1
|
Hu M, Zhou J, Jiang L, Wang Z, Bao Y, Cui S. Correlation between Hydrogen Bond Strength and Temperature: A Quantitative Single-Molecule Study over a Broad Temperature Range. J Phys Chem B 2025; 129:4547-4557. [PMID: 40293970 DOI: 10.1021/acs.jpcb.5c00962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Temperature is widely acknowledged as a crucial factor influencing the strength of hydrogen bonds (H-bonds). While the qualitative relationship between temperature and H-bond strength is well-established, the quantitative details of this relationship remain largely unexplored. Variable-temperature single-molecule force spectroscopy in vacuum (VT-Vac-SMFS) now provides a direct and accurate method to quantify the relationship between temperature and H-bond intrinsic strength (i.e., the H-bond strength without interference from other external factors). Herein, poly(hydroxyethyl methacrylate), a model polymer capable of forming H-bonds between side chains, was used to examine variations in H-bond intrinsic strength across a temperature range of 261 to 363 K by VT-Vac-SMFS. The experimental data reveal a significant decline in H-bond intrinsic strength as the temperature increases. Based on theoretical analysis, we propose, for the first time, a nonlinear correlation between H-bond intrinsic strength (ΔG*) and temperature with an empirical equation: ΔG* = 7.88 - 1.34ln(T - 251.64). This formula enables the prediction of H-bond intrinsic strength at various temperatures within a reasonable range, which provides insights into the precise control of H-bond strength through temperature regulation. Although the formula may not be universally applicable, this pioneering work represents an upgrade in our understanding of this fundamental relationship from a qualitative to a quantitative perspective.
Collapse
Affiliation(s)
- Minghan Hu
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Jiulong Zhou
- School of Mechanical Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Li Jiang
- School of Chemistry and Materials Science, Anhui Normal University, Wuhu 214002, China
| | - Zhi Wang
- School of Mechanical Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yu Bao
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- School of Chemistry, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
2
|
Cheng T, Li S, Qiu J, Yang Z, Jiang H, Zhu S. Homologation of Alkenes Using Acetylene as a C 2 Feedstock. Angew Chem Int Ed Engl 2025; 64:e202425169. [PMID: 40042732 DOI: 10.1002/anie.202425169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/18/2025]
Abstract
The preparation of diverse homologs from lead compounds has been a common and important practice in medicinal, mechano, polymeric, and many other branches of chemistry. The homologation of alkenes, though important, remains challenging due to the difficulty of (CH2)n insertion into the main carbon chain of alkenes compared to chains containing other polar functional groups. Here, we report the homologation of both terminal and internal alkenes by using acetylene as a cheap and abundant C2 feedstock. The process involves an in-situ transformation of alkenes into boranes and then into elongated alkenes, during which direct (CH2)n insertion is avoided. The reaction can be carried out iteratively to achieve up to a 12-carbon elongation.
Collapse
Affiliation(s)
- Tairan Cheng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Siju Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Jiayao Qiu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Zedong Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P.R. China
- School of Chemistry and Chemical Engineering, State Key Laboratory of Bio-based Fiber Materials, Zhejiang Sci-Tech University, Hangzhou, 310018, P.R. China
| |
Collapse
|
3
|
Bowser BH, Brown CL, Meisner J, Kouznetsova TB, Martinez TJ, Craig SL. Structure-property relationships for the force-triggered disrotatory ring-opening of cyclobutene. Chem Sci 2025; 16:7311-7319. [PMID: 40051651 PMCID: PMC11881290 DOI: 10.1039/d5sc00253b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025] Open
Abstract
Symmetry forbidden reactions are notoriously difficult to study experimentally, for the simple reason that their competing symmetry allowed pathways typically dominate. Covalent polymer mechanochemistry offers an opportunity to broaden access to symmetry forbidden reactions, through the judicious placement of polymer handles on mechanophore reactants. Here, single molecule force spectroscopy and computation are used to evaluate substituent effects on the disrotatory ring opening reaction of cyclobutene to butadiene. Theory and experiment reveal that the formally forbidden reaction is more sensitive to substituents on the scissile carbon-carbon bond than on the alkene, with each of two Me substituents providing approximately 1.5-2 kcal mol-1 of stabilization and a trimethylsilyl alkyne substituent approximately 4.5-6.5 kcal mol-1.
