1
|
Li J, Lyu S, Li CA, Tang Y, Wang F, Wang Q, Li X, Xu G, Li H, Zhang Y, Guo Z, Chen X, Zhang X. Radionuclide-Activated Luminescence for Cancer Theranostics. Chemistry 2025; 31:e202500296. [PMID: 40062717 DOI: 10.1002/chem.202500296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Within dielectric media, charged particles emitted from medical radionuclides induce polarization of surrounding molecules, which subsequently generate Cerenkov luminescence (CL) upon returning to their ground state. This CL emission confers clinically approved radiotracers with distinctive potential for applications in phototheranostics. However, the utility of CL in vivo has been severely constrained by its ultraviolet-weighted emission spectrum and extremely low photon flux, particularly in living imaging and triggering photodynamic therapy. Certain optical probes, encompassing fluorescent agents and nanoparticle scintillators, can be activated by radionuclides to generate red-shifted emissions with amplified luminescence intensity compared to CL. This phenomenon, termed radionuclide-activated luminescence (RL), represents a promising strategy for enhancing radionuclide-induced tumor phototheranostic outcomes. This review systematically summarizes the advances in RL technology, highlighting the development of various RL probes and their innovative applications in laser-free optical bioimaging and cancer phototherapy. It further delves into the confronting challenges and prospects of RL technology, aiming to provide a comprehensive overview and practical insights to advance the integration of radiotheranostics and phototheranostics in clinical practice.
Collapse
Affiliation(s)
- Jingchao Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Shengji Lyu
- Department of Prevention & Healthcare, Southwest Hospital, Army Medical University, Chongqing, 400038, China
| | - Cheng-Ao Li
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, China
| | - Yi Tang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Fangyang Wang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qiang Wang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xin Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Guo Xu
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hongqing Li
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yueying Zhang
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Xianzhong Zhang
- Theranostics and Translational Research Center, National Infrastructures for Translational Medicine, Institute of Clinical Medicine &, Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
2
|
Alexander C, Guo Z, Glover PB, Faulkner S, Pikramenou Z. Luminescent Lanthanides in Biorelated Applications: From Molecules to Nanoparticles and Diagnostic Probes to Therapeutics. Chem Rev 2025; 125:2269-2370. [PMID: 39960048 PMCID: PMC11869165 DOI: 10.1021/acs.chemrev.4c00615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025]
Abstract
Lanthanides are particularly effective in their clinical applications in magnetic resonance imaging and diagnostic assays. They have open-shell 4f electrons that give rise to characteristic narrow, line-like emission which is unique from other fluorescent probes in biological systems. Lanthanide luminescence signal offers selection of detection pathways based on the choice of the ion from the visible to the near-infrared with long luminescence lifetimes that lend themselves to time-resolved measurements for optical multiplexing detection schemes and novel bioimaging applications. The delivery of lanthanide agents in cells allows localized bioresponsive activity for novel therapies. Detection in the near-infrared region of the spectrum coupled with technological advances in microscopies opens new avenues for deep-tissue imaging and surgical interventions. This review focuses on the different ways in which lanthanide luminescence can be exploited in nucleic acid and enzyme detection, anion recognition, cellular imaging, tissue imaging, and photoinduced therapeutic applications. We have focused on the hierarchy of designs that include luminescent lanthanides as probes in biology considering coordination complexes, multimetallic lanthanide systems to metal-organic frameworks and nanoparticles highlighting the different strategies in downshifting, and upconversion revealing some of the opportunities and challenges that offer potential for further development in the field.
