1
|
Lovera SO, Gregory A, Morelos KE, Farias P, Carta V, Musgrave CB, Lavallo V. Noncatalyzed Intramolecular B-N and B-O Cross-Coupling of "Inert" Carboranes Lead to the Formation of an Unusual Oxoborane, via Reversible Cluster C-B Bond Scission. J Am Chem Soc 2025; 147:17764-17771. [PMID: 40360424 PMCID: PMC12123610 DOI: 10.1021/jacs.5c01106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 05/04/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
Polyhalogenated closo-12-vertex carborane anions are thought to be inert species incapable of participating in direct B-X substitution reactions. Here, we show that this is not true and that such species can be easily coaxed into intramolecular cross-coupling cyclizations without the need for a catalyst. When cage C-tethered O and N-heteroallylic anions are generated, a variety of cyclized products can be formed in high yield under mild conditions. Additionally, we show that even C-tethered neutral nucleophiles, such as the pyridine moiety, undergo facile B-X substitution chemistry and these reactions are not dependent on the countercation. Serendipitously, we also found that when these cyclizations are attempted with acetamide derivatives, an unprecedented cluster C-B bond scission reaction occurs, producing an unprecedented oxoborane stabilized by multicentered bonding. Amazingly this molecule can be protonated, leading to reformation of the C-B bond and cluster reorganization, and this process is reversible.
Collapse
Affiliation(s)
- Sergio O. Lovera
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| | - Aaron Gregory
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| | | | - Phillip Farias
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| | - Veronica Carta
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| | - Charles B. Musgrave
- Department
of Chemistry, Northwestern University, Evanston, Illinois60208, United States
| | - Vincent Lavallo
- Department
of Chemistry, University of California,
Riverside, Riverside, California92521, United States
| |
Collapse
|
2
|
Humphries AL, Tellier GA, Smith MD, Chianese AR, Peryshkov DV. N-H Bond Activation of Ammonia by a Redox-Active Carboranyl Diphosphine. J Am Chem Soc 2024. [PMID: 39561323 DOI: 10.1021/jacs.4c12146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this work, we report the room-temperature N-H bond activation of ammonia by the carboranyl diphosphine 1-PtBu2-2-PiPr2-closo-C2B10H10 (1) resulting in the formation of zwitterionic 7-P(NH2)tBu2-10-P(H)iPr2-nido-C2B10H10 (2). Unlike the other phosphorus-based ambiphiles that require geometric constraints to enhance electrophilicity, the new mode of bond activation in this main-group system is based on the cooperation between electron-rich trigonal phosphine centers and the electron-accepting carborane cluster. As an exception among many other metal-based and metal-free systems, the N-H bond activation of gaseous ammonia or aqueous ammonium hydroxide by carboranyl diphosphine 1 proceeds with tolerance of air and water. Mechanistic details of ammonia activation were explored computationally by DFT methods, demonstrating an electrophilic activation of ammonia by the phosphine center. This process is driven by the reduction of the boron cluster followed by an ammonia-assisted deprotonation and proton transfer. A subsequent reaction of 2 and TEMPO results in the cleavage of all N-H and P-H bonds with the formation of a cyclic phosphazenium cation supported by an anionic cluster N(7-PtBu2-8-PiPr2)-nido-C2B9H10 (3). Transformations reported herein represent the first example of ammonia oxidation via triple hydrogen atom abstraction facilitated by a metal-free system.
Collapse
Affiliation(s)
- Amanda L Humphries
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, South Carolina 29208, United States
| | - Gabrielle A Tellier
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, South Carolina 29208, United States
| | - Anthony R Chianese
- Department of Chemistry, Colgate University, 13 Oak Drive, Hamilton, New York 13346, United States
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St., Columbia, South Carolina 29208, United States
| |
Collapse
|
3
|
Minematsu N, Nishii Y, Hirano K. Pd-Catalysed synthesis of carborane sulfides from carborane thiols. Chem Commun (Camb) 2024; 60:13594-13597. [PMID: 39479963 DOI: 10.1039/d4cc03934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Carboranes are an interesting class of aromatic molecules with icosahedral geometry, high stability, and unique electronic effects. We herein report a Pd-catalysed coupling reaction of carborane thiols with aryl halides. This protocol was applicable to the controlled synthesis of di(carboranyl) sulfides, and their catalytic performance for aromatic halogenation was examined.
Collapse
Affiliation(s)
- Natsuki Minematsu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Center for Future Innovation, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Koji Hirano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
4
|
Nussbaum BC, Cavicchi CR, Smith MD, Pellechia PJ, Peryshkov DV. Redox-Active Carboranyl Diphosphine as an Electron and Proton Transfer Agent. Inorg Chem 2024. [PMID: 39067032 DOI: 10.1021/acs.inorgchem.4c02022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In this work, we report the first example of the PCET reactivity for a boron cluster compound, the zwitterionic nido-carboranyl diphosphonium derivative 7-P(H)tBu2-10-P(H)iPr2-nido-C2B10H10. This main-group reagent efficiently transfers two electrons and two protons to quinones to yield hydroquinones and regenerate a neutral closo-carboranyl diphosphine, 1-PtBu2-2-PiPr2-closo-C2B10H10. As we have previously reported the conversion of this closo-carboranyl diphosphine into the zwitterionic nido- derivative upon reaction with main group hydrides, the transformation reported herein represents a complete synthetic cycle for the metal-free reduction of quinones, with the redox-active carboranyl diphosphine scaffold acting as a mediator. The proposed mechanism of this reduction, based on pKa determination, electrochemical studies, and kinetic isotope effect determination, involves the electron transfer from the nido- cluster to the quinone coupled with the delivery of protons.
Collapse
Affiliation(s)
- Bryce C Nussbaum
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, United States
| | - Cameron R Cavicchi
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, United States
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, United States
| | - Perry J Pellechia
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, United States
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, United States
| |
Collapse
|
5
|
Riffle JR, Hemingway TM, Smith MD, Peryshkov DV. Synthesis and cluster structure distortions of biscarborane dithiol, thioether, and disulfide. Dalton Trans 2024; 53:4444-4450. [PMID: 38353929 DOI: 10.1039/d3dt04289h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The synthesis and structural characterization of the first sulfur-containing derivatives of the C,C-biscarborane {ortho-C2B10}2 cluster - thiol, thioether, and disulfide - are reported. The biscarboranyl dithiol (1-HS-C2B10H10)2 exhibits an exceedingly long intracluster carbon-carbon bond length of 1.858(3) Å, which is attributed to the extensive interaction between the lone pairs of the thiol groups and the unoccupied molecular orbital of the carborane cluster. The structures of the doubly deprotonated biscarboranyl dithiolate anion (1-S-C2B10H10)22- with various counter cations feature an even longer carbon-carbon bond length of 2.062(10) Å within the cluster along with a short carbon-sulfur bond of 1.660(7) Å, both indicative of significant delocalization of electron density from the sulfur atoms into the cluster.
Collapse
Affiliation(s)
- Jared R Riffle
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Tyler M Hemingway
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Mark D Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| |
Collapse
|
6
|
Milewski M, Caminade AM, Mallet-Ladeira S, Lledós A, Lönnecke P, Hey-Hawkins E. Carboranylphosphines: B9-Substituted Derivatives with Enhanced Reactivity for the Anchoring to Dendrimers. Chemistry 2024:e202303867. [PMID: 38214467 DOI: 10.1002/chem.202303867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
Several ortho-carboranes bearing a phenoxy or a phenylamino group in the B9 position were prepared employing various protection and deprotection strategies. Following established protocols, dendritic compounds were synthesized from a hexachlorocyclotriphosphazene or thiophosphoryl chloride core, and possible anchoring options for the B9-substituted ortho-carboranes were investigated experimentally and theoretically (DFT). Furthermore, 1- or 1,2-phosphanyl-substituted carborane derivatives were obtained. The resulting diethyl-, diisopropyl-, di-tert-butyl-, diphenyl- or diethoxyphosphines bearing a tunable ortho-carborane moiety are intriguing ligands for future applications in homogeneous catalysis or the medicinal sector.
Collapse
Affiliation(s)
- Max Milewski
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
- Laboratoire de Chimie de Coordination du CNRS, Dendrimers and Heterochemistry, 205 Route de Narbonne, 31077, Toulouse cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Anne-Marie Caminade
- Laboratoire de Chimie de Coordination du CNRS, Dendrimers and Heterochemistry, 205 Route de Narbonne, 31077, Toulouse cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
| | - Sonia Mallet-Ladeira
- Laboratoire de Chimie de Coordination du CNRS, Dendrimers and Heterochemistry, 205 Route de Narbonne, 31077, Toulouse cedex 4, France
- LCC-CNRS, Université de Toulouse, CNRS, Toulouse, France
- Institut de Chimie de Toulouse, 118 Route de Narbonne, 31062, Toulouse cedex 9, France
| | - Agustí Lledós
- Universitat Autònoma de Barcelona, Departament de Química, 08193, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Peter Lönnecke
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
7
|
Nussbaum BC, Humphries AL, Gange GB, Peryshkov DV. Redox-active carborane clusters in bond activation chemistry and ligand design. Chem Commun (Camb) 2023; 59:9918-9928. [PMID: 37522167 DOI: 10.1039/d3cc03011c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Icosahedral closo-dodecaboranes have the ability to accept two electrons, opening into a dianionic nido-cluster. This transformation can be utilized to store electrons, drive bond activation, or alter coordination to metal cations. In this feature article, we present cases for each of these applications, wherein the redox activity of carborane facilitates the generation of unique products. We highlight the effects of exohedral substituents on reactivity and the stability of the products through conjugation between the cluster and exohedral substituents. Futher, the utilization of the redox properties and geometry of carborane clusters in the ligand design is detailed, both in the stabilization of low-valent complexes and in the tuning of ligand geometry.
Collapse
Affiliation(s)
- Bryce C Nussbaum
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Amanda L Humphries
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Gayathri B Gange
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| | - Dmitry V Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter St, Columbia, South Carolina 29208, USA.
| |
Collapse
|
8
|
Ochi J, Yanagihara T, Tanaka K, Chujo Y. Tuning of the height of energy barrier between locally-excited and charge transfer states by altering the fusing position of o-carborane in phenylnaphthalene. Phys Chem Chem Phys 2023; 25:11839-11844. [PMID: 37067862 DOI: 10.1039/d3cp00334e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
We synthesized two types of the regioisomers fused by a phenylnaphthalene ring with variable connection points to the o-carborane scaffold. In this paper, we describe their photoluminescence (PL) properties and detailed photochemical mechanisms. According to the series of optical measurements, interestingly, they showed different PL characters in terms of wavelength and the dual-emission character despite that they have the common aromatic unit. Variable-temperature PL measurements and quantum chemical calculations suggested that the substitution position of aryl groups to o-carborane plays an important role in determining the energy barrier to the intramolecular charge-transfer (ICT) state at the S1 state. Finally, it is revealed that the relative position of the C-C bond of o-carborane and the aryl center should be responsible for the photophysical events of aryl-o-carboranes.
Collapse
Affiliation(s)
- Junki Ochi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Takumi Yanagihara
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
9
|
Schulz J, Clauss R, Kazimir A, Holzknecht S, Hey-Hawkins E. On the Edge of the Known: Extremely Electron-Rich (Di)Carboranyl Phosphines. Angew Chem Int Ed Engl 2023; 62:e202218648. [PMID: 36573025 DOI: 10.1002/anie.202218648] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Indexed: 12/28/2022]
Abstract
The syntheses of the first B9-connected carboranylphosphines (B9-Phos) featuring two carboranyl moieties as well as access to B9-Phos ligands with bulky electron-donating substituents, previously deemed unattainable, is reported. The electrochemical properties of the B9-Phos ligands were investigated, revealing the ability of the mesityl derivatives to form stabilized phosphoniumyl radical cations. The B9-Phos ligands display an extremely electron-releasing character surpassing that of alkyl phosphines and commonly used N-heterocyclic carbenes. This is demonstrated by their very small Tolman electronic parameters (TEPs) as well as extremely low P-Se coupling constants. Cone angles and buried volumes attest to the high steric demand exerted by the (di)carboranyl phosphines. The dicarboranyl phosphine AuI complexes show superior catalytic performance in the hydroamination of alkynes compared to the monocarboranyl phosphine analogs.
Collapse
Affiliation(s)
- Jan Schulz
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Reike Clauss
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Aleksandr Kazimir
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Sieglinde Holzknecht
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Johannisallee 29, 04103, Leipzig, Germany
| |
Collapse
|
10
|
Liu R, Tang Y, Wang C, Zhang ZF, Su MD, Li Y. Diverse Reactions of o-Carborane-Fused Silylenes with C≡E (E = C, P) Triple Bonds. Inorg Chem 2023; 62:1095-1101. [PMID: 36617725 DOI: 10.1021/acs.inorgchem.2c03140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The reactivities of o-carborane-fused silylenes toward molecules with C≡E (E = C, P) bonds are reported. The reactions of bis(silylene) [(LSi:)C]2B10H10 (1a, L = PhC(NtBu)2) with arylalkynes afforded bis(silylium) carborane adducts 2 and 3, showing a Si(μ-C2)Si structure with an open-cage nido-carborane backbone. In contrast, the reaction of 1a with a phosphaalkyne AdC≡P (Ad = 1-adamantyl) smoothly furnished compound 4, comprising fused CPSi rings with a C=Si double bond and Si-Si single bond, and the related formation mechanism was investigated by DFT calculations. Furthermore, when monosilylene [(LSi:)C]CHB10H10 (1b) was employed to react with AdC≡P, compound 5 was isolated. The structure of 5 features a 1,2,3-triphosphetene core. All products were characterized by NMR spectroscopy and/or X-ray crystallography.
Collapse
Affiliation(s)
- Rui Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yanyan Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Chenfeng Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China.,Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
11
|
Gange GB, Humphries AL, Smith MD, Peryshkov DV. Activation of Alkynes by a Redox-Active Carboranyl Diphosphine and Formation of Boron-Containing Phosphacycles. Inorg Chem 2022; 61:18568-18573. [DOI: 10.1021/acs.inorgchem.2c02919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gayathri B. Gange
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Amanda L. Humphries
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Mark D. Smith
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| | - Dmitry V. Peryshkov
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, United States
| |
Collapse
|
12
|
Schulz J, Sárosi MB, Hey‐Hawkins E. Exploring the Reactivity of B-Connected Carboranylphosphines in Frustrated Lewis Pair Chemistry: A New Frame for a Classic System. Chemistry 2022; 28:e202200531. [PMID: 35472172 PMCID: PMC9320892 DOI: 10.1002/chem.202200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Indexed: 11/15/2022]
Abstract
The primary phosphines MesPH2 and tBuPH2 react with 9-iodo-m-carborane yielding B9-connected secondary carboranylphosphines 1,7-H2 C2 B10 H9 -9-PHR (R=2,4,6-Me3 C6 H2 (Mes; 1 a), tBu (1 b)). Addition of tris(pentafluorophenyl)borane (BCF) to 1 a, b resulted in the zwitterionic compounds 1,7-H2 C2 B10 H9 -9-PHR(p-C6 F4 )BF(C6 F5 )2 (2 a, b) through nucleophilic para substitution of a C6 F5 ring followed by fluoride transfer to boron. Further reaction with Me2 SiHCl prompted a H-F exchange yielding the zwitterionic compounds 1,7-H2 C2 B10 H9 -9-PHR(p-C6 F4 )BH(C6 F5 )2 (3 a, b). The reaction of 2 a, b with one equivalent of R'MgBr (R'=Me, Ph) gave the extremely water-sensitive frustrated Lewis pairs 1,7-H2 C2 B10 H9 -9-PR(p-C6 F4 )B(C6 F5 )2 (4 a, b). Hydrolysis of the B-C6 F4 bond in 4 a, b gave the first tertiary B-carboranyl phosphines with three distinct substituents, 1,7-H2 C2 B10 H9 -9-PR(p-C6 F4 H) (5 a, b). Deprotonation of the zwitterionic compounds 2 a, b and 3 a, b formed anionic phosphines [1,7-H2 C2 B10 H9 -9-PR(p-C6 F4 )BX(C6 F5 )2 ]- [DMSOH]+ (R=Mes, X=F (6 a), R=tBu, X=F (6 b); R=Mes, X=H (7 a), R=tBu, X=H (7 b)). Reaction of 2 a, b with an excess of Grignard reagents resulted in the addition of R' at the boron atom yielding the anions [1,7-H2 C2 B10 H9 -9-PR(p-C6 F4 )BR'(C6 F5 )2 ]- (R=Mes, R'=Me (8 a), R=tBu, R'=Me (8 b); R=Mes, R'=Ph (9 a), R=tBu, R'=Ph (9 b)) with [MgBr(Et2 O)n ]+ as counterion. The ability of the zwitterionic compounds 3 a, b to hydrogenate imines as well as the Brønsted acidity of 3 a were investigated.
Collapse
Affiliation(s)
- Jan Schulz
- Leipzig University, Faculty of Chemistry and Mineralogy Institute of Inorganic ChemistryJohannisallee 2904103LeipzigGermany
| | - Menyhárt B. Sárosi
- Leipzig University, Faculty of Chemistry and Mineralogy Wilhelm-Ostwald-Institute for Physical and Theoretical ChemistryLinnéstraße 204103LeipzigGermany
| | - Evamarie Hey‐Hawkins
- Leipzig University, Faculty of Chemistry and Mineralogy Institute of Inorganic ChemistryJohannisallee 2904103LeipzigGermany
| |
Collapse
|
13
|
Kang Y, Wang B, Nan R, Li Y, Zhu Z, Xiao XQ. Cyclic Carbonate Synthesis from Epoxides and CO 2 Catalyzed by Aluminum-Salen Complexes Bearing a nido-C 2B 9 Carborane Ligand. Inorg Chem 2022; 61:8806-8814. [PMID: 35653698 DOI: 10.1021/acs.inorgchem.2c00797] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The active and well-designed Schiff base ligands are considered "privileged ligands". The so-called salen ligands, i.e., the tetradentate [O, N, N, O] bis-Schiff base ligands, have also found broad applications in many homogeneous catalytic reactions. Modification of the salen ligands has concentrated on altering the substituents in the phenolate rings and variations in the diamine backbones. Herein, o-carborane-supported salen ligands (2) were designed and prepared. A series of aluminum-salen complexes (3·(sol)2), which were supported by the nido-C2B9 carborane anions, were synthesized. These Al(III) complexes showed high activities (TOF up to 1500 h-1) in catalyzing the cycloaddition of epoxides and CO2 at atmospheric pressure and near room temperature. Complexes 3·(sol)2 are one of the rare examples of Al-based catalysts capable of promoting cycloaddition at 1 bar pressure of CO2. Density functional theory (DFT) studies combined with the catalytic results reveal that the catalytic cycles occur on two axial sites of the Al(III) center.
Collapse
Affiliation(s)
- Yanrui Kang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Beining Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Runxia Nan
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Yiwen Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Zhouli Zhu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| | - Xu-Qiong Xiao
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Hangzhou Normal University. No. 2318 Yuhangtang Rd. Hangzhou, 311121 Zhejiang, China
| |
Collapse
|
14
|
Mills HA, Alsarhan F, Ong TC, Gembicky M, Rheingold AL, Spokoyny AM. Icosahedral m-Carboranes Containing Exopolyhedral B-Se and B-Te Bonds. Inorg Chem 2021; 60:19165-19174. [PMID: 34855370 DOI: 10.1021/acs.inorgchem.1c02981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Chalcogen-containing carboranes have been known for several decades and possess stable exopolyhedral B(9)-Se and B(9)-Te σ bonds despite the electron-donating ability of the B(9) vertex. While these molecules are known, little has been done to thoroughly evaluate their electrophilic and nucleophilic behavior. Herein, we report an assessment of the electrophilic reactivity of m-carboranylselenyl(II), -tellurenyl(II), and -tellurenyl(IV) chlorides and establish their reactivity pattern with Grignard reagents, alkenes, alkynes, enolates, and electron-rich arenes. These electrophilic reactions afford unique electron-rich B-Y-C (Y = Se, Te) bonding motifs not commonly found before. Furthermore, we show that m-carboranylselenolate, and even m-carboranyltellurolate, can be competent nucleophiles and participate in nucleophilic aromatic substitution reactions. Arene substitution chemistry is shown to be further extended to electron-rich species via palladium-mediated cross-coupling chemistry.
Collapse
Affiliation(s)
- Harrison A Mills
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Fadi Alsarhan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ta-Chung Ong
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Milan Gembicky
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Arnold L Rheingold
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|