Collapse
Affiliation(s)
| | | | - Jan Meisner
- Department of Chemistry, Stanford University Stanford CA USA
| | | | - Todd J Martinez
- Department of Chemistry, Stanford University Stanford CA USA
| | | |
Collapse
|
4
|
Chen L, De Bo G. A focus on substituents effect in the force-promoted disrotatory ring-opening of cis-cyclobutenes. Chem Sci 2025; 16:7104-7105. [PMID: 40242846 PMCID: PMC11998987 DOI: 10.1039/d5sc90082d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Symmetry-forbidden reactions are notoriously difficult to investigate as they are typically overshadowed by the corresponding symmetry-allowed pathway. Mechanical activation allows access to reaction pathways disfavoured using other methods of activation, such as the symmetry-forbidden disrotatory ring-opening of substituted cis-cyclobutenes. In a recent publication, Bowser, et al. have studied the effects of various substituents on this reaction using atomic force microscopy and computational analysis (B. H. Bowser, C. L. Brown, J. Meisner, T. B. Kouznetsova, T. J. Martínez and S. L. Craig, Chem. Sci., 2025, https://doi.org/10.1039/D5SC00253B). The largest effect is observed with substituents close to the scissile bond having the ability to stabilise the diradical character of the disrotatory ring-opening reaction pathway.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Guillaume De Bo
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| |
Collapse
|
5
|
Zhang C, Kouznetsova TB, Zhu B, Sweeney L, Lancer M, Gitsov I, Craig SL, Hu X. Advancing the Mechanosensitivity of Atropisomeric Diarylethene Mechanophores through a Lever-Arm Effect. J Am Chem Soc 2025; 147:2502-2509. [PMID: 39793028 PMCID: PMC11760174 DOI: 10.1021/jacs.4c13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Understanding structure-mechanical activity relationships (SMARs) in polymer mechanochemistry is essential for the rational design of mechanophores with desired properties, yet SMARs in noncovalent mechanical transformations remain relatively underexplored. In this study, we designed a subset of diarylethene mechanophores based on a lever-arm hypothesis and systematically investigated their mechanical activity toward a noncovalent-yet-chemical conversion of atropisomer stereochemistry. Results from Density functional theory (DFT) calculations, single-molecule force spectroscopy (SMFS) measurements, and ultrasonication experiments collectively support the lever-arm hypothesis and confirm the exceptional sensitivity of chemo-mechanical coupling in these atropisomers. Notably, the transition force for the diarylethene M3 featuring extended 5-phenylbenzo[b]thiophene aryl groups is determined to be 131 pN ± 4 pN by SMFS. This value is lower than those typically recorded for other mechanically induced chemical processes, highlighting its exceptional sensitivity to low-magnitude forces. This work contributes a fundamental understanding of chemo-mechanical coupling in atropisomeric configurational mechanophores and paves the way for designing highly sensitive mechanochemical processes that could facilitate the study of nanoscale mechanical behaviors across scientific disciplines.
Collapse
Affiliation(s)
- Cijun Zhang
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | | | - Boyu Zhu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Liam Sweeney
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Max Lancer
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| | - Ivan Gitsov
- Department
of Chemistry, The Michael M. Szwarc Polymer Research Institute, State University of New York - ESF, Syracuse, New York 13210, United States
- Department
of Biomedical and Chemical Engineering, BioInspired Institute, Syracuse University, Syracuse, New York 13244, United States
| | - Stephen L. Craig
- Department
of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xiaoran Hu
- Department
of Chemistry, BioInspired Institute, Syracuse
University, Syracuse, New York 13244, United States
| |
Collapse
|
6
|
Horst M, Holm S, Valenta L, Kouznetsova TB, Yang J, Burns NZ, Craig SL, Martínez TJ, Xia Y. Fluorination Affects the Force Sensitivity and Nonequilibrium Dynamics of the Mechanochemical Unzipping of Ladderanes. J Am Chem Soc 2024; 146:32651-32659. [PMID: 39535496 DOI: 10.1021/jacs.4c11912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
When multiple reaction steps occur before thermal equilibration, kinetic energy from one reaction step can influence overall product distributions in ways that are not well predicted by transition state theory. An understanding of how the structural features of mechanophores, such as substitutions, affect reactivity, product distribution, and the extent of dynamic effects in the mechanochemical manifolds is necessary for designing chemical reactions and responsive materials. We synthesized two tetrafluorinated [4]-ladderanes with fluorination on different rungs and found that the fluorination pattern influenced the force sensitivity and stereochemical distribution of products in the mechanochemistry of these fluorinated ladderanes. The threshold forces for mechanochemical unzipping of ladderane were decreased by α-fluorination and increased by γ-fluorination; these changes correlated to the different stabilizing or destabilizing effects of fluorination patterns on the first transition state. Using ab initio steered molecular dynamics (AISMD), we compared the product distributions of synthesized and hypothetical ladderanes with different substitution patterns. These calculations suggest that fluorination on the first two bonds of ladderane gives rise to a larger fraction of dynamic trajectories and a larger fraction of E-alkene product through a mechanism resulting from larger momentum because of the greater atomic mass of fluorine. Fluorination on the third and fourth rungs instead gives a larger fraction of E-alkene product primarily due to electronic effects. These combined experimental and computational studies of the mechanochemical unzipping of fluorinated ladderanes provide an example of how relatively simple substituents can affect the extent of nonstatistical dynamics and, thus, mechanochemical outcomes.
Collapse
Affiliation(s)
- Matías Horst
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Søren Holm
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Leoš Valenta
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jinghui Yang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Noah Z Burns
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
7
|
Sun Y, Xie F, Moore JS. The Restoring Force Triangle: A Mnemonic Device for Polymer Mechanochemistry. J Am Chem Soc 2024; 146:31702-31714. [PMID: 39503399 DOI: 10.1021/jacs.4c10346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
In polymer mechanochemistry, mechanophores are specific molecular units within the macromolecular backbone that are particularly sensitive to tension. To facilitate understanding of this selective responsiveness, we introduce the restoring force triangle (RFT). The RFT is a mnemonic device intended to provide intuitive insight into how external tensile forces (i.e., stretching) can selectively activate scissile bonds, thereby initiating mechanically driven chemical reactions. The RFT utilizes two easily computable parameters: the effective bond stiffness constant, which measures a bond's resistance to elongation, and the bond dissociation energy, which is the energy required to break a bond. These parameters help categorize reactivity into thermal and mechanical domains, providing a useful framework for developing new mechanophores that are responsive to force but thermally stable. The RFT helps chemists intuitively understand how tensile force contributes to the activation of a putative mechanophore, facilitating the development of mechanochemical reactions and mechano-responsive materials.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Fangbai Xie
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
8
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Talukdar D, Gole B. Foldamer-Based Mechanoresponsive Materials: Molecular Nanoarchitectonics to Advanced Functions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18791-18805. [PMID: 39051976 DOI: 10.1021/acs.langmuir.4c01252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Artificial molecules that respond to external stimuli such as light, heat, chemical signals, and mechanical force have garnered significant interest due to their tunable functions, variable optical properties, and mechanical responses. Particularly, mechanoresponsive materials featuring molecules that respond to mechanical stress or show force-induced optical changes have been intriguing due to their extraordinary functions. Despite the promising potential of many such materials reported in the past, practical applications have remained limited, primarily because their functions often depend on irreversible covalent bond rupture. Foldamers, oligomers that fold into well-defined secondary structures, offer an alternative class of mechanoactive motifs. These molecules can reversibly sustain mechanical stress and efficiently dissipate energy by transitioning between folded and unfolded states. This review focuses on the emerging properties of foldamer-based mechanoresponsive materials. We begin by highlighting the mechanical responses of foldamers in their molecular form, which have been primarily investigated using single-molecule force spectroscopy and other analytical methods. Following this, we provide a detailed survey of the current trends in foldamer-appended polymers, emphasizing their emerging mechanical and mechanochromic properties. Subsequently, we present an overview of the state-of-the-art advancements in foldamer-appended polymers, showcasing significant reports in this field. This review covers some of the most recent advances in this direction and draws a perspective for further development.