Collapse
Affiliation(s)
- Carlson Alexander
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
- Department
of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Zhilin Guo
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen 518055, China
| | - Peter B. Glover
- Defence
Science and Technology Laboratory (DSTL), Porton Down, Salisbury SP4 0JQ, United
Kingdom
| | - Stephen Faulkner
- Chemistry
Research Laboratory, Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Zoe Pikramenou
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
3
|
Li J, Li Y, Ming J, Zeng X, Wang T, Yang H, Liu H, An Y, Zhang X, Zhuang R, Su X, Guo Z, Zhang X. Progressive Optimization of Lanthanide Nanoparticle Scintillators for Enhanced Triple-Activated Radioluminescence Imaging. Angew Chem Int Ed Engl 2024; 63:e202401683. [PMID: 38719735 DOI: 10.1002/anie.202401683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 06/21/2024]
Abstract
Lanthanide nanoparticle (LnNP) scintillators exhibit huge potential in achieving radionuclide-activated luminescence (radioluminescence, RL). However, their structure-activity relationship remains largely unexplored. Herein, progressive optimization of LnNP scintillators is presented to unveil their structure-dependent RL property and enhance their RL output efficiency. Benefiting from the favorable host matrix and the luminescence-protective effect of core-shell engineering, NaGdF4 : 15 %Eu@NaLuF4 nanoparticle scintillators with tailored structures emerged as the top candidates. Living imaging experiments based on optimal LnNP scintillators validated the feasibility of laser-free continuous RL activated by clinical radiopharmaceuticals for tumor multiplex visualization. This research provides unprecedented insights into the rational design of LnNP scintillators, which would enable efficient energy conversion from Cerenkov luminescence, γ-radiation, and β-electrons into visible photon signals, thus establishing a robust nanotechnology-aided approach for tumor-directed radio-phototheranostics.
Collapse
Affiliation(s)
- Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yun Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Tingting Wang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hongzhang Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwu Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xun Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xianzhong Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital & Theranostics and Translational Research Center, Institute of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
4
|
Ma K, Chen KZ, Qiao SL. Advances of Layered Double Hydroxide-Based Materials for Tumor Imaging and Therapy. CHEM REC 2024; 24:e202400010. [PMID: 38501833 DOI: 10.1002/tcr.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/22/2024] [Indexed: 03/20/2024]
Abstract
Layered double hydroxides (LDH) are a class of functional anionic clays that typically consist of orthorhombic arrays of metal hydroxides with anions sandwiched between the layers. Due to their unique properties, including high chemical stability, good biocompatibility, controlled drug loading, and enhanced drug bioavailability, LDHs have many potential applications in the medical field. Especially in the fields of bioimaging and tumor therapy. This paper reviews the research progress of LDHs and their nanocomposites in the field of tumor imaging and therapy. First, the structure and advantages of LDH are discussed. Then, several commonly used methods for the preparation of LDH are presented, including co-precipitation, hydrothermal and ion exchange methods. Subsequently, recent advances in layered hydroxides and their nanocomposites for cancer imaging and therapy are highlighted. Finally, based on current research, we summaries the prospects and challenges of layered hydroxides and nanocomposites for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Ke Ma
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Ke-Zheng Chen
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| | - Sheng-Lin Qiao
- Lab of Functional and Biomedical Nanomaterials, College of Materials Science and Engineering, Qingdao University of Science and Technology (QUST), Qingdao, 266042, P. R. China
| |
Collapse
|
5
|
Teng M, Liang X, Liu H, Li Z, Gao X, Zhang C, Cheng H, Chen H, Liu G. Cerenkov radiation shining a light for cancer theranostics. NANO TODAY 2024; 55:102174. [DOI: 10.1016/j.nantod.2024.102174] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
|
6
|
Ran C, Pu K. Molecularly generated light and its biomedical applications. Angew Chem Int Ed Engl 2024; 63:e202314468. [PMID: 37955419 DOI: 10.1002/anie.202314468] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/01/2023] [Accepted: 11/10/2023] [Indexed: 11/14/2023]
Abstract
Molecularly generated light, referred to here as "molecular light", mainly includes bioluminescence, chemiluminescence, and Cerenkov luminescence. Molecular light possesses unique dual features of being both a molecule and a source of light. Its molecular nature enables it to be delivered as molecules to regions deep within the body, overcoming the limitations of natural sunlight and physically generated light sources like lasers and LEDs. Simultaneously, its light properties make it valuable for applications such as imaging, photodynamic therapy, photo-oxidative therapy, and photobiomodulation. In this review article, we provide an updated overview of the diverse applications of molecular light and discuss the strengths and weaknesses of molecular light across various domains. Lastly, we present forward-looking perspectives on the potential of molecular light in the realms of molecular imaging, photobiological mechanisms, therapeutic applications, and photobiomodulation. While some of these perspectives may be considered bold and contentious, our intent is to inspire further innovations in the field of molecular light applications.
