1
|
Shen SY, Wu C, Yang ZQ, Wang KX, Shao ZH, Yan W. Advances in cannabinoid receptors pharmacology: from receptor structural insights to ligand discovery. Acta Pharmacol Sin 2025; 46:1495-1510. [PMID: 39910211 DOI: 10.1038/s41401-024-01472-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/26/2024] [Indexed: 02/07/2025]
Abstract
The medicinal and recreational uses of Cannabis sativa have been recognized for thousands of years. Today, cannabis-derived medicines are used to treat a variety of conditions, including chronic pain, epilepsy, multiple sclerosis, and chemotherapy-induced nausea. However, cannabis use disorder (CUD) has become the third most prevalent substance use disorder globally. Cannabinoid receptors are the primary targets that mediate the effects of cannabis and its analogs. Despite their importance, the mechanisms of modulation and the full therapeutic potential of cannabinoid receptors remain unclear, hindering the development of the next generation of cannabinoid-based drugs. This review summarizes the discovery and medicinal potential of phytocannabinoids and explores the distribution, signaling pathways, and functional roles of cannabinoid receptors. It also discusses classical cannabinoid drugs, as well as agonists, antagonists, and inverse agonists, which serve as key therapeutic agents. Recent advancements in the development of allosteric drugs are highlighted, with a focus on positive and negative allosteric modulators (PAMs and NAMs) that target CB1 and CB2 receptors. The identification of multiple allosteric sites on the CB1 receptor and the structural basis for allosteric modulation are emphasized, along with the structure-based discovery of ago-BAMs for CB1. This review concludes by examining the future potential of allosteric modulators in cannabinoid drug development, noting that ongoing progress in cannabinoid-derived drugs continues to open new avenues for therapeutic use and paves the way for future research into their full medicinal potential.
Collapse
Affiliation(s)
- Si-Yuan Shen
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chao Wu
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhi-Qian Yang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ke-Xin Wang
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhen-Hua Shao
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Tianfu Jincheng Laboratory, Frontier Medical Center, Chengdu, 610212, China.
| | - Wei Yan
- Division of Nephrology and Kidney Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Vanegas MJ, Gómez S, Cappelli C, Miscione GP. Exploring Membrane Cholesterol Binding to the CB1 Receptor: A Computational Perspective. J Phys Chem B 2025; 129:4350-4365. [PMID: 40268728 DOI: 10.1021/acs.jpcb.4c08076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Cholesterol (CHOL) is a potential allosteric modulator of the CB1 receptor. In this work, we use atomistic molecular dynamics simulations to study how CHOL interacts with CB1 and to identify its binding sites (BS) and residence times on specific receptor zones. Our results evince minimal changes in CB1 conformational dynamics and secondary structure due to CHOL. We report five BSs, three of which coincide with previously described interaction regions (BS1, BS2, and BS3), while BS4 and BS5 are proposed as new BSs. Quantum descriptors of bonding such as Natural Bond Orbitals (NBO), Quantum Theory of Atoms in Molecules (QTAIM), and Noncovalent Interactions (NCI) analyses are employed to characterize the CHOL-BS interactions. The results show an exponential correlation between the strength of the interactions (mainly hydrogen bonds and hydrophobic contacts) and the residence time at the BSs. Although other approaches exist to identify high-affinity protein sites, our methodology integrates classical and quantum descriptions to better characterize BSs and predict ligand residence times in CB1, distinguishing persistent from transitory contacts. Since CHOL has been suggested as a potential endogenous allosteric ligand, our flexible strategy allows studying interactions that stabilize CHOL in CB1, could be extended to cannabinoid binding, and contribute to designing improved receptor ligands.