Collapse
Affiliation(s)
- Dhrubajyoti Talukdar
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| | - Bappaditya Gole
- Biomimetic Supramolecular Chemistry Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar Institution of Eminence Deemed to be University, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
10
|
Flear EJ, Horst M, Yang J, Xia Y. Force Transduction Through Distant Force-Bearing Regioisomeric Linkages Affects the Mechanochemical Reactivity of Cyclobutane. Angew Chem Int Ed Engl 2024; 63:e202406103. [PMID: 38818671 DOI: 10.1002/anie.202406103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
Fundamental understanding of mechanochemical reactivity is important for designing new mechanophores. Besides the core structure of mechanophores, substituents on a mechanophore can affect its mechanochemical reactivity through electronic stabilization of the intermediate or effectiveness of force transduction from the polymer backbone to the mechanophore. The latter factor represents a unique mechanical effect in considering polymer mechanochemistry. Here, we show that regioisomeric linkage that is not directly adjacent to the first cleaving bond in cyclobutane can still significantly affect the mechanochemical reactivity of the mechanophore. We synthesized three non-scissile 1,2-diphenyl cyclobutanes, varying their linkage to the polymer backbone via the o, m, or p-position of the diphenyl substituents. Even though the regioisomers share the same substituted cyclobutane core structure and similar electronic stabilization of the diradical intermediate from cleaving the first C-C bond, the p isomer exhibited significantly higher mechanochemical reactivity than the o and m isomers. The observed difference in reactivity can be rationalized as the much more effective force transduction to the scissile bond through the p-position than the other two substitution positions. These findings point to the importance of considering force-bearing linkages that are more distant from the bond to be cleaved when incorporating mechanophores into polymer backbones.
Collapse
Affiliation(s)
- Erica J Flear
- Department of Chemistry, Stanford University Stanford, California, 94305, United States
| | - Maggie Horst
- Department of Chemistry, Stanford University Stanford, California, 94305, United States
| | - Jinghui Yang
- Department of Chemistry, Stanford University Stanford, California, 94305, United States
| | - Yan Xia
- Department of Chemistry, Stanford University Stanford, California, 94305, United States
| |
Collapse
|
11
|
Liu J, Yang J, Xue B, Cao Y, Cheng W, Li Y. Understanding the Mechanochemistry of Mechano-Radicals in Self-Growth Materials by Single-Molecule Force Spectroscopy. Chemphyschem 2024; 25:e202300880. [PMID: 38705870 DOI: 10.1002/cphc.202300880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 04/02/2024] [Accepted: 05/03/2024] [Indexed: 05/07/2024]
Abstract
Recent research on mechano-radicals has provided valuable insights into self-growth and adaptive responsive materials. Typically, mechanophores must remain inert in the absence of force but respond quickly to external tension before other linkages within the polymer network. Azo compounds exhibit promising combinations of mechanical stability and force-triggered reactivity, making them widely used as mechano-radicals in force-responsive materials. However, the activation conditions and behavior of azo compounds have yet to be quantitatively explored. In this study, we investigated the mechanical strength of three azo compounds using single-molecule force spectroscopy. Our results revealed that these compounds exhibit rupture forces ranging from ~500 to 1000 pN, at a loading rate of 3×104 pN s-1. Importantly, these mechanophores demonstrate distinct kinetic properties. Their unique mechanical attributes enable azo bond scission and free radical generation before causing major polymer backbone damage of entire material during polymer network deformation. This fundamental understanding of mechanophores holds significant promise for the development of self-growth materials and their related applications.
Collapse
Affiliation(s)
- Jing Liu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jiahui Yang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Wei Cheng
- Department of Oral Implantology, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Yiran Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid-State Microstructure, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Department of Physics, Nanjing University, Nanjing, Jiangsu, 210093, China
- School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China
| |
Collapse
|
12
|
Yanai H, Kurogi S, Hoshikawa S, Matsumoto T. HFIP-Mediated Desulfinative Friedel-Crafts Cyclobutenylation Reaction. Chemistry 2024; 30:e202400843. [PMID: 38639573 DOI: 10.1002/chem.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 04/20/2024]
Abstract
In 1,1,1,3,3,3-hexafluoroisopropyl alcohol (HFIP), gem-bis(triflyl)cyclobutenes, which can be prepared by the (2+2) cycloaddition reaction of Tf2C=CH2 with alkynes, underwent desulfination to generate the corresponding cyclobutenyl cation. This unique reactivity was successfully applied to the Friedel-Crafts type cyclobutenylation reaction of several (hetero)aromatic compounds.