Collapse
Affiliation(s)
- Chongzhao Ran
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 637459, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| |
Collapse
|
7
|
Lengacher R, Martin KE, Śmiłowicz D, Esseln H, Lotlikar P, Grichine A, Maury O, Boros E. Targeted, Molecular Europium (III) Probes Enable Luminescence-Guided Surgery and 1 Photon Post-Surgical Luminescence Microscopy of Solid Tumors. J Am Chem Soc 2023; 145:24358-24366. [PMID: 37869897 PMCID: PMC10670433 DOI: 10.1021/jacs.3c09444] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Discrete luminescent lanthanide complexes represent a potential alternative to organic chromophores due to their tunability of optical properties, insensitivity to photobleaching, and large pseudo-Stokes shifts. Previously, we demonstrated that the lack of depth penetration of UV excitation required to sensitize discrete terbium and europium complexes can be overcome using Cherenkov radiation emitted by clinically employed radioisotopes in situ. Here, we show that the second-generation europium complexes [Eu(III)(pcta-PEPA2)] and [Eu(III)(tacn-pic-PEPA2)] (Φ = 57% and 76%, respectively) lower the limit of detection (LoD) to 1 nmol in the presence of 10 μCi of Cherenkov emitting isotopes, 18F and 68Ga. Bifunctionalization provides access to cysteine-linked peptide conjugates with comparable brightness and LoD. The conjugate, [Eu(tacn-(pic-PSMA)-PEPA2)], displays high binding affinity to prostate-specific membrane antigen (PSMA)-expressing PC-3 prostate cancer cells in vitro and can be visualized in the membrane-bound state using confocal microscopy. Biodistribution studies with the [86Y][Y(III)(tacn-(pic-PSMA)-PEPA2)] analogue in a mouse xenograft model were employed to study pharmacokinetics. Systemic administration of the targeted Cherenkov emitter, [68Ga][Ga(III)(PSMA-617)], followed by intratumoral injection or topical application of 20 or 10 nmol [Eu(III)(tacn-(pic-PSMA)-PEPA2)], respectively, in live mice resulted in statistically significant signal enhancement using conventional small animal imaging (620 nm bandpass filter). Optical imaging informed successful tumor resection. Ex vivo imaging of the fixed tumor tissue with 1 and 2 photon excitation further reveals the accumulation of the administered Eu(III) complex in target tissues. This work represents a significant step toward the application of luminescent lanthanide complexes for optical imaging in a clinical setting.
Collapse
Affiliation(s)
- Raphael Lengacher
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Kirsten E Martin
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Helena Esseln
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Piyusha Lotlikar
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Alexei Grichine
- Institute for Advanced Biosciences, Université Grenoble Alpes, Inserm U1209, CNRS, UMR 5309, Site Santé, Allée des Alpes, 38700 La Tronche, France
| | - Olivier Maury
- Université Lyon, ENS de Lyon, CNRS, Laboratoire de Chimie UMR 5182, F-69342 Lyon, France
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Yang X, Nao SC, Lin C, Kong L, Wang J, Ko CN, Liu J, Ma DL, Leung CH, Wang W. A cell-impermeable luminogenic probe for near-infrared imaging of prostate-specific membrane antigen in prostate cancer microenvironments. Eur J Med Chem 2023; 259:115659. [PMID: 37499288 DOI: 10.1016/j.ejmech.2023.115659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Prostate-specific membrane antigen (PSMA) imaging probes are a promising tool for the diagnosis and image-guided surgery of prostate cancer (PCa). However, PSMA-specific luminescence probes for PCa detection and heterogeneity studies with high imaging contrast are lacking. Here, we report the first near-infrared (NIR) iridium(III) complex for the wash-free and specific imaging of PSMA in PCa cells and spheroids. The conjugation of a PSMA inhibitor, Lys-urea-Glu, to an iridium(III) complex synergizes the PSMA-specific affinity and biocompatibility of the inhibitor with the desirable photophysical properties of the iridium(III) complex, including NIR emission (670 nm), high photostability and a large Stokes shift. The cellular impermeability of the probe along with its strong binding affinity to PSMA enhances its specificity for PSMA, enabling the washing-free luminescent imaging of membrane PSMA with lower cytotoxicity. The probe was successfully applied for selectively visualizing PSMA-expressing cells and for the imaging of PSMA in a multicellular PCa model with good imaging penetration, indicating its potential use in complicated and heterogeneous tumor microenvironments. Furthermore, the probe showed good imaging performance in the PCa-bearing tumor mice via targeting PSMA in vivo. This work provides a novel strategy for the development of highly sensitive and specific NIR probes for PSMA in biological systems in vitro, which is of great significance for the precise diagnosis of PCa and for elucidating PCa heterogeneity.
