1
|
Huang Y, Tang C, Tang Q. Heterogeneous binding of polymers on curved nanoparticles. NANOSCALE 2024; 16:19806-19813. [PMID: 39370904 DOI: 10.1039/d4nr02486a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Unraveling protracted polymer binding on curved surfaces of nanoparticles (NPs) is important for the fabrication of multifunctional nanostructures in cutting-edge research disciplines such as directional self-assembly and nanomedicine. By using our newly developed Integral of First-passage Times (IFS), we demonstrate a curvature-dependent heterogeneous binding of polymers on curved NPs, not only in terms of the binding dynamics but also in terms of the final adsorption densities. The highly curved surfaces on NPs can adsorb larger density polymers with binding kinetics that are faster than those on less curved areas, which is consistent with recent experimental observations. In particular, the spherical corners on cubic NPs with a radius of R = 3.0 nm can adsorb polymers at a density 4.1 times higher than those on planar surfaces and 1.7 times higher than those on rod edge surfaces. A unified relationship between adsorption densities and surface curvatures is proposed to collapse all the data onto one master curve. The findings demonstrate a heterogeneous binding of polymers on curved NPs, providing effective guidelines for the rational design of functional nanostructures in different applications.
Collapse
Affiliation(s)
- Yifan Huang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.
| | - Chuan Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.
| | - Qiyun Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China.
| |
Collapse
|
2
|
Shipley W, Wang Y, Chien J, Wang B, Tao AR. Characterization of Surface Patterning on Polymer-Grafted Nanocubes Using Atomic Force Microscopy and Force Volume Mapping. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:20464-20473. [PMID: 39298634 DOI: 10.1021/acs.langmuir.4c01902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Atomic force microscopy (AFM), in particular force spectroscopy, is a powerful tool for understanding the supramolecular structures associated with polymers grafted to surfaces, especially in regimes of low polymer density where different morphological structures are expected. In this study, we utilize force volume mapping to characterize the nanoscale surfaces of Ag nanocubes (AgNCs) grafted with a monolayer of polyethylene glycol (PEG) chains. Spatially resolved force-distance curves taken for a single AgNC were used to map surface properties, such as adhesion energy and deformation. We confirm the presence of surface octopus micelles that are localized on the corners of the AgNC, using force curves to resolve structural differences between the micelle "bodies" and "legs". Furthermore, we observe unique features of this system including a polymer corona stemming from AgNC-substrate interactions and polymer bridging stemming from particle-particle interactions.
Collapse
Affiliation(s)
- Wade Shipley
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| | - Yufei Wang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| | - Joelle Chien
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
| | - Bin Wang
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
| | - Andrea R Tao
- Aiiso Yufeng Li Family Department of Chemical and Nano Engineering, University of California, San Diego, La Jolla, California 92023-0448, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92023, United States
| |
Collapse
|
3
|
Wang Y, Chen L, Lu J, Pan J, Zhang J. Surface Orthogonal Patterning and Bidirectional Self-Assembly of Nanoparticles Tethered by V-Shaped Diblock Copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16595-16604. [PMID: 39066716 DOI: 10.1021/acs.langmuir.4c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
We investigated the surface orthogonal patterning and bidirectional self-assembly of binary hairy nanoparticles (NPs) constructed by uniformly tethering a single NP with multiple V-shaped AB diblock copolymers using Brownian dynamics simulations in a poor solvent. At low concentration, the chain collapse and microphase separation of binary polymer brushes can lead to the patterning of the NP surface into A- and B-type orthogonal patches with various numbers of domains (valency), n = 1-6, that adopt spherical, linear, triangular, tetrahedral, square pyramidal, and pentagonal pyramidal configurations. There is a linear relationship between the valency and the average ratio of NP diameter to the polymers' unperturbed root-mean-square end-to-end distance for the corresponding valency. The linear slope depends on the grafting density and is independent of the interaction parameters between polymers. At high concentration, the orthogonal patch NPs serve as building blocks and exhibit directional attractions by overlapping the same type of domains, resulting in self-assembly into a series of fascinating architectures depending on the valency and polymer length. Notably, the 2-valent orthogonal patch NPs have the bidirectional bonding ability to form the two-dimensional (2D) square NP arrays by two distinct pathways. Simultaneously patching A and B blocks enables the one-step formation of 2D square arrays via bidirectional growth, whereas step-by-step patching causes the directional formation of 1D chains followed by 2D square arrays. Moreover, the gap between NPs in the 2D square arrays is related to the polymer length but independent of the NP diameter. These 2D square NP arrays are of significant value in practical applications such as integrated circuit manufacturing and nanotechnology.