Collapse
Affiliation(s)
- Hikaru Yanai
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shota Kurogi
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoki Hoshikawa
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Takashi Matsumoto
- School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| |
Collapse
|
13
|
Liu P, Jimaja S, Immel S, Thomas C, Mayer M, Weder C, Bruns N. Mechanically triggered on-demand degradation of polymers synthesized by radical polymerizations. Nat Chem 2024; 16:1184-1192. [PMID: 38609710 PMCID: PMC11230896 DOI: 10.1038/s41557-024-01508-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/15/2024] [Indexed: 04/14/2024]
Abstract
Polymers that degrade on demand have the potential to facilitate chemical recycling, reduce environmental pollution and are useful in implant immolation, drug delivery or as adhesives that debond on demand. However, polymers made by radical polymerization, which feature all carbon-bond backbones and constitute the most important class of polymers, have proven difficult to render degradable. Here we report cyclobutene-based monomers that can be co-polymerized with conventional monomers and impart the resulting polymers with mechanically triggered degradability. The cyclobutene residues act as mechanophores and can undergo a mechanically triggered ring-opening reaction, which causes a rearrangement that renders the polymer chains cleavable by hydrolysis under basic conditions. These cyclobutene-based monomers are broadly applicable in free radical and controlled radical polymerizations, introduce functional groups into the backbone of polymers and allow the mechanically gated degradation of high-molecular-weight materials or cross-linked polymer networks into low-molecular-weight species.
Collapse
Affiliation(s)
- Peng Liu
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland.
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Materials, ETH Zürich, Zürich, Switzerland.
| | - Sètuhn Jimaja
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Stefan Immel
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany
| | | | - Michael Mayer
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Christoph Weder
- Adolphe Merkle Institute, University of Fribourg, Fribourg, Switzerland
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland
| | - Nico Bruns
- Swiss National Center of Competence in Research Bio-Inspired Materials, Fribourg, Switzerland.
- Department of Chemistry and Centre for Synthetic Biology, University of Darmstadt, Darmstadt, Germany.
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, UK.
| |
Collapse
|
14
|
Wang ZJ, Wang S, Jiang J, Hu Y, Nakajima T, Maeda S, Craig SL, Gong JP. Effect of the Activation Force of Mechanophore on Its Activation Selectivity and Efficiency in Polymer Networks. J Am Chem Soc 2024; 146:13336-13346. [PMID: 38697646 DOI: 10.1021/jacs.4c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
In recent decades, more than 100 different mechanophores with a broad range of activation forces have been developed. For various applications of mechanophores in polymer materials, it is crucial to selectively activate the mechanophores with high efficiency, avoiding nonspecific bond scission of the material. In this study, we embedded cyclobutane-based mechanophore cross-linkers (I and II) with varied activation forces (fa) in the first network of the double network hydrogels and quantitively investigated the activation selectivity and efficiency of these mechanophores. Our findings revealed that cross-linker I, with a lower activation force relative to the bonds in the polymer main chain (fa-I/fa-chain = 0.8 nN/3.4 nN), achieved efficient activation with 100% selectivity. Conversely, an increase of the activation force of mechanophore II (fa-II/fa-chain = 2.5 nN/3.4 nN) led to a significant decrease of its activation efficiency, accompanied by a substantial number of nonspecific bond scission events. Furthermore, with the coexistence of two cross-linkers, significantly different activation forces resulted in the almost complete suppression of the higher-force one (i.e., I and III, fa-I/fa-III = 0.8 nN/3.4 nN), while similar activation forces led to simultaneous activations with moderate efficiencies (i.e., I and IV, fa-I/fa-IV = 0.8 nN/1.6 nN). These findings provide insights into the prevention of nonspecific bond rupture during mechanophore activation and enhance our understanding of the damage mechanism within polymer networks when using mechanophores as detectors. Besides, it establishes a principle for combining different mechanophores to design multiple mechanoresponsive functional materials.
Collapse
Affiliation(s)
- Zhi Jian Wang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| | - Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Julong Jiang
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-8628, Japan
| | - Yixin Hu
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Tasuku Nakajima
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Satoshi Maeda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo 060-8628, Japan
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Jian Ping Gong
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
15
|
O'Neill RT, Boulatov R. Mechanochemical Approaches to Fundamental Studies in Soft-Matter Physics. Angew Chem Int Ed Engl 2024; 63:e202402442. [PMID: 38404161 PMCID: PMC11497353 DOI: 10.1002/anie.202402442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/24/2024] [Accepted: 02/25/2024] [Indexed: 02/27/2024]
Abstract
Stretching a segment of a polymer beyond its contour length makes its (primarily backbone) bonds more dissociatively labile, which enables polymer mechanochemistry. Integrating some backbone bonds into suitably designed molecular moieties yields mechanistically and kinetically diverse chemistry, which is becoming increasingly exploitable. Examples include, most prominently, attempts to improve mechanical properties of bulk polymers, as well as prospective applications in drug delivery and synthesis. This review aims to highlight an emerging effort to apply the concepts and experimental tools of mechanochemistry to fundamental physical questions in soft matter. A succinct summary of the state-of-the-knowledge of the field, with emphasis on foundational concepts and generalizable observations, is followed by analysis of 3 recent examples of mechanochemistry yielding molecular-level details of elastomer failure, macromolecular chain dynamics in elongational flows and kinetic allostery. We conclude with reasons to assume that the highlighted approaches are generalizable to a broader range of physical problems than considered to date.