Collapse
Affiliation(s)
- Xifang Yang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Sang-Cuo Nao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| | - Chuankai Lin
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Lingtan Kong
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Jing Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China
| | - Chung-Nga Ko
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Jinbiao Liu
- School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, 86 Hongqi Road, Ganzhou, China.
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau; Department of Biomedical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macau; Macao Centre for Research and Development in Chinese Medicine, University of Macau, Taipa, Macau; MoE Frontiers Science Centre for Precision Oncology, University of Macau, Taipa, Macau.
| | - Wanhe Wang
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, China; Chongqing Technology Innovation Center, Northwestern Polytechnical University, Chongqing, 400000, China.
| |
Collapse
|
9
|
Sabaghi V, Rashidi-Ranjbar P, Davar F, Sharif-Paghaleh E. Development of lanthanide-based “all in one” theranostic nanoplatforms for TME-reinforced T1-weighted MRI/CT bimodal imaging. J Drug Deliv Sci Technol 2023; 87:104703. [DOI: 10.1016/j.jddst.2023.104703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Zhang Y, Li F, Cui Z, Li K, Guan J, Tian L, Wang Y, Liu N, Wu W, Chai Z, Wang S. A Radioluminescent Metal-Organic Framework for Monitoring 225Ac in Vivo. J Am Chem Soc 2023. [PMID: 37366004 DOI: 10.1021/jacs.3c02325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
225Ac is considered as one of the most promising radioisotopes for alpha-therapy because its emitted high-energy α-particles can efficiently damage tumor cells. However, it also represents a significant threat to healthy tissues owing to extremely high radiotoxicity if targeted therapy fails. This calls for a pressing requirement of monitoring the biodistribution of 225Ac in vivo during the treatment of tumors. However, the lack of imageable photons or positrons from therapeutic doses of 225Ac makes this task currently quite challenging. We report here a nanoscale luminescent europium-organic framework (EuMOF) that allows for fast, simple, and efficient labeling of 225Ac in its crystal structure with sufficient 225Ac-retention stability based on similar coordination behaviors between Ac3+ and Eu3+. After labeling, the short distance between 225Ac and Eu3+ in the structure leads to exceedingly efficient energy transduction from225Ac-emitted α-particles to surrounding Eu3+ ions, which emits red luminescence through a scintillation process and produces sufficient photons for clearcut imaging. The in vivo intensity distribution of radioluminescence signal originating from the 225Ac-labeled EuMOF is consistent with the dose of 225Ac dispersed among the various organs determined by the radioanalytical measurement ex vivo, certifying the feasibility of in vivo directly monitoring 225Ac using optical imaging for the first time. In addition, 225Ac-labeled EuMOF displays notable efficiency in treating the tumor. These results provide a general design principle for fabricating 225Ac-labeled radiopharmaceuticals with imaging photons and propose a simple way to in vivo track radionuclides with no imaging photons, including but not limited to 225Ac.