Collapse
Affiliation(s)
- Yingying Wang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Liyuan Chen
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Jiafan Lu
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Junxing Pan
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| | - Jinjun Zhang
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan 030031, People's Republic of China
| |
Collapse
|
4
|
Vo T. Theory and simulation of ligand functionalized nanoparticles - a pedagogical overview. SOFT MATTER 2024; 20:3554-3576. [PMID: 38646950 DOI: 10.1039/d4sm00177j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Synthesizing reconfigurable nanoscale synthons with predictive control over shape, size, and interparticle interactions is a holy grail of bottom-up self-assembly. Grand challenges in their rational design, however, lie in both the large space of experimental synthetic parameters and proper understanding of the molecular mechanisms governing their formation. As such, computational and theoretical tools for predicting and modeling building block interactions have grown to become integral in modern day self-assembly research. In this review, we provide an in-depth discussion of the current state-of-the-art strategies available for modeling ligand functionalized nanoparticles. We focus on the critical role of how ligand interactions and surface distributions impact the emergent, pre-programmed behaviors between neighboring particles. To help build insights into the underlying physics, we first define an "ideal" limit - the short ligand, "hard" sphere approximation - and discuss all experimental handles through the lens of perturbations about this reference point. Finally, we identify theories that are capable of bridging interparticle interactions to nanoscale self-assembly and conclude by discussing exciting new directions for this field.
Collapse
Affiliation(s)
- Thi Vo
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
5
|
Kim A, Akkunuri K, Qian C, Yao L, Sun K, Chen Z, Vo T, Chen Q. Direct Imaging of "Patch-Clasping" and Relaxation in Robust and Flexible Nanoparticle Assemblies. ACS NANO 2024; 18:939-950. [PMID: 38146750 DOI: 10.1021/acsnano.3c09710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Polymer patching on inorganic nanoparticles (NPs) enables multifunctionality and directed self-assembly into nonclosely packed optical and mechanical metamaterials. However, experimental demonstration of such assemblies has been scant due to challenges in leveraging patch-induced NP-NP attractions and understanding NP self-assembly dynamics. Here we use low-dose liquid-phase transmission electron microscopy to visualize the dynamic behaviors of tip-patched triangular nanoprisms upon patch-clasping, where polymer patches interpenetrate to form cohesive bonds that connect NPs. Notably, these bonds are longitudinally robust but rotationally flexible. Patch-clasping is found to allow highly selective tip-tip assembly, interconversion between dimeric bowtie and sawtooth configurations, and collective structural relaxation of NP networks. The integration of single particle tracking, polymer physics theory, and molecular dynamics simulation reveals the macromolecular origin of patch-clasping-induced NP dynamics. Our experiment-computation integration can aid the design of stimuli-responsive nanomaterials, such as topological metamaterials for chiral sensors, waveguides, and nanoantennas.
Collapse
Affiliation(s)
- Ahyoung Kim
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Kireeti Akkunuri
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Chang Qian
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Lehan Yao
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Kai Sun
- Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zi Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Thi Vo
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Qian Chen
- Department of Materials Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Song Q, Li Y, Jin Z, Liu H, Creyer MN, Yim W, Huang Y, Hu X, He T, Li Y, Kelley SO, Shi L, Zhou J, Jokerst JV. Self-Assembled Homopolymeric Spherulites from Small Molecules in Solution. J Am Chem Soc 2023; 145:25664-25672. [PMID: 37921495 DOI: 10.1021/jacs.3c08356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Polymeric spherulites are typically formed by melt crystallization: spherulitic growth in solution is rare and requires complex polymers and dilute solutions. Here, we report the mild and unique formation of luminescent spherulites at room temperature via the simple molecule benzene-1,4-dithiol (BDT). Specifically, BDT polymerized into oligomers (PBDT) via disulfide bonds and assembled into uniform supramolecular nanoparticles in aqueous buffer; these nanoparticles were then dissolved back into PBDT in a good solvent (i.e., dimethylformamide) and underwent chain elongation to form spherulites (rPBDT) in 10 min. The spherulite geometry was modulated by changing the PBDT concentration and reaction time. Due to the step-growth polymerization and reorganization of PBDT, these spherulites not only exhibited robust structure but also showed broad clusterization-triggered emission. The biocompatibility and efficient cellular uptake of the spherulites further underscore their value as traceable drug carriers. This system provides a new pathway for designing versatile superstructures with value for hierarchical assembly of small molecules into a complicated biological system.
Collapse
Affiliation(s)
- Qiantao Song
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Yi Li
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Zhicheng Jin
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Hai Liu
- College of Biomass Science and Engineering, Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, China
| | - Matthew N Creyer
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yanping Huang
- Center of Engineering Experimental Teaching, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaobing Hu
- The NUANCE Center, Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yajuan Li
- Shu Chien─Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Shana O Kelley
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Lingyan Shi
- Shu Chien─Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of Nano Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
7
|
Cui Y, Wang J, Liang J, Qiu H. Molecular Engineering of Colloidal Atoms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207609. [PMID: 36799197 DOI: 10.1002/smll.202207609] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/02/2023] [Indexed: 05/18/2023]
Abstract
Creation of architectures with exquisite hierarchies actuates the germination of revolutionized functions and applications across a wide range of fields. Hierarchical self-assembly of colloidal particles holds the promise for materialized realization of structural programing and customizing. This review outlines the general approaches to organize atom-like micro- and nanoparticles into prescribed colloidal analogs of molecules by exploiting diverse interparticle driving motifs involving confining templates, interactive surface ligands, and flexible shape/surface anisotropy. Furthermore, the self-regulated/adaptive co-assembly of simple unvarnished building blocks is discussed to inspire new designs of colloidal assembly strategies.
Collapse
Affiliation(s)
- Yan Cui
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jingchun Wang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
8
|
Liu M, Shang C, Zhao T, Yu H, Kou Y, Lv Z, Hou M, Zhang F, Li Q, Zhao D, Li X. Site-specific anisotropic assembly of amorphous mesoporous subunits on crystalline metal-organic framework. Nat Commun 2023; 14:1211. [PMID: 36869046 PMCID: PMC9984484 DOI: 10.1038/s41467-023-36832-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
As an important branch of anisotropic nanohybrids (ANHs) with multiple surfaces and functions, the porous ANHs (p-ANHs) have attracted extensive attentions because of the unique characteristics of high surface area, tunable pore structures and controllable framework compositions, etc. However, due to the large surface-chemistry and lattice mismatches between the crystalline and amorphous porous nanomaterials, the site-specific anisotropic assembly of amorphous subunits on crystalline host is challenging. Here, we report a selective occupation strategy to achieve site-specific anisotropic growth of amorphous mesoporous subunits on crystalline metal-organic framework (MOF). The amorphous polydopamine (mPDA) building blocks can be controllably grown on the {100} (type 1) or {110} (type 2) facets of crystalline ZIF-8 to form the binary super-structured p-ANHs. Based on the secondary epitaxial growth of tertiary MOF building blocks on type 1 and 2 nanostructures, the ternary p-ANHs with controllable compositions and architectures are also rationally synthesized (type 3 and 4). These intricate and unprecedented superstructures provide a good platform for the construction of nanocomposites with multiple functionalities and understanding of the structure-property-function relationships.
Collapse
Affiliation(s)
- Minchao Liu
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Cheng Shang
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Tiancong Zhao
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Hongyue Yu
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Yufang Kou
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Zirui Lv
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Mengmeng Hou
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Fan Zhang
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Qiaowei Li
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Dongyuan Zhao
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433 Shanghai, China
| | - Xiaomin Li
- Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, iChem (Collaborative Innovation Center of Chemistry for Energy Materials), Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, 200433, Shanghai, China.
| |
Collapse
|
9
|
Jin Z, Li Y, Li K, Zhou J, Yeung J, Ling C, Yim W, He T, Cheng Y, Xu M, Creyer MN, Chang YC, Fajtová P, Retout M, Qi B, Li S, O'Donoghue AJ, Jokerst JV. Peptide Amphiphile Mediated Co-assembly for Nanoplasmonic Sensing. Angew Chem Int Ed Engl 2023; 62:e202214394. [PMID: 36409652 PMCID: PMC9852014 DOI: 10.1002/anie.202214394] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
Aromatic interactions are commonly involved in the assembly of naturally occurring building blocks, and these interactions can be replicated in an artificial setting to produce functional materials. Here we describe a colorimetric biosensor using co-assembly experiments with plasmonic gold and surfactant-like peptides (SLPs) spanning a wide range of aromatic residues, polar stretches, and interfacial affinities. The SLPs programmed in DDD-(ZZ)x -FFPC self-assemble into higher-order structures in response to a protease and subsequently modulate the colloidal dispersity of gold leading to a colorimetric readout. Results show the strong aggregation propensity of the FFPC tail without polar DDD head. The SLPs were specific to the target protease, i.e., Mpro , a biomarker for SARS-CoV-2. This system is a simple and visual tool that senses Mpro in phosphate buffer, exhaled breath condensate, and saliva with detection limits of 15.7, 20.8, and 26.1 nM, respectively. These results may have value in designing other protease testing methods.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ke Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Chuxuan Ling
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Maurice Retout
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
10
|
Zhang C, Gao L, Lin J, Wang L. Hierarchical 2D-1D micelles self-assembled from the heterogeneous seeded-growth of rod-coil block copolymers. NANOSCALE 2023; 15:1412-1421. [PMID: 36594400 DOI: 10.1039/d2nr05618f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Precise control of size and dimension is the key to constructing complex hierarchical nanostructures, particularly multi-dimensional hybrid nanoassemblies. Herein, we conducted Brownian dynamics simulations to examine the seeded-growth of rod-coil block copolymer assemblies and discovered that 2D-1D (disk-cylinder) hybrid micelles could be formed via liquid-crystallization-driven self-assembly (LCDSA). 2D nanodisk micelles with smectic-like LC cores served as seeds. After adding rod-coil block copolymers into the seed solution, the copolymers incorporated onto the 2D seed edges to generate junction points. Several cylindrical arms were formed from the elongation of junction points, resulting in 2D-1D multi-dimensional hybrid micelles. The structural transition of the micelle core from smectic-like (disk) to cholesteric-like (cylindrical arms) LC packing manners benefit from the fluidity of LC. Such a seeded-growth behavior simultaneously exhibits the features of heterogeneous nucleation and homogenous epitaxy growth. Intriguingly, the arms generate in sequence, and its junction position is in the para-position first, followed by ortho-position or meta-position, resembling the difference in the substituent activities on the benzene ring. These theoretical findings are consistent with experimental results, and provide explanations to some unaddressed issues in experiments. The obtained results also reveal that the hybrid micelles are a good stabilizer due to their high surface area and distinctive suspension behaviors.
Collapse
Affiliation(s)
- Chengyan Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
11
|
Kim YJ, Moon JB, Hwang H, Kim YS, Yi GR. Advances in Colloidal Building Blocks: Toward Patchy Colloidal Clusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203045. [PMID: 35921224 DOI: 10.1002/adma.202203045] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/29/2022] [Indexed: 06/15/2023]
Abstract
The scalable synthetic route to colloidal atoms has significantly advanced over the past two decades. Recently, colloidal clusters with DNA-coated cores called "patchy colloidal clusters" have been developed, providing a directional bonding with specific angle of rotation due to the shape complementarity between colloidal clusters. Through a DNA-mediated interlocking process, they are directly assembled into low-coordination colloidal structures, such as cubic diamond lattices. Herein, the significant progress in recent years in the synthesis of patchy colloidal clusters and their assembly in experiments and simulations is reviewed. Furthermore, an outlook is given on the emerging approaches to the patchy colloidal clusters and their potential applications in photonic crystals, metamaterials, topological photonic insulators, and separation membranes.
Collapse
Affiliation(s)
- You-Jin Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Jeong-Bin Moon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Hyerim Hwang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Chemical Engineering & Materials Science, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Youn Soo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Republic of Korea
| |
Collapse
|
12
|
Jin Z, Ling C, Li Y, Zhou J, Li K, Yim W, Yeung J, Chang YC, He T, Cheng Y, Fajtová P, Retout M, O'Donoghue AJ, Jokerst JV. Spacer Matters: All-Peptide-Based Ligand for Promoting Interfacial Proteolysis and Plasmonic Coupling. NANO LETTERS 2022; 22:8932-8940. [PMID: 36346642 DOI: 10.1021/acs.nanolett.2c03052] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Plasmonic coupling via nanoparticle assembly is a popular signal-generation method in bioanalytical sensors. Here, we customized an all-peptide-based ligand that carries an anchoring group, polyproline spacer, biomolecular recognition, and zwitterionic domains for functionalizing gold nanoparticles (AuNPs) as a colorimetric enzyme sensor. Our results underscore the importance of the polyproline module, which enables the SARS-CoV-2 main protease (Mpro) to recognize the peptidic ligand on nanosurfaces for subsequent plasmonic coupling via Coulombic interactions. AuNP aggregation is favored by the lowered surface potential due to enzymatic unveiling of the zwitterionic module. Therefore, this system provides a naked-eye measure for Mpro. No proteolysis occurs on AuNPs modified with a control ligand lacking a spacer domain. Overall, this all-peptide-based ligand does not require complex molecular conjugations and hence offers a simple and promising route for plasmonic sensing other proteases.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Chuxuan Ling
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Ke Li
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, Singapore 138634
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Maurice Retout
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California, San Diego, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
13
|
Kim A, Vo T, An H, Banerjee P, Yao L, Zhou S, Kim C, Milliron DJ, Glotzer SC, Chen Q. Symmetry-breaking in patch formation on triangular gold nanoparticles by asymmetric polymer grafting. Nat Commun 2022; 13:6774. [DOI: 10.1038/s41467-022-34246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractSynthesizing patchy particles with predictive control over patch size, shape, placement and number has been highly sought-after for nanoparticle assembly research, but is fraught with challenges. Here we show that polymers can be designed to selectively adsorb onto nanoparticle surfaces already partially coated by other chains to drive the formation of patchy nanoparticles with broken symmetry. In our model system of triangular gold nanoparticles and polystyrene-b-polyacrylic acid patch, single- and double-patch nanoparticles are produced at high yield. These asymmetric single-patch nanoparticles are shown to assemble into self-limited patch‒patch connected bowties exhibiting intriguing plasmonic properties. To unveil the mechanism of symmetry-breaking patch formation, we develop a theory that accurately predicts our experimental observations at all scales—from patch patterning on nanoparticles, to the size/shape of the patches, to the particle assemblies driven by patch‒patch interactions. Both the experimental strategy and theoretical prediction extend to nanoparticles of other shapes such as octahedra and bipyramids. Our work provides an approach to leverage polymer interactions with nanoscale curved surfaces for asymmetric grafting in nanomaterials engineering.
Collapse
|
14
|
Zhang Y, Dong W, Wang Y, Wu Q, Yi C, Yang Y, Xu Y, Nie Z. Synthesis of Patchy Nanoparticles with Symmetry Resembling Polar Small Molecules. SMALL METHODS 2022; 6:e2200545. [PMID: 35869619 DOI: 10.1002/smtd.202200545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Patchy nanoparticles (NPs) show many important applications, especially for constructing structurally complex colloidal materials, but existing synthetic strategies generate patchy NPs with limited types of symmetry. This article describes a versatile copolymer ligand-based strategy for the scalable synthesis of uniform Au-(SiO2 )x patchy NPs (x is the patch number and 1 ≤ x ≤ 5) with unusual symmetry at high yield. The hydrolysis and condensation of tetraethyl orthosilicate on block-random copolymer ligands induces the segregation of copolymers on gold NPs (AuNPs) and hence governs the structure and distribution of silica patches formed on the AuNPs. The resulting patchy NPs possess unique configurations where the silica patches are symmetrically arranged at one side of the core NP, resembling the geometry of polar small molecules. The number, size, and morphology of silica patches, as well as the spacing between the patches and the AuNP can be precisely tuned by tailoring copolymer architectures, grafting density of copolymers, and the size of AuNPs. Furthermore, it is demonstrated that the Au-(SiO2 )x patchy NPs can assemble into more complex superstructures through directional interaction between the exposed Au surfaces. This work offers new opportunities of designing next-generation complex patchy NPs for applications in such as biomedicines, self-assembly, and catalysis.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Wenhao Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yazi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Qi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Chenglin Yi
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yiqun Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Yifei Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University Shanghai, Shanghai, 200438, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu City, Zhejiang, 322000, P. R. China
| |
Collapse
|
15
|
Pasparakis G. Recent developments in the use of gold and silver nanoparticles in biomedicine. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1817. [PMID: 35775611 PMCID: PMC9539467 DOI: 10.1002/wnan.1817] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 12/18/2022]
Abstract
Gold and silver nanoparticles (NPs) are widely used in the biomedical research both in the therapeutic and the sensing/diagnostics fronts. Both metals share some common optical properties with surface plasmon resonance being the most widely exploited property in therapeutics and diagnostics. Au NPs exhibit excellent light‐to‐heat conversion efficiencies and hence have found applications primarily in precision oncology, while Ag NPs have excellent antibacterial properties which can be harnessed in biomaterials' design. Both metals constitute excellent biosensing platforms owing to their plasmonic properties and are now routinely used in various optical platforms. The utilization of Au and Ag NPs in the COVID‐19 pandemic was rapidly expanded mostly in biosensing and point‐of‐care platforms and to some extent in therapeutics. In this review article, the main physicochemical properties of Au and Ag NPs are discussed with selective examples from the recent literature. This article is categorized under:Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Diagnostic Tools > In Vitro Nanoparticle‐Based Sensing Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
Collapse
Affiliation(s)
- George Pasparakis
- Department of Chemical Engineering University of Patras Patras Greece
| |
Collapse
|
16
|
Xu M, Zhou J, Cheng Y, Jin Z, Clark AE, He T, Yim W, Li Y, Chang YC, Wu Z, Fajtová P, O’Donoghue AJ, Carlin AF, Todd MD, Jokerst JV. A Self-Immolative Fluorescent Probe for Selective Detection of SARS-CoV-2 Main Protease. Anal Chem 2022; 94:11728-11733. [PMID: 35973073 PMCID: PMC9396966 DOI: 10.1021/acs.analchem.2c02381] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
Existing tools to detect and visualize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) suffer from low selectivity, poor cell permeability, and high cytotoxicity. Here we report a novel self-immolative fluorescent probe (MP590) for the highly selective and sensitive detection of the SARS-CoV-2 main protease (Mpro). This fluorescent probe was prepared by connecting a Mpro-cleavable peptide (N-acetyl-Abu-Tle-Leu-Gln) with a fluorophore (i.e., resorufin) via a self-immolative aromatic linker. Fluorescent titration results show that MP590 can detect Mpro with a limit of detection (LoD) of 35 nM and is selective over interferents such as hemoglobin, bovine serum albumin (BSA), thrombin, amylase, SARS-CoV-2 papain-like protease (PLpro), and trypsin. The cell imaging data indicate that this probe can report Mpro in HEK 293T cells transfected with a Mpro expression plasmid as well as in TMPRSS2-VeroE6 cells infected with SARS-CoV-2. Our results suggest that MP590 can both measure and monitor Mpro activity and quantitatively evaluate Mpro inhibition in infected cells, making it an important tool for diagnostic and therapeutic research on SARS-CoV-2.
Collapse
Affiliation(s)
- Ming Xu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhicheng Jin
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Alex E. Clark
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Yu-Ci Chang
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Zhuohong Wu
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Pavla Fajtová
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Anthony J. O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Aaron F. Carlin
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael D. Todd
- Department of Structural Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Materials Science and Engineering Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
- Department of Radiology, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
17
|
Zhang NN, Shen X, Liu K, Nie Z, Kumacheva E. Polymer-Tethered Nanoparticles: From Surface Engineering to Directional Self-Assembly. Acc Chem Res 2022; 55:1503-1513. [PMID: 35576169 DOI: 10.1021/acs.accounts.2c00066] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
ConspectusCurrent interest in nanoparticle ensembles is motivated by their collective synergetic properties that are distinct from or better than those of individual nanoparticles and their bulk counterparts. These new advanced optical, electronic, magnetic, and catalytic properties can find applications in advanced nanomaterials and functional devices, if control is achieved over nanoparticle organization. Self-assembly offers a cost-efficient approach to produce ensembles of nanoparticles with well-defined and predictable structures. Nanoparticles functionalized with polymer molecules are promising building blocks for self-assembled nanostructures, due to the comparable dimensions of macromolecules and nanoparticles, the ability to synthesize polymers with various compositions, degrees of polymerization, and structures, and the ability of polymers to self-assemble in their own right. Moreover, polymer ligands can endow additional functionalities to nanoparticle assemblies, thus broadening the range of their applications.In this Account, we describe recent progress of our research groups in the development of new strategies for the self-assembly of nanoparticles tethered to macromolecules. At the beginning of our journey, we developed a new approach to patchy nanoparticles and their self-assembly. In a thermodynamically driven strategy, we used poor solvency conditions to induce homopolymer surface segregation in pinned micelles (patches). Patchy nanoparticles underwent self-assembly in a well-defined and controlled manner. Following this work, we overcame the limitation of low yield of the generation of patchy nanoparticles, by using block copolymer ligands. For block copolymer-capped nanoparticles, patch formation and self-assembly were "staged" by using distinct stimuli for each process. We expanded this work to the generation of patchy nanoparticles via dynamic exchange of block copolymer molecules between the nanoparticle surface and micelles in the solution. The scope of our work was further extended to a series of strategies that utilized the change in the configuration of block copolymer ligands during nanoparticle interactions. To this end, we explored the amphiphilicity of block copolymer-tethered nanoparticles and complementary interactions between reactive block copolymer ligands. Both approaches enabled exquisite control over directional and self-limiting self-assembly of complex hierarchical nanostructures. Next, we focused on the self-assembly of chiral nanostructures. To enable this goal, we attached chiral molecules to the surface of nanoparticles and organized these hybrid building blocks in ensembles with excellent chiroptical properties. In summary, our work enables surface engineering of polymer-capped nanoparticles and their controllable and predictable self-assembly. Future research in the field of nanoparticle self-assembly will include the development of effective characterization techniques, the synthesis of new functional polymers, and the development of environmentally responsive self-assembly of polymer-capped nanoparticles for the fabrication of nanomaterials with tailored functionalities.
Collapse
Affiliation(s)
- Ning-Ning Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun 130061, P. R. China
| | - Xiaoxue Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P.R. China
| | - Kun Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun 130061 P. R. China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, P.R. China
| | - Eugenia Kumacheva
- Department of Chemistry, University of Toronto, Toronto, M5S3H6 ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, M5S 3G9 ON, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5 ON, Canada
| |
Collapse
|
18
|
Duan H, Malesky T, Wang J, Liu CH, Tan H, Nieh MP, Lin Y, He J. Patchy metal nanoparticles with polymers: controllable growth and two-way self-assembly. NANOSCALE 2022; 14:7364-7371. [PMID: 35535972 DOI: 10.1039/d2nr01221a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report a new design of polymer-patched gold nanoparticles (AuNPs) with controllable interparticle interactions in terms of their direction and strength. Patchy AuNPs (pAuNPs) are prepared through hydrophobicity-driven surface dewetting under deficient ligand exchange conditions. Using the exposed surface on pAuNPs as seeds, a highly controllable growth of AuNPs is carried out via seed-mediated growth while retaining the size of polymer domains. As guided by ligands, these pAuNPs can self-assemble directionally in two ways along the exposed surface (head-to-head) or the polymer-patched surface of pAuNPs (tail-to-tail). Control of the surface asymmetry/coverage on pAuNPs provides an important tool in balancing interparticle interactions (attraction vs. repulsion) that further tunes assembled nanostructures as clusters and nanochains. The self-assembly pathway plays a key role in determining the interparticle distance and therefore plasmon coupling of pAuNPs. Our results demonstrate a new paradigm in the directional self-assembly of anisotropic building blocks for hierarchical nanomaterials with interesting optical properties.
Collapse
Affiliation(s)
- Hanyi Duan
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
| | - Tessa Malesky
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Janet Wang
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Chung-Hao Liu
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
| | - Haiyan Tan
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Mu-Ping Nieh
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Yao Lin
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Jie He
- Polymer Program, University of Connecticut, Storrs, CT 06269, USA.
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
19
|
Rothenbühler S, Iacovache I, Langenegger SM, Zuber B, Häner R. Complex DNA Architectonics─Self-Assembly of Amphiphilic Oligonucleotides into Ribbons, Vesicles, and Asterosomes. Bioconjug Chem 2022; 34:70-77. [PMID: 35357155 PMCID: PMC9854621 DOI: 10.1021/acs.bioconjchem.2c00077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The precise arrangement of structural subunits is a key factor for the proper shape and function of natural and artificial supramolecular assemblies. In DNA nanotechnology, the geometrically well-defined double-stranded DNA scaffold serves as an element of spatial control for the precise arrangement of functional groups. Here, we describe the supramolecular assembly of chemically modified DNA hybrids into diverse types of architectures. An amphiphilic DNA duplex serves as the sole structural building element of the nanosized supramolecular structures. The morphology of the assemblies is governed by a single subunit of the building block. The chemical nature of this subunit, i.e., polyethylene glycols of different chain length or a carbohydrate moiety, exerts a dramatic influence on the architecture of the assemblies. Cryo-electron microscopy revealed the arrangement of the individual DNA duplexes within the different constructs. Thus, the morphology changes from vesicles to ribbons with increasing length of a linear polyethylene glycol. Astoundingly, attachment of a N-acetylgalactosamine carbohydrate to the DNA duplex moiety produces an unprecedented type of star-shaped architecture. The novel DNA architectures presented herein imply an extension of the current concept of DNA materials and shed new light on the fast-growing field of DNA nanotechnology.
Collapse
Affiliation(s)
- Simon Rothenbühler
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Ioan Iacovache
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Simon M. Langenegger
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland
| | - Benoît Zuber
- Institute
of Anatomy, University of Bern, Baltzerstrasse 2, CH-3012 Bern, Switzerland
| | - Robert Häner
- Department
of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland,
| |
Collapse
|
20
|
Jin Z, Mantri Y, Retout M, Cheng Y, Zhou J, Jorns A, Fajtova P, Yim W, Moore C, Xu M, Creyer MN, Borum RM, Zhou J, Wu Z, He T, Penny WF, O’Donoghue A, Jokerst JV. A Charge-Switchable Zwitterionic Peptide for Rapid Detection of SARS-CoV-2 Main Protease. Angew Chem Int Ed Engl 2022; 61:e202112995. [PMID: 34936725 PMCID: PMC8854333 DOI: 10.1002/anie.202112995] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Indexed: 11/06/2022]
Abstract
The transmission of SARS-CoV-2 coronavirus has led to the COVID-19 pandemic. Nucleic acid testing while specific has limitations for mass surveillance. One alternative is the main protease (Mpro ) due to its functional importance in mediating the viral life cycle. Here, we describe a combination of modular substrate and gold colloids to detect Mpro via visual readout. The strategy involves zwitterionic peptide that carries opposite charges at the C-/N-terminus to exploit the specific recognition by Mpro . Autolytic cleavage releases a positively charged moiety that assembles the nanoparticles with rapid color changes (t<10 min). We determine a limit of detection for Mpro in breath condensate matrices <10 nM. We further assayed ten COVID-negative subjects and found no false-positive result. In the light of simplicity, our test for viral protease is not limited to an equipped laboratory, but also is amenable to integrating as portable point-of-care devices including those on face-coverings.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Maurice Retout
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alec Jorns
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Pavla Fajtova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Colman Moore
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Matthew N. Creyer
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Raina M. Borum
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - William F. Penny
- Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Anthony O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Jesse V. Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| |
Collapse
|
21
|
Jin Z, Yeung J, Zhou J, Cheng Y, Li Y, Mantri Y, He T, Yim W, Xu M, Wu Z, Fajtova P, Creyer MN, Moore C, Fu L, Penny WF, O'Donoghue AJ, Jokerst JV. Peptidic Sulfhydryl for Interfacing Nanocrystals and Subsequent Sensing of SARS-CoV-2 Protease. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:1259-1268. [PMID: 37406055 PMCID: PMC8791034 DOI: 10.1021/acs.chemmater.1c03871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a need for surveillance of COVID-19 to identify individuals infected with SARS-CoV-2 coronavirus. Although specific, nucleic acid testing has limitations in terms of point-of-care testing. One potential alternative is the nonstructural protease (nsp5, also known as Mpro/3CLpro) implicated in SARS-CoV-2 viral replication but not incorporated into virions. Here, we report a divalent substrate with a novel design, (Cys)2-(AA)x-(Asp)3, to interface gold colloids in the specific presence of Mpro leading to a rapid and colorimetric readout. Citrate- and tris(2-carboxyethyl)phosphine (TCEP)-AuNPs were identified as the best reporter out of the 17 ligated nanoparticles. Furthermore, we empirically determined the effects of varying cysteine valence and biological media on the sensor specificity and sensitivity. The divalent peptide was specific to Mpro, that is, there was no response when tested with other proteins or enzymes. Furthermore, the Mpro detection limits in Tris buffer and exhaled breath matrices are 12.2 and 18.9 nM, respectively, which are comparable to other reported methods (i.e., at low nanomolar concentrations) yet with a rapid and visual readout. These results from our work would provide informative rationales to design a practical and noninvasive alternative for COVID-19 diagnostic testing-the presence of viral proteases in biofluids is validated.
Collapse
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Justin Yeung
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yi Li
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, La Jolla, California 92093, United States
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Pavla Fajtova
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Matthew N Creyer
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Colman Moore
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - Lei Fu
- Department of NanoEngineering, University of California San Diego, La Jolla, California 92093, United States
| | - William F Penny
- Division of Cardiology, University of California San Diego, San Diego, California 92161, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| | - Jesse V Jokerst
- Department of NanoEngineering, Materials Science and Engineering Program, and Department of Radiology, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
22
|
Jin Z, Mantri Y, Retout M, Cheng Y, Zhou J, Jorns A, Fajtova P, Yim W, Moore C, Xu M, Creyer MN, Borum RM, Zhou J, Wu Z, He T, Penny WF, O'Donoghue AJ, Jokerst JV. A Charge‐Switchable Zwitterionic Peptide for Rapid Detection of SARS‐CoV‐2 Main Protease. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Zhicheng Jin
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yash Mantri
- Department of Bioengineering University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Maurice Retout
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yong Cheng
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Jiajing Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Alec Jorns
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Pavla Fajtova
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Wonjun Yim
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Colman Moore
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Ming Xu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Matthew N. Creyer
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Raina M. Borum
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Jingcheng Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhuohong Wu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Tengyu He
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - William F. Penny
- Department of Medicine University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Anthony J. O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
- Department of Radiology University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| |
Collapse
|
23
|
Zhou J, Xu M, Jin Z, Borum RM, Avakyan N, Cheng Y, Yim W, He T, Zhou J, Wu Z, Mantri Y, Jokerst JV. Versatile Polymer Nanocapsules via Redox Competition. Angew Chem Int Ed Engl 2021; 60:26357-26362. [PMID: 34580967 PMCID: PMC8629958 DOI: 10.1002/anie.202110829] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 12/18/2022]
Abstract
Polymer nanocapsules have demonstrated significant value in materials science and biomedical technology, but require complicated and time-consuming synthetic steps. We report here the facile synthesis of monodisperse polymer nanocapsules via a redox-mediated kinetic strategy from two simple molecules: dopamine and benzene-1,4-dithiol (BDT). Specifically, BDT forms core templates and modulates the oxidation kinetics of dopamine into polydopamine (PDA) shells. These uniform nanoparticles can be tuned between ≈70 and 200 nm because the core diameter directly depends on BDT while the shell thickness depends on dopamine. The supramolecular core can then rapidly disassemble in organic solvents to produce PDA nanocapsules. Such nanocapsules exhibit enhanced physicochemical performance (e.g., loading capacity, photothermal transduction, and anti-oxidation) versus their solid counterparts. Particularly, this method enables a straightforward encapsulation of functional nanoparticles providing opportunities for designing complex nanostructures such as yolk-shell nanoparticles.
Collapse
Affiliation(s)
- Jiajing Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Ming Xu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhicheng Jin
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Raina M Borum
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Nicole Avakyan
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Yong Cheng
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Wonjun Yim
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Tengyu He
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Jingcheng Zhou
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Zhuohong Wu
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Yash Mantri
- Department of Bioengineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| | - Jesse V Jokerst
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
- Materials Science and Engineering Program, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, La Jolla, California, 92093, USA
| |
Collapse
|
24
|
Zhou J, Xu M, Jin Z, Borum RM, Avakyan N, Cheng Y, Yim W, He T, Zhou J, Wu Z, Mantri Y, Jokerst JV. Versatile Polymer Nanocapsules via Redox Competition. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Jiajing Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Ming Xu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhicheng Jin
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Raina M. Borum
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Nicole Avakyan
- Department of Chemistry and Biochemistry University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Yong Cheng
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Wonjun Yim
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Tengyu He
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jingcheng Zhou
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Zhuohong Wu
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
| | - Yash Mantri
- Department of Bioengineering University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| | - Jesse V. Jokerst
- Department of NanoEngineering University of California San Diego 9500 Gilman Drive La Jolla CA 92093 USA
- Materials Science and Engineering Program University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
- Department of Radiology University of California San Diego 9500 Gilman Drive La Jolla California 92093 USA
| |
Collapse
|