Collapse
Affiliation(s)
- Robert T. O'Neill
- Department of ChemistryUniversity of LiverpoolUniversity of LiverpoolDepartment of ChemistryGrove StreetLiverpoolL69 7ZD
| | - Roman Boulatov
- Department of ChemistryUniversity of LiverpoolUniversity of LiverpoolDepartment of ChemistryGrove StreetLiverpoolL69 7ZD
| |
Collapse
|
16
|
Sun Y, Neary WJ, Huang X, Kouznetsova TB, Ouchi T, Kevlishvili I, Wang K, Chen Y, Kulik HJ, Craig SL, Moore JS. A Thermally Stable SO 2-Releasing Mechanophore: Facile Activation, Single-Event Spectroscopy, and Molecular Dynamic Simulations. J Am Chem Soc 2024; 146:10943-10952. [PMID: 38581383 DOI: 10.1021/jacs.4c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2024]
Abstract
Polymers that release small molecules in response to mechanical force are promising candidates as next-generation on-demand delivery systems. Despite advancements in the development of mechanophores for releasing diverse payloads through careful molecular design, the availability of scaffolds capable of discharging biomedically significant cargos in substantial quantities remains scarce. In this report, we detail a nonscissile mechanophore built from an 8-thiabicyclo[3.2.1]octane 8,8-dioxide (TBO) motif that releases one equivalent of sulfur dioxide (SO2) from each repeat unit. The TBO mechanophore exhibits high thermal stability but is activated mechanochemically using solution ultrasonication in either organic solvent or aqueous media with up to 63% efficiency, equating to 206 molecules of SO2 released per 143.3 kDa chain. We quantified the mechanochemical reactivity of TBO by single-molecule force spectroscopy and resolved its single-event activation. The force-coupled rate constant for TBO opening reaches ∼9.0 s-1 at ∼1520 pN, and each reaction of a single TBO domain releases a stored length of ∼0.68 nm. We investigated the mechanism of TBO activation using ab initio steered molecular dynamic simulations and rationalized the observed stereoselectivity. These comprehensive studies of the TBO mechanophore provide a mechanically coupled mechanism of multi-SO2 release from one polymer chain, facilitating the translation of polymer mechanochemistry to potential biomedical applications.
Collapse
Affiliation(s)
- Yunyan Sun
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - William J Neary
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xiao Huang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kecheng Wang
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yingying Chen
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Material Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Heather J Kulik
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Jeffrey S Moore
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
17
|
Ding S, Wang W, Germann A, Wei Y, Du T, Meisner J, Zhu R, Liu Y. Bicyclo[2.2.0]hexene: A Multicyclic Mechanophore with Reactivity Diversified by External Forces. J Am Chem Soc 2024; 146:6104-6113. [PMID: 38377579 DOI: 10.1021/jacs.3c13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Polymer mechanochemistry has been established as an enabling tool in accessing chemical reactivity and reaction pathways that are distinctive from their thermal counterparts. However, eliciting diversified reaction pathways by activating different constituent chemical bonds from the same mechanophore structure remains challenging. Here, we report the design of a bicyclo[2.2.0]hexene (BCH) mechanophore to leverage its structural simplicity and relatively low molecular symmetry to demonstrate this idea of multimodal activation. Upon changing the attachment points of pendant polymer chains, three different C-C bonds in bicyclo[2.2.0]hexene are specifically activated via externally applied force by sonication. Experimental characterization confirms that in different scenarios of polymer attachment, the regioisomers of BCH undergo different activation reactions, entailing retro-[2+2] cycloreversion, 1,3-allylic migration, and retro-4π ring-opening reactions, respectively. Control experiments with small-molecule analogues reveal that the observed diversified reactivity of BCH regioisomers is possible only with mechanical force. Theoretical studies further elucidate that the differences in the positions of substitution between regioisomers have a minimal impact on the potential energy surface of the parent BCH scaffold. The mechanochemical selectivity between different C-C bonds in each constitutional isomer is a result of selective and effective coupling of force to the aligned C-C bond in each case.
Collapse
Affiliation(s)
- Shihao Ding
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wenkai Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Anne Germann
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Yiting Wei
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jan Meisner
- Institute for Physical Chemistry, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, and College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
18
|
Horst M, Meisner J, Yang J, Kouznetsova TB, Craig SL, Martínez TJ, Xia Y. Mechanochemistry of Pterodactylane. J Am Chem Soc 2024; 146:884-891. [PMID: 38131266 DOI: 10.1021/jacs.3c11293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Pterodactylane is a [4]-ladderane with substituents on the central rung. Comparing the mechanochemistry of the [4]-ladderane structure when pulled from the central rung versus the end rung revealed a striking difference in the threshold force of mechanoactivation: the threshold force is dramatically lowered from 1.9 nN when pulled on the end rung to 0.7 nN when pulled on the central rung. We investigated the bicyclic products formed from the mechanochemical activation of pterodactylane experimentally and computationally, which are distinct from the mechanochemical products of ladderanes being activated from the end rung. We compared the products of pterodactylane's mechanochemical and thermal activation to reveal differences and similarities in the mechanochemical and thermal pathways of pterodactylane transformation. Interestingly, we also discovered the presence of elementary steps that are accelerated or suppressed by force within the same mechanochemical reaction of pterodactylane, suggesting rich mechanochemical manifolds of multicyclic structures. We rationalized the greatly enhanced mechanochemical reactivity of the central rung of pterodactylane and discovered force-free ground state bond length to be a good low-cost predictor of the threshold force for cyclobutane-based mechanophores. These findings advance our understanding of mechanochemical reactivities and pathways, and they will guide future designs of mechanophores with low threshold forces to facilitate their applications in force-responsive materials.