Collapse
Affiliation(s)
- Yugang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Feize Li
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Zhencun Cui
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Kai Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jingwen Guan
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Longlong Tian
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Yaxing Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ning Liu
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
| | - Wangsuo Wu
- Frontiers Science Center for Rare Isotopes, Lanzhou University, Lanzhou 730000, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Zhu Y, Guo X, Ma X, Liu K, Han Y, Wu Y, Li X. Rare earth upconversion luminescent composite based on energy transfer for specific and sensitive detection of cysteine. Analyst 2023; 148:1016-1023. [PMID: 36723185 DOI: 10.1039/d2an01994a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abnormal levels of thiols in cysteine (Cys) have been shown to be associated with growth retardation, skin lesions, and neurotoxicity in humans. Herein, we designed and synthesized a rare earth upconversion luminescent (UCL) nanocomposite probe UCNP-PEG-NOF1 for the UCL detection of Cys using NOF1 developed by our group as a Cys probe. The core structure of rare earth nanoparticles can absorb light at 980 nm and convert it into visible light. The detection principle of Cys was based on the change in absorption peak before and after the reaction between NOF1 and Cys, as well as the change in UCL intensity. The rare earth nanocomposite in the probe could be excited by near-infrared light and had low background fluorescence and strong penetration ability; thus, the probe was successfully employed to specifically and sensitively detect Cys with a low background signal. Overall, the developed UCNP-PEG-NOF1 probe had good selectivity and high sensitivity for Cys; its detection limit was as low as 83 nM.
Collapse
Affiliation(s)
- Yulian Zhu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xiaomei Guo
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xiao Ma
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Kai Liu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Yuting Han
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Yongquan Wu
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| | - Xun Li
- School of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou 341000, P. R. China.
| |
Collapse
|
12
|
Hou Z, Huang Y, Ruan Y, Xu H, Tan Y, Lin LR, Wu ZY. Reversible trans-to- cis photoisomerization and irreversible photocyclization reactions of a Co-coordinated stilbene derivative on chiral di-β-diketonate lanthanide complexes. RSC Adv 2023; 13:2269-2282. [PMID: 36741132 PMCID: PMC9837704 DOI: 10.1039/d2ra07133a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Six lanthanide complexes constructed from two chiral β-diketonates (d/l-fbc = 3-heptafluorobutyryl-(+)/(-)-camphorate), the stilbene derivative (E)-N',N'-bis(pyridin-2-ylmethyl)-4-styrylbenzoyl hydrazide (L), a trifluoroacetate anion (CF3CO2 -), and one water molecule, namely [Ln(d/l-fbc)2(L)(CF3CO2)]·H2O (LnC57H54F17N4O8, Ln = La (1, d-fbc), La (2, l-fbc), Sm (3, d-fbc), Eu (4, d-fbc), Eu (5, l-fbc), and Tb (6, d-fbc), were synthesized and characterized by single-crystal X-ray diffraction, 1H-NMR, elemental analysis, IR and UV-vis spectroscopy, and thermal gravimetric analysis. The photoisomerization reactions of these complexes were systematically studied by means of experimental and theoretical calculations. Crystals of complexes 1, 2, 3, and 4 were obtained and belong to the monoclinic crystal system and the C2 chiral space group. The Λ- and Δ-diastereomers coexist in their crystals and no apparent bisignate couplets are observed in their ECD spectra. Among the complexes, the photocyclization reaction is followed by the trans-to-cis photoisomerization reaction and competes with the trans-to-cis photoisomerization, then the photocyclization reaction continues. The photocyclization reaction is irreversible in this stilbene derivative and is delayed in the lanthanide complexes. These results provide a viable strategy for the design of promising new stilbene-attached dual-functional lanthanide-based optical-switching materials.
Collapse
Affiliation(s)
- Ziting Hou
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Yanji Huang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Yushan Ruan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Han Xu
- School of Pharmaceutical Science & Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical UniversityKunming650500P. R. China
| | - Yu Tan
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Li-Rong Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| | - Zhen-yi Wu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005P. R. China
| |
Collapse
|
13
|
Liu N, Su X, Sun X. Cerenkov radiation-activated probes for deep cancer theranostics: a review. Theranostics 2022; 12:7404-7419. [PMID: 36438500 PMCID: PMC9691350 DOI: 10.7150/thno.75279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/07/2022] [Indexed: 11/05/2022] Open
Abstract
Cerenkov radiation (CR) from radionuclides and megavoltage X-ray radiation can act as an in situ light source for deep cancer theranostics, overcoming the limitations of external light sources. Despite the blue-weighted emission and low quantum yield of CR, activatable probes-mediated CR can enhance the in-vivo diagnostic signals by Cerenkov resonance energy transfer and also can produce therapeutic effects by reactive species generation/drug release, greatly promoting the biomedical applications of CR. In this review, we describe the principles and sources of CR, construction of CR-activated probes and their application to tumor optical imaging and therapy. Finally, future prospects for the design and biomedical application of CR-activated probes are discussed.