Collapse
Affiliation(s)
- Manuela J Vanegas
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, 111711, Bogota, Colombia
| | - Sara Gómez
- Universidad Nacional de Colombia, Departamento de Química, Av. Cra 30 45-03, 111321, Bogotá, Colombia
| | - Chiara Cappelli
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126, Pisa, Italy
| | - Gian Pietro Miscione
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, 111711, Bogota, Colombia
| |
Collapse
|
3
|
Cruz A, Warshel A. Unraveling GPCRs Allosteric Modulation. Cannabinoid 1 Receptor as a Case Study. Proteins 2025; 93:763-785. [PMID: 39584635 PMCID: PMC11879764 DOI: 10.1002/prot.26762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/26/2024]
Abstract
G-protein-coupled receptors (GPCRs) constitute one of the most prominent families of integral membrane receptor proteins that mediate most transmembrane signaling processes. Malfunction of these signal transduction processes is one of the underlying causes of many human pathologies (Parkinson's, Huntington's, heart diseases, etc), provoking that GPCRs are the largest family of druggable proteins. However, these receptors have been targeted traditionally by orthosteric ligands, which usually causes side effects due to the simultaneous targeting of homologous receptor subtypes. Allosteric modulation offers a promising alternative approach to circumvent this problematic and, thus, comprehending its details is a most important task. Here we use the Cannabinoid type-1 receptor (CB1R) in trying to shed light on this issue, focusing on positive allosteric modulation. This is done by using the protein-dipole Langevin-dipole (PDLD) within the linear response approximation (LRA) framework (PDLD/S-2000) along with our coarse-grained (CG) model of membrane proteins to evaluate the dissociation constants (K Bs) and cooperativity factors (αs) for a diverse series of CB1R positive allosteric modulators belonging to the 2-phenylindole structural class, considering CP55940 as an agonist. The agreement with the experimental data evinces that significantly populated allosteric modulator:CB1R and allosteric modulator:CP55940:CB1R complexes have been identified and characterized successfully. Analyzing them, it has been determined that CB1R positive allosteric modulation lies in an outwards displacement of transmembrane α helix (TM) 4 extracellular end and in the regulation of the range of motion of a compound TM7 movement for binary and ternary complexes, respectively. In this respect, we achieved a better comprehension of the molecular architecture of CB1R positive allosteric site, identifying Lys1923.28 and Gly1943.30 as key residues regarding electrostatic interactions inside this cavity, and to rationalize (at both structural and molecular level) the exhibited stereoselectivity in relation to positive allosteric modulation activity by considered CB1R allosteric modulators. Additionally, putative/postulated allosteric binding sites have been screened successfully, identifying the real CB1R positive allosteric site, and most structure-activity relationship (SAR) studies of CB1R 2-phenylindole allosteric modulators have been rationalized. All these findings point out towards the predictive value of the methodology used in the current work, which can be applied to other biophysical systems of interest. The results presented in this study contribute significantly to understand GPCRs allosteric modulation and, hopefully, will encourage a more thorough exploration of the topic.
Collapse
Affiliation(s)
- Alejandro Cruz
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062, United States
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, Los Angeles, California, 90089-1062, United States
| |
Collapse
|
4
|
Zhu W, Monnie CM, Kitoka K, Gronenborn AM. High-Efficiency Trifluoromethyl-Methionine Incorporation into Cyclophilin A by Cell-Free Synthesis for 19F NMR Studies. Angew Chem Int Ed Engl 2025; 64:e202419709. [PMID: 39571097 PMCID: PMC11813676 DOI: 10.1002/anie.202419709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Indexed: 02/12/2025]
Abstract
Fluorine-19 NMR spectroscopy has emerged as a powerful tool for studying protein structure, dynamics, and interactions. Of particular interest is the exploitation of trifluoromethyl (tfm) groups, given their high sensitivity and superior transverse relaxation properties, compared to single fluorine atoms. However, biosynthetic incorporation of tfm-bearing amino acids remains challenging due to cytotoxicity and incompatibility with natural tRNA synthetases. Here, we report on overcoming this challenge using cell-free synthesis, incorporating trifluoromethyl-methionine (tfmM) into the protein Cyclophilin A (CypA) with remarkably high efficiency, impossible via biosynthetic means. Importantly, we demonstrate that tfmM CypA binds a native substrate, the N-terminal domain of HIV-1 capsid protein (HIV-1 CA-NTD), and retains peptidyl prolyl cis/trans isomerase activity. It also binds the peptide inhibitor Cyclosporine A (CsA) with the same affinity as non-labeled, wild-type CypA. Furthermore, we show that 19F isotope shifts and 19F solvent paramagnetic relaxation enhancements (PREs) provide valuable structural information on surface exposure. Taken together, our study illustrates that tfmM can be readily incorporated into proteins at very high levels by cell-free synthesis without disturbing protein structure and function, significantly expanding the scope of 19F NMR spectroscopy for studying protein structure and dynamics.