Collapse
Affiliation(s)
- Matías Horst
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jan Meisner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Institute for Physical Chemistry, Department of Chemistry, Heinrich-Heine-Universität Düsseldorf, Düsseldorf D-40225, Germany
| | - Jinghui Yang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
19
|
Beech HK, Wang S, Sen D, Rota D, Kouznetsova TB, Arora A, Rubinstein M, Craig SL, Olsen BD. Reactivity-Guided Depercolation Processes Determine Fracture Behavior in End-Linked Polymer Networks. ACS Macro Lett 2023; 12:1685-1691. [PMID: 38038127 DOI: 10.1021/acsmacrolett.3c00559] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
The fracture of polymer networks is tied to the molecular behavior of strands within the network, yet the specific molecular-level processes that determine the mechanical limits of a network remain elusive. Here, the question of reactivity-guided fracture is explored in otherwise indistinguishable end-linked networks by tuning the relative composition of strands with two different mechanochemical reactivities. Increasing the substitution of less mechanochemically reactive ("strong") strands into a network comprising more reactive ("weak") strands has a negligible impact on the fracture energy until the strong strand content reaches approximately 45%, at which point the fracture energy sharply increases with strong strand content. This aligns with the measured strong strand percolation threshold of 48 ± 3%, revealing that depercolation, or the loss of a percolated network structure, is a necessary criterion for crack propagation in a polymer network. Coarse-grained fracture simulations agree closely with the tearing energy trend observed experimentally, confirming that weak strand scissions dominate the failure until the strong strands approach percolation. The simulations further show that twice as many strands break in a mixture than in a pure network.
Collapse
Affiliation(s)
- Haley K Beech
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Shu Wang
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Devosmita Sen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dechen Rota
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tatiana B Kouznetsova
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Akash Arora
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Michael Rubinstein
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Departments of Mechanical Engineering and Materials Sciences, Biomedical Engineering, and Physics, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L Craig
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Bradley D Olsen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina 27708, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
20
|
Wang S, Hu Y, Kouznetsova TB, Sapir L, Chen D, Herzog-Arbeitman A, Johnson JA, Rubinstein M, Craig SL. Facile mechanochemical cycloreversion of polymer cross-linkers enhances tear resistance. Science 2023; 380:1248-1252. [PMID: 37347867 DOI: 10.1126/science.adg3229] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/16/2023] [Indexed: 06/24/2023]
Abstract
The mechanical properties of covalent polymer networks often arise from the permanent end-linking or cross-linking of polymer strands, and molecular linkers that break more easily would likely produce materials that require less energy to tear. We report that cyclobutane-based mechanophore cross-linkers that break through force-triggered cycloreversion lead to networks that are up to nine times as tough as conventional analogs. The response is attributed to a combination of long, strong primary polymer strands and cross-linker scission forces that are approximately fivefold smaller than control cross-linkers at the same timescales. The enhanced toughness comes without the hysteresis associated with noncovalent cross-linking, and it is observed in two different acrylate elastomers, in fatigue as well as constant displacement rate tension, and in a gel as well as elastomers.
Collapse
Affiliation(s)
- Shu Wang
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Yixin Hu
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Tatiana B Kouznetsova
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Liel Sapir
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Danyang Chen
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | - Abraham Herzog-Arbeitman
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Boston, MA, USA
| | - Jeremiah A Johnson
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Department of Chemistry, Massachusetts Institute of Technology (MIT), Boston, MA, USA
| | - Michael Rubinstein
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Departments of Biomedical Engineering and Physics, Duke University, Durham, NC, USA
- Institute for Chemical Reaction Design and Discovery, Hokkaido University, Sapporo 001-0021, Japan
| | - Stephen L Craig
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| |
Collapse
|
21
|
Bao Y, Cui S. Single-Chain Inherent Elasticity of Macromolecules: From Concept to Applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3527-3536. [PMID: 36848243 DOI: 10.1021/acs.langmuir.2c03234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
"The Tao begets the One. One begets all things of the world." These words of wisdom from Tao Te Ching are of great inspiration to scientists in polymer materials science and engineering: The "One" means an individual polymer chain while polymer materials consist of numerous chains. The understanding of the single-chain mechanics of polymers is crucial for the bottom-up rational design of polymer materials. With a backbone and side chains, a polymer chain is more complex than a small molecule. Moreover, an individual polymer chain is usually placed in a complicated environment (such as solvent, cosolute, and solid surface), which significantly affects the behaviors of the chain. With all these factors, it is hard to fully understand the elastic behaviors of polymers. Herein, we will first introduce the concept of the single-chain inherent elasticity of polymers, which is a fundamental property determined by the polymer backbone. Then, the applications of inherent elasticity in quantifying the effects of side chains and surrounding environment will be summarized. Finally, the challenges in related fields at present and potential research directions in the future will be discussed.