Collapse
Affiliation(s)
- Nian Liu
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
14
|
Bianfei S, Fang L, Zhongzheng X, Yuanyuan Z, Tian Y, Tao H, Jiachun M, Xiran W, Siting Y, Lei L. Application of Cherenkov radiation in tumor imaging and treatment. Future Oncol 2022; 18:3101-3118. [PMID: 36065976 DOI: 10.2217/fon-2022-0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cherenkov radiation (CR) is the characteristic blue glow that is generated during radiotherapy or radioisotope decay. Its distribution and intensity naturally reflect the actual dose and field of radiotherapy and the location of radioisotope imaging agents in vivo. Therefore, CR can represent a potential in situ light source for radiotherapy monitoring and radioisotope-based tumor imaging. When used in combination with new imaging techniques, molecular probes or nanomedicine, CR imaging exhibits unique advantages (accuracy, low cost, convenience and fast) in tumor radiotherapy monitoring and imaging. Furthermore, photosensitive nanomaterials can be used for CR photodynamic therapy, providing new approaches for integrating tumor imaging and treatment. Here the authors review the latest developments in the use of CR in tumor research and discuss current challenges and new directions for future studies.
Collapse
Affiliation(s)
- Shao Bianfei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Fang
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China.,Department of Radiation Oncology, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang Zhongzheng
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Zeng Yuanyuan
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Tian
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - He Tao
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Ma Jiachun
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Xiran
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Siting
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Liu Lei
- Department of Head and Neck Oncology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Jin GQ, Chau CV, Arambula JF, Gao S, Sessler JL, Zhang JL. Lanthanide porphyrinoids as molecular theranostics. Chem Soc Rev 2022; 51:6177-6209. [PMID: 35792133 PMCID: PMC12005637 DOI: 10.1039/d2cs00275b] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
In recent years, lanthanide (Ln) porphyrinoids have received increasing attention as theranostics. Broadly speaking, the term 'theranostics' refers to agents designed to allow both disease diagnosis and therapeutic intervention. This Review summarises the history and the 'state-of-the-art' development of Ln porphyrinoids as theranostic agents. The emphasis is on the progress made within the past decade. Applications of Ln porphyrinoids in near-infrared (NIR, 650-1700 nm) fluorescence imaging (FL), magnetic resonance imaging (MRI), radiotherapy, and chemotherapy will be discussed. The use of Ln porphyrinoids as photo-activated agents ('phototheranostics') will also be highlighted in the context of three promising strategies for regulation of porphyrinic triplet energy dissipation pathways, namely: regioisomeric effects, metal regulation, and the use of expanded porphyrinoids. The goal of this Review is to showcase some of the ongoing efforts being made to optimise Ln porphyrinoids as theranostics and as phototheranostics, in order to provide a platform for understanding likely future developments in the area, including those associated with structure-based innovations, functional improvements, and emerging biological activation strategies.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
| | - Calvin V Chau
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jonathan F Arambula
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
- InnovoTEX, Inc. 3800 N. Lamar Blvd, Austin, Texas 78756, USA.
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
- Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712-1224, USA.
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China.
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, P. R. China
| |
Collapse
|
16
|
Kofod N, Nawrocki P, Sørensen TJ. Arel: Investigating [Eu(H 2O) 9] 3+ Photophysics and Creating a Method to Bypass Luminescence Quantum Yield Determinations. J Phys Chem Lett 2022; 13:3096-3104. [PMID: 35357175 DOI: 10.1021/acs.jpclett.2c00418] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide luminescence has been treated separate from molecular photophysics, although the underlying phenomena are the same. As the optical transitions observed in the trivalent lanthanide ions are forbidden, they do belong to the group that molecular photophysics has yet to conquer, yet the experimental descriptors remain valid. Herein, the luminescence quantum yields (ϕlum), luminescence lifetimes (τobs), oscillator strengths (f), and the rates of nonradiative (knr) and radiative (kr ≡ A) deactivation of [Eu(H2O)9]3+ were determined. Further, it was shown that instead of a full photophysical characterization, it is possible to relate changes in transition probabilities to the relative parameter Arel, which does not require reference data. While Arel does not afford comparisons between experiments, it resolves emission intensity changes due to emitter properties from intensity changes due to environmental effects and differences in the number of photons absorbed. When working with fluorescence this may seem trivial; when working with lanthanide luminescence it is not.