Collapse
Affiliation(s)
- Wenkai Zhu
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA-15261, United States
| | - Christina M Monnie
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA-15261, United States
| | - Kristīne Kitoka
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA-15261, United States
- Laboratory of Structural Biology and Drug Design, Latvian Institute of Organic Synthesis, Riga, LV1006, Latvia
| | - Angela M Gronenborn
- Department of Structural Biology, University of Pittsburgh School of Medicine, 3501 Fifth Ave., Pittsburgh, PA-15261, United States
| |
Collapse
|
5
|
Huang Y, Zhang P, Wang H, Chen Y, Liu T, Luo X. Genetic Code Expansion: Recent Developments and Emerging Applications. Chem Rev 2025; 125:523-598. [PMID: 39737807 PMCID: PMC11758808 DOI: 10.1021/acs.chemrev.4c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 12/02/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025]
Abstract
The concept of genetic code expansion (GCE) has revolutionized the field of chemical and synthetic biology, enabling the site-specific incorporation of noncanonical amino acids (ncAAs) into proteins, thus opening new avenues in research and applications across biology and medicine. In this review, we cover the principles of GCE, including the optimization of the aminoacyl-tRNA synthetase (aaRS)/tRNA system and the advancements in translation system engineering. Notable developments include the refinement of aaRS/tRNA pairs, enhancements in screening methods, and the biosynthesis of noncanonical amino acids. The applications of GCE technology span from synthetic biology, where it facilitates gene expression regulation and protein engineering, to medicine, with promising approaches in drug development, vaccine production, and gene editing. The review concludes with a perspective on the future of GCE, underscoring its potential to further expand the toolkit of biology and medicine. Through this comprehensive review, we aim to provide a detailed overview of the current state of GCE technology, its challenges, opportunities, and the frontier it represents in the expansion of the genetic code for novel biological research and therapeutic applications.
Collapse
Affiliation(s)
- Yujia Huang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Pan Zhang
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
| | - Haoyu Wang
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Yan Chen
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Liu
- State
Key Laboratory of Natural and Biomimetic Drugs, Department of Molecular
and Cellular Pharmacology, School of Pharmaceutical Sciences, Chemical
Biology Center, Peking University, Beijing 100191, China
| | - Xiaozhou Luo
- Shenzhen
Key Laboratory for the Intelligent Microbial Manufacturing of Medicines,
Key Laboratory of Quantitative Synthetic Biology, Center for Synthetic
Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese
Academy of Sciences, Shenzhen 518055, P.R. China
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Thorsen TS, Kulkarni Y, Sykes DA, Bøggild A, Drace T, Hompluem P, Iliopoulos-Tsoutsouvas C, Nikas SP, Daver H, Makriyannis A, Nissen P, Gajhede M, Veprintsev DB, Boesen T, Kastrup JS, Gloriam DE. Structural basis of THC analog activity at the Cannabinoid 1 receptor. Nat Commun 2025; 16:486. [PMID: 39779700 PMCID: PMC11711184 DOI: 10.1038/s41467-024-55808-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025] Open
Abstract
Tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB1. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB1 and its primary transducer, Gi1. We leverage this structure for docking and 1000 ns molecular dynamics simulations of THC and 10 structural analogs delineating their spatiotemporal interactions at the molecular level. Furthermore, we pharmacologically profile their recruitment of Gi and β-arrestins and reversibility of binding from an active complex. By combining detailed CB1 structural information with molecular models and signaling data we uncover the differential spatiotemporal interactions these ligands make to receptors governing potency, efficacy, bias and kinetics. This may help explain the actions of abused substances, advance fundamental receptor activation studies and design better medicines.