Collapse
Affiliation(s)
- Yu Bao
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Shuxun Cui
- School of Chemistry, Key Lab of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
22
|
Wang S, Panyukov S, Craig SL, Rubinstein M. Contribution of Unbroken Strands to the Fracture of Polymer Networks. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Shu Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Sergey Panyukov
- P. N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow 117924, Russia
- Department of Theoretical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
| | - Michael Rubinstein
- Department of Chemistry, Duke University, Durham, North Carolina 27708-0346, United States
- Department of Mechanical Engineering and Materials Science, Biomedical Engineering, and Physics, Duke University, Durham, North Carolina 27708-0300, United States
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
23
|
Ouchi T, Bowser BH, Kouznetsova TB, Zheng X, Craig SL. Strain-triggered acidification in a double-network hydrogel enabled by multi-functional transduction of molecular mechanochemistry. MATERIALS HORIZONS 2023; 10:585-593. [PMID: 36484385 DOI: 10.1039/d2mh01105k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Recent work has demonstrated that force-triggered mechanochemical reactions within a polymeric material are capable of inducing measurable changes in macroscopic material properties, but examples of bulk property changes without irreversible changes in shape or structure are rare. Here, we report a double-network hydrogel that undergoes order-of-magnitude increases in acidity when strained, while recovering its initial shape after large deformation. The enabling mechanophore design is a 2-methoxy-gem-dichlorocyclopropane mechanoacid that is gated within a fused methyl methoxycyclobutene carboxylate mechanophore structure. This gated mechanoacid is incorporated via radical co-polymerization into linear and network polymers. Sonication experiments confirm the mechanical release of HCl, and single-molecule force spectroscopy reveals enhanced single-molecular toughness in the covalent strand. These mechanochemical functions are incorporated into a double-network hydrogel, leading to mechanically robust and thermally stable materials that undergo strain-triggered acid release. Both quasi-static stretching and high strain rate uniaxial compression result in substantial acidification of the hydrogel, from pH ∼ 7 to ∼5.
Collapse
Affiliation(s)
- Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
| | - Brandon H Bowser
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
| | | | - Xujun Zheng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.
| |
Collapse
|
24
|
Lloyd EM, Vakil JR, Yao Y, Sottos NR, Craig SL. Covalent Mechanochemistry and Contemporary Polymer Network Chemistry: A Marriage in the Making. J Am Chem Soc 2023; 145:751-768. [PMID: 36599076 DOI: 10.1021/jacs.2c09623] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 20 years, the field of polymer mechanochemistry has amassed a toolbox of mechanophores that translate mechanical energy into a variety of functional responses ranging from color change to small-molecule release. These productive chemical changes typically occur at the length scale of a few covalent bonds (Å) but require large energy inputs and strains on the micro-to-macro scale in order to achieve even low levels of mechanophore activation. The minimal activation hinders the translation of the available chemical responses into materials and device applications. The mechanophore activation challenge inspires core questions at yet another length scale of chemical control, namely: What are the molecular-scale features of a polymeric material that determine the extent of mechanophore activation? Further, how do we marry advances in the chemistry of polymer networks with the chemistry of mechanophores to create stress-responsive materials that are well suited for an intended application? In this Perspective, we speculate as to the potential match between covalent polymer mechanochemistry and recent advances in polymer network chemistry, specifically, topologically controlled networks and the hierarchical material responses enabled by multi-network architectures and mechanically interlocked polymers. Both fundamental and applied opportunities unique to the union of these two fields are discussed.
Collapse
Affiliation(s)
- Evan M Lloyd
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States
| | - Jafer R Vakil
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| | - Nancy R Sottos
- NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States.,Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois61801, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina27708, United States.,NSF Center for the Chemistry of Molecularly Optimized Networks, Duke University, Durham, North Carolina27708, United States
| |
Collapse
|
25
|
|
26
|
Wang L, Zheng X, Kouznetsova TB, Yen T, Ouchi T, Brown CL, Craig SL. Mechanochemistry of Cubane. J Am Chem Soc 2022; 144:22865-22869. [DOI: 10.1021/jacs.2c10878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Liqi Wang
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Xujun Zheng
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | | | - Tiffany Yen
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Tetsu Ouchi
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Cameron L. Brown
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Stephen L. Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
27
|
Khodayeki S, Maftuhin W, Walter M. Force Dependent Barriers from Analytic Potentials within Elastic Environments. Chemphyschem 2022; 23:e202200237. [PMID: 35703590 DOI: 10.1002/cphc.202200237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/14/2022] [Indexed: 01/07/2023]
Abstract
Bond rupture under the action of external forces is usually induced by temperature fluctuations, where the key quantity is the force dependent barrier that needs to be overcome. Using analytic potentials we find that these barriers are fully determined by the dissociation energy and the maximal force the potential can withstand. The barrier shows a simple dependence on these two quantities that allows for a re-interpretation of the Eyring-Zhurkov-Bell length Δ x ‡ and the expressions in theories going beyond that. It is shown that solely elastic environments do not change this barrier in contrast to the predictions of constraint geometry simulate external force (COGEF) strategies. The findings are confirmed by explicit calculations of bond rupture in a polydimethylsiloxane model.