Collapse
Affiliation(s)
- Nicolaj Kofod
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Patrick Nawrocki
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| | - Thomas Just Sørensen
- Department of Chemistry & Nano-Science Center, University of Copenhagen, Universitetsparken 5, 2100 København Ø, Denmark
| |
Collapse
|
17
|
Dual-Labelling Strategies for Nuclear and Fluorescence Molecular Imaging: Current Status and Future Perspectives. Pharmaceuticals (Basel) 2022; 15:ph15040432. [PMID: 35455430 PMCID: PMC9028399 DOI: 10.3390/ph15040432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/27/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Molecular imaging offers the possibility to investigate biological and biochemical processes non-invasively and to obtain information on both anatomy and dysfunctions. Based on the data obtained, a fundamental understanding of various disease processes can be derived and treatment strategies can be planned. In this context, methods that combine several modalities in one probe are increasingly being used. Due to the comparably high sensitivity and provided complementary information, the combination of nuclear and optical probes has taken on a special significance. In this review article, dual-labelled systems for bimodal nuclear and optical imaging based on both modular ligands and nanomaterials are discussed. Particular attention is paid to radiometal-labelled molecules for single-photon emission computed tomography (SPECT) and positron emission tomography (PET) and metal complexes combined with fluorescent dyes for optical imaging. The clinical potential of such probes, especially for fluorescence-guided surgery, is assessed.
Collapse
|
18
|
Jin GQ, Lai H, Yang ZS, Ning Y, Duan L, Zhang J, Chen T, Gao S, Zhang JL. Gadolinium(III) Porphyrinoid Phototheranostics. Chem Asian J 2022; 17:e202200181. [PMID: 35343080 DOI: 10.1002/asia.202200181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/21/2022] [Indexed: 11/08/2022]
Abstract
Molecular phototheranostics as the emerging field of modern precision medicine recently has attracts increasing research attentions owing to non-invasiveness, high precision, and controllable nature of light. In this work, we reported alluring gadolinium (Gd3+) porphyrinoids phototheranostic agents for magnetic resonance imaging (MRI) and photodynamic therapy (PDT). The synthesized Gd-1-4-Glu featured with meso-glycosylation and β-lactonization to endow good biocompatibility and improved photophysical properties. In particular, β-lactonization of glycosylated Gd3+ porphyrinoids substantially red-shifted its absorption band to near-infrared (NIR) region and boosted generation of reactive oxygen species including 1O2, and some radical species that engaged both type II and type I PDT pathways. In addition, the number and regioisomerism of β-oxazolone moieties was observed to play an essential role in improving longitude relaxivity (r1) of Gd-1-4-Glu up to 4.6 mM-1s-1 for the first time by affecting environmental water exchange. Taking Gd-4-Glu as a promising complex, we further achieved real-time T1-weighted MRI and PDT on HeLa tumour mice in vivo, revealing the appealing potential of Gd3+ porphyrinoids in phototheranostics.
Collapse
Affiliation(s)
- Guo-Qing Jin
- Peking University, College of Chemistry and Molecular Engineering, Beijing, 10087, Beijing, CHINA
| | - Haoqiang Lai
- Jinan University, Department of Chemistry, CHINA
| | - Zi-Shu Yang
- Peking University, College of Chemistry and Molecular Engineering, CHINA
| | - Yingying Ning
- Peking University, College of Chemistry and Molecular Engineering, CHINA
| | - Linqi Duan
- Jinan University, Department of Chemistry, CHINA
| | - Jing Zhang
- University of the Chinese Academy of Sciences, , CHINA
| | | | - Song Gao
- Peking University, College of Chemistry and Molecular Engineering, CHINA
| | - Jun-Long Zhang
- Peking University, College of Chemistry and Molecular Engineering, Chengfu Road 202, 100871, Beijing, CHINA
| |
Collapse
|
19
|
Zhang C, Ma X, Cen P, Yang H, He Z, Guo Y, Tian D, Liu X. Dual-sensitized Eu(III)/Tb(III) complexes exhibiting tunable luminescence emission and their application in cellular-imaging. Dalton Trans 2022; 51:3180-3187. [PMID: 35113124 DOI: 10.1039/d2dt00051b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two novel dual-photosensitized stable complexes, namely [Eu(dpq)(BTFA)3] (1) and [Tb(dpq)(BTFA)3] (2), have been successfully assembled via a mixed ligand approach using dipyrido[3,2-d:2',3'-f]quinoxaline (dpq) and 3-benzoyl-1,1,1-trifluoroacetone (BTFA). The crystallographic data reveal mononuclear lanthanide cores in both 1 and 2, in which each eight-coordinated Ln(III) ion is located in a slightly distorted dodecahedron (D2d). The room-temperature photoluminescence spectra of complexes 1 and 2 indicate that both BTFA and dpq can effectively sensitize Eu(III) and Tb(III) characteristic luminescence. Moreover, heterometallic Ln-complexes can be synthesized, leading to a new series of differently doped EuxTb1-x complexes. Luminescence experiments on them reveal dual-emission peaks of Eu3+ and Tb3+, which lead to a gradual change in the luminous colour between yellow-green, yellow, orange, orange-red and red upon increasing the Eu3+ content. On the basis of the intrinsic strong emission properties and nontoxic nature of complexes 1 and 2, we explore their potential application as cellular imaging agents. Fluorescence microscopy data suggest the cytosolic and nuclear localization of 1 and 2 in HeLa and MCF-7 cells.
Collapse
Affiliation(s)
- Cui Zhang
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Peipei Cen
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Huifang Yang
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Zixin He
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Danian Tian
- College of Public Health and Management, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan 750021, China.
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. .,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
20
|
Wei W, Zhang X, Lu L, Feng S. Novel 2D isomorphic lanthanide complexes based on a bifunctional 5-(pyridin-3-yloxy)isophthalic acid: synthesis, structure, fluorescence and magnetic properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00626j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Tb(iii)-complex can be used as a multifunctional luminescent sensor presenting visual quenching responses towards acetone, Fe3+ and CrO42− in aqueous solution with high sensitivity and low detection limits.
Collapse
Affiliation(s)
- Wenwen Wei
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Xue Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Liping Lu
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| | - Sisi Feng
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of the Education Ministry, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Shanxi University, Taiyuan, Shanxi 030006, People's Republic of China
| |
Collapse
|
21
|
Ning Y, Jin GQ, Wang MX, Gao S, Zhang JL. Recent progress in metal-based molecular probes for optical bioimaging and biosensing. Curr Opin Chem Biol 2021; 66:102097. [PMID: 34775149 DOI: 10.1016/j.cbpa.2021.102097] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/29/2022]
Abstract
Biological imaging and biosensing from subcellular/cellular level to whole body have enabled non-invasive visualisation of molecular events during various biological and pathological processes, giving great contributions to the rapid and impressive advances in chemical biology, drug discovery, disease diagnosis and prognosis. Optical imaging features a series of merits, including convenience, high resolution, good sensitivity, low cost and the absence of ionizing radiation. Among different luminescent probes, metal-based molecules offer unique promise in optical bioimaging and biosensing in vitro and in vivo, arising from their small sizes, strong luminescence, large Stokes shifts, long lifetimes, high photostability and tunable toxicity. In this review, we aim to highlight the design of metal-based molecular probes from the standpoint of synthetic chemistry in the last 2 years for optical imaging, covering d-block transition metal and lanthanide complexes and multimodal imaging agents.
Collapse
Affiliation(s)
- Yingying Ning
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Institute for Innovation in Imaging (i(3)), Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, USA
| | - Guo-Qing Jin
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Meng-Xin Wang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China
| | - Song Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China; Spin-X Institute, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510641, PR China; Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials
| | - Jun-Long Zhang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, PR China; Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, PR China.
| |
Collapse
|
22
|
Luminescent hydrogels with tunable emission colors and excellent adhesion performance fabricated by lanthanide complexes induced crosslinking and physical interaction. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124319] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|