contrary to assumptions in some models of prebiotic chemistry. Some waters, such as high-salinity waters like carbonate lakes, may be deficient in shortwave (≤220 nm) UV flux. More dramatically, ferrous waters can be strongly UV-shielded, particularly if the Fe2+ forms highly UV-absorbent species such as F e C N 6 4 - . Such waters may be compelling venues for UV-averse origin-of-life scenarios but are unfavorable for some UV-dependent prebiotic chemistries. UV light can trigger photochemistry even if attenuated through photochemical transformations of the absorber (e.g., e a q - production from halide irradiation), which may have both constructive and destructive effects for prebiotic syntheses. Prebiotic chemistries that invoke waters that contain such absorbers must self-consistently account for the chemical effects of these transformations. The speciation and abundance of Fe2+ in natural waters on early Earth is a major uncertainty and should be prioritized for further investigation, as it played a major role in UV transmission in prebiotic natural waters.
Collapse
Affiliation(s)
- Sukrit Ranjan
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics and Astronomy, Center for Interdisciplinary Exploration and Research in Astrophysics, Northwestern University, Evanston, Illinois, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Corinna L. Kufner
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
| | | | - Zoe R. Todd
- Harvard-Smithsonian Center for Astrophysics, Cambridge, Massachusetts, USA
- Department of Earth and Space Sciences, University of Washington, Seattle, Washington, USA
| | - Azra Haseki
- Department of Earth, Atmospheric & Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Harvard College, Cambridge, Massachusetts, USA
| | | |
Collapse
|
35
|
|
36
|
Valer L, Rossetto D, Scintilla S, Hu YJ, Tomar A, Nader S, Betinol IO, Mansy S. Methods to identify and characterize iron-sulfur oligopeptides in water. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Iron-sulfur clusters are ubiquitous cofactors that mediate central biological processes. However, despite their long history, these metallocofactors remain challenging to investigate when coordinated to small (≤ six amino acids) oligopeptides in aqueous solution. In addition to being often unstable in vitro, iron-sulfur clusters can be found in a wide variety of forms with varied characteristics, which makes it difficult to easily discern what is in solution. This difficulty is compounded by the dynamics of iron-sulfur peptides, which frequently coordinate multiple types of clusters simultaneously. To aid investigations of such complex samples, a summary of data from multiple techniques used to characterize both iron-sulfur proteins and peptides is provided. Although not all spectroscopic techniques are equally insightful, it is possible to use several, readily available methods to gain insight into the complex composition of aqueous solutions of iron-sulfur peptides.
Collapse
Affiliation(s)
- Luca Valer
- University of Trento, 19034, Trento, Trentino-Alto Adige, Italy
| | | | | | - Yin Juan Hu
- University of Alberta, 3158, Chemistry, Edmonton, Alberta, Canada
| | - Anju Tomar
- University of Trento, 19034, Trento, Trentino-Alto Adige, Italy
| | - Serge Nader
- University of Alberta, 3158, Chemistry, Edmonton, Alberta, Canada
| | | | - Sheref Mansy
- University of Alberta, 3158, Chemistry, Edmonton, Alberta, Canada
| |
Collapse
|
37
|
Liu Z, Wu LF, Kufner CL, Sasselov DD, Fischer WW, Sutherland JD. Prebiotic photoredox synthesis from carbon dioxide and sulfite. Nat Chem 2021; 13:1126-1132. [PMID: 34635812 PMCID: PMC7611910 DOI: 10.1038/s41557-021-00789-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Carbon dioxide (CO2) is the major carbonaceous component of many planetary atmospheres, which includes the Earth throughout its history. Carbon fixation chemistry-which reduces CO2 to organics, utilizing hydrogen as the stoichiometric reductant-usually requires high pressures and temperatures, and the yields of products of potential use to nascent biology are low. Here we demonstrate an efficient ultraviolet photoredox chemistry between CO2 and sulfite that generates organics and sulfate. The chemistry is initiated by electron photodetachment from sulfite to give sulfite radicals and hydrated electrons, which reduce CO2 to its radical anion. A network of reactions that generates citrate, malate, succinate and tartrate by irradiation of glycolate in the presence of sulfite was also revealed. The simplicity of this carboxysulfitic chemistry and the widespread occurrence and abundance of its feedstocks suggest that it could have readily taken place on the surfaces of rocky planets. The availability of the carboxylate products on early Earth could have driven the development of central carbon metabolism before the advent of biological CO2 fixation.
Collapse
Affiliation(s)
- Ziwei Liu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Long-Fei Wu
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Corinna L Kufner
- Harvard-Smithsonian Center for Astrophysics, Massachusetts, MA, USA
| | | | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
38
|
Carbamoyl phosphate and its substitutes for the uracil synthesis in origins of life scenarios. Sci Rep 2021; 11:19356. [PMID: 34588537 PMCID: PMC8481487 DOI: 10.1038/s41598-021-98747-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022] Open
Abstract
The first step of pyrimidine synthesis along the orotate pathway is studied to test the hypothesis of geochemical continuity of protometabolic pathways at the origins of life. Carbamoyl phosphate (CP) is the first high-energy building block that intervenes in the in vivo synthesis of the uracil ring of UMP. Thus, the likelihood of its occurrence in prebiotic conditions is investigated herein. The evolution of carbamoyl phosphate in water and in ammonia aqueous solutions without enzymes was characterised using ATR-IR, 31P and 13C spectroscopies. Carbamoyl phosphate initially appears stable in water at ambient conditions before transforming to cyanate and carbamate/hydrogenocarbonate species within a matter of hours. Cyanate, less labile than CP, remains a potential carbamoylating agent. In the presence of ammonia, CP decomposition occurs more rapidly and generates urea. We conclude that CP is not a likely prebiotic reagent by itself. Alternatively, cyanate and urea may be more promising substitutes for CP, because they are both “energy-rich” (high free enthalpy molecules in aqueous solutions) and kinetically inert regarding hydrolysis. Energy-rich inorganic molecules such as trimetaphosphate or phosphoramidates were also explored for their suitability as sources of carbamoyl phosphate. Although these species did not generate CP or other carbamoylating agents, they exhibited energy transduction, specifically the formation of high-energy P–N bonds. Future efforts should aim to evaluate the role of carbamoylating agents in aspartate carbamoylation, which is the following reaction in the orotate pathway.
Collapse
|
39
|
Xu J, Green NJ, Russell DA, Liu Z, Sutherland JD. Prebiotic Photochemical Coproduction of Purine Ribo- and Deoxyribonucleosides. J Am Chem Soc 2021; 143:14482-14486. [PMID: 34469129 PMCID: PMC8607323 DOI: 10.1021/jacs.1c07403] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The
hypothesis that life on Earth may have started with a heterogeneous
nucleic acid genetic system including both RNA and DNA has attracted
broad interest. The recent finding that two RNA subunits (cytidine,
C, and uridine, U) and two DNA subunits (deoxyadenosine, dA, and deoxyinosine,
dI) can be coproduced in the same reaction network, compatible with
a consistent geological scenario, supports this theory. However, a
prebiotically plausible synthesis of the missing units (purine ribonucleosides
and pyrimidine deoxyribonucleosides) in a unified reaction network
remains elusive. Herein, we disclose a strictly stereoselective and
furanosyl-selective synthesis of purine ribonucleosides (adenosine,
A, and inosine, I) and purine deoxynucleosides (dA and dI), alongside
one another, via a key photochemical reaction of thioanhydroadenosine
with sulfite in alkaline solution (pH 8–10). Mechanistic studies
suggest an unexpected recombination of sulfite and nucleoside alkyl
radicals underpins the formation of the ribo C2′–O bond.
The coproduction of A, I, dA, and dI from a common intermediate, and
under conditions likely to have prevailed in at least some primordial
locales, is suggestive of the potential coexistence of RNA and DNA
building blocks at the dawn of life.
Collapse
Affiliation(s)
- Jianfeng Xu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Nicholas J Green
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - David A Russell
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - Ziwei Liu
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| | - John D Sutherland
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, U.K
| |
Collapse
|
40
|
Deal AM, Rapf RJ, Vaida V. Water-Air Interfaces as Environments to Address the Water Paradox in Prebiotic Chemistry: A Physical Chemistry Perspective. J Phys Chem A 2021; 125:4929-4942. [PMID: 33979519 DOI: 10.1021/acs.jpca.1c02864] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The asymmetric water-air interface provides a dynamic aqueous environment with properties that are often very different than bulk aqueous or gaseous phases and promotes reactions that are thermodynamically, kinetically, or otherwise unfavorable in bulk water. Prebiotic chemistry faces a key challenge: water is necessary for life yet reduces the efficiency of many biomolecular synthesis reactions. This perspective considers water-air interfaces as auspicious reaction environments for abiotic synthesis. We discuss recent evidence that (1) water-air interfaces promote condensation reactions including peptide synthesis, phosphorylation, and oligomerization; (2) photochemistry at water-air interfaces may have been a significant source of prebiotic molecular complexity, given the lack of oxygen and increased availability of near-ultraviolet radiation on early Earth; and (3) water-air interfaces can promote spontaneous reduction and oxidation reactions, potentially providing protometabolic pathways. Life likely began within a relatively short time frame, and water-air interfaces offer promising environments for simultaneous and efficient biomolecule production.
Collapse
Affiliation(s)
- Alexandra M Deal
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Rebecca J Rapf
- Department of Chemistry, Trinity University, 1 Trinity Place, San Antonio, Texas 78212, United States
| | - Veronica Vaida
- Department of Chemistry and Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|