Collapse
Affiliation(s)
- Samaneh Khodayeki
- Freiburger Institut für Interaktive Materialien und Bioinspirierte Technologien, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Physikalisches Institut, Universität Freiburg, Herrmann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Wafa Maftuhin
- Freiburger Institut für Interaktive Materialien und Bioinspirierte Technologien, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Physikalisches Institut, Universität Freiburg, Herrmann-Herder-Straße 3, 79104, Freiburg, Germany
| | - Michael Walter
- Freiburger Institut für Interaktive Materialien und Bioinspirierte Technologien, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Physikalisches Institut, Universität Freiburg, Herrmann-Herder-Straße 3, 79104, Freiburg, Germany
- Cluster of Excellence livMatS@FIT, Freiburg, Germany
- Fraunhofer Institut für Werkstoffmechanik, Wöhlerstraße 11, 79108, Freiburg, Germany
| |
Collapse
|
28
|
Fadler RE, Flood AH. Rigidity and Flexibility in Rotaxanes and Their Relatives; On Being Stubborn and Easy-Going. Front Chem 2022; 10:856173. [PMID: 35464214 PMCID: PMC9022846 DOI: 10.3389/fchem.2022.856173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/22/2022] [Indexed: 11/30/2022] Open
Abstract
Rotaxanes are an emerging class of molecules composed of two building blocks: macrocycles and threads. Rotaxanes, and their pseudorotaxane and polyrotaxane relatives, serve as prototypes for molecular-level switches and machines and as components in materials like elastic polymers and 3D printing inks. The rigidity and flexibility of these molecules is a characteristic feature of their design. However, the mechanical properties of the assembled rotaxane and its components are rarely examined directly, and the translation of these properties from molecules to bulk materials is understudied. In this Review, we consider the mechanical properties of rotaxanes by making use of concepts borrowed from physical organic chemistry. Rigid molecules have fewer accessible conformations with higher energy barriers while flexible molecules have more accessible conformations and lower energy barriers. The macrocycles and threads become rigidified when threaded together as rotaxanes in which the formation of intermolecular interactions and increased steric contacts collectively reduce the conformational space and raise barriers. Conversely, rotational and translational isomerism in rotaxanes adds novel modes of flexibility. We find that rigidification in rotaxanes is almost universal, but novel degrees of flexibility can be introduced. Both have roles to play in the function of rotaxanes.
Collapse
|
29
|
Abstract
AbstractThis Account covers the recent progress made on heterocyclic mechanophores in the field of polymer mechanochemistry. In particular, the types of such mechanophores as well as the mechanisms and applications of their force-induced structural transformations are discussed and related perspectives and future challenges proposed.1 Introduction2 Types of Mechanophores3 Methods to Incorporate Heterocycle Mechanophores into Polymer Systems4 Mechanochemical Reactions of Heterocyclic Mechanophores4.1 Three-Membered-Ring Mechanophores4.2 Four-Membered-Ring Mechanophores4.3 Six-Membered-Ring Mechanophores4.4 Bicyclic Mechanophores5 Applications5.1 Cross-Linking of Polymer5.2 Degradable Polymer5.3 Mechanochromic Polymer6 Concluding Remarks and Outlook
Collapse
|
30
|
Qi Q, Sekhon G, Chandradat R, Ofodum NM, Shen T, Scrimgeour J, Joy M, Wriedt M, Jayathirtha M, Darie CC, Shipp DA, Liu X, Lu X. Force-Induced Near-Infrared Chromism of Mechanophore-Linked Polymers. J Am Chem Soc 2021; 143:17337-17343. [PMID: 34586805 DOI: 10.1021/jacs.1c05923] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A near-infrared (NIR) mechanophore was developed and incorporated into a poly(methyl acrylate) chain to showcase the first force-induced NIR chromism in polymeric materials. This mechanophore, based on benzo[1,3]oxazine (OX) fused with a heptamethine cyanine moiety, exhibited NIR mechanochromism in solution, thin-film, and bulk states. The mechanochemical activity was validated using UV-vis-NIR absorption/fluorescence spectroscopies, gel permeation chromatography (GPC), NMR, and DFT simulations. Our work demonstrates that NIR mechanochromic polymers have considerable potential in mechanical force sensing, damage detection, bioimaging, and biomechanics.
Collapse
Affiliation(s)
| | | | | | | | - Tianruo Shen
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | | | | | | | | | | | | | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore
| | | |
Collapse
|
31
|
Nie J, Tian F, Zheng B, Wang Z, Zheng P. Exploration of Metal-Ligand Coordination Bonds in Proteins by Single-molecule Force Spectroscopy. CHEM LETT 2021. [DOI: 10.1246/cl.210307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jingyuan Nie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Fang Tian
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Bin Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Ziyi Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, P. R. China
| |
Collapse
|
32
|
Horst M, Yang J, Meisner J, Kouznetsova TB, Martínez TJ, Craig SL, Xia Y. Understanding the Mechanochemistry of Ladder-Type Cyclobutane Mechanophores by Single Molecule Force Spectroscopy. J Am Chem Soc 2021; 143:12328-12334. [PMID: 34310875 DOI: 10.1021/jacs.1c05857] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We have recently reported a series of ladder-type cyclobutane mechanophores, polymers of which can transform from nonconjugated structures to conjugated structures and change many properties at once. These multicyclic mechanophores, namely, exo-ladderane/ene, endo-benzoladderene, and exo-bicyclohexene-peri-naphthalene, have different ring structures fused to the first cyclobutane, significantly different free energy changes for ring-opening, and different stereochemistry. To better understand their mechanochemistry, we used single molecule force spectroscopy (SMFS) to characterize their force-extension behavior and measure the threshold forces. The threshold forces correlate with the activation energy of the first bond, but not with the strain of the fused rings distal to the polymer main chain, suggesting that the activation of these ladder-type mechanophores occurs with similar early transition states, which is supported by force-modified potential energy surface calculations. We further determined the stereochemistry of the mechanically generated dienes and observed significant and variable contour length elongation for these mechanophores both experimentally and computationally. The fundamental understanding of ladder-type mechanophores will facilitate future design of multicyclic mechanophores with amplified force-response and their applications as mechanically responsive materials.
Collapse
Affiliation(s)
- Matías Horst
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jinghui Yang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jan Meisner
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Tatiana B Kouznetsova
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Todd J Martínez
- Department of Chemistry, Stanford University, Stanford, California 94305, United States.,SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stephen L Craig
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|