Collapse
Affiliation(s)
- Thor S Thorsen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- Nordic Virtual Pastures, BioInnovation Institute, København N, Denmark
| | - Yashraj Kulkarni
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David A Sykes
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Andreas Bøggild
- Interdisciplinary Nanoscience Center and Department of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
| | - Taner Drace
- Interdisciplinary Nanoscience Center and Department of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
| | - Pattarin Hompluem
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | | | - Spyros P Nikas
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, US
| | - Henrik Daver
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
- H. Lundbeck A/S, Valby, Denmark
| | - Alexandros Makriyannis
- Center for Drug Discovery and Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, US
- Center for Drug Discovery and Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, US
| | - Poul Nissen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Denmark, Aarhus, Denmark
| | - Michael Gajhede
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Dmitry B Veprintsev
- Centre of Membrane Proteins and Receptors (COMPARE), University of Nottingham, Nottingham, Midlands, UK
- Division of Physiology, Pharmacology & Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Thomas Boesen
- Interdisciplinary Nanoscience Center and Department of Molecular Biology & Genetics, Aarhus University, Aarhus, Denmark
- Danish Research Institute of Translational Neuroscience - DANDRITE, Nordic EMBL Partnership for Molecular Medicine, Aarhus University, Denmark, Aarhus, Denmark
| | - Jette S Kastrup
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Ledwitch K, Künze G, Okwei E, Sala D, Meiler J. Non-canonical amino acids for site-directed spin labeling of membrane proteins. Curr Opin Struct Biol 2024; 89:102936. [PMID: 39454307 DOI: 10.1016/j.sbi.2024.102936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 10/28/2024]
Abstract
Membrane proteins remain challenging targets for conventional structural biology techniques because they need to reside within complex hydrophobic lipid environments to maintain proper structure and function. Magnetic resonance combined with site-directed spin labeling is an alternative method that provides atomic-level structural and dynamical information from effects introduced by an electron- or nuclear-based spin label. With the advent of bioorthogonal click chemistries and genetically engineered non-canonical amino acids (ncAAs), options for linking spin probes to biomolecules have substantially broadened outside the conventional cysteine-based labeling scheme. Here, we highlight current strategies to spin-label membrane proteins through ncAAs for nuclear and electron paramagnetic resonance applications. Such advances are critical for developing bioorthogonal spin labeling schemes to achieve in-cell labeling and in-cell measurements of membrane protein conformational dynamics.
Collapse
Affiliation(s)
- Kaitlyn Ledwitch
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA.
| | - Georg Künze
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Elleansar Okwei
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA
| | - Davide Sala
- Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| | - Jens Meiler
- Center for Structural Biology, Vanderbilt University, Nashville, TN 37240, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37240, USA; Institute of Drug Discovery, Faculty of Medicine, University of Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
8
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
9
|
Sengupta I. Insights into the Structure and Dynamics of Proteins from 19F Solution NMR Spectroscopy. Biochemistry 2024; 63:2958-2968. [PMID: 39495741 DOI: 10.1021/acs.biochem.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
19F NMR spectroscopy has recently witnessed a resurgence as an attractive analytical tool for the study of the structure and dynamics of biomolecules in vitro and in cells, despite reports of its applications in biomolecular NMR since the 1970s. The high gyromagnetic ratio, large chemical shift dispersion, and complete absence of the spin 1/2 19F nucleus from biomolecules results in background-free, high-resolution 19F NMR spectra. The introduction of 19F probes in a few selected locations in biomolecules reduces spectral crowding despite its increased line width in comparison to typical 1H NMR line widths and allows rapid site-specific measurements from simple 1D spectra alone. The design and synthesis of novel 19F probes with reduced line widths and increased chemical shift sensitivity to the surrounding environment, together with advances in labeling techniques, NMR methodology, and hardware, have overcome several drawbacks of 19F NMR spectroscopy. The increased interest and widespread use of 19F NMR spectroscopy of biomolecules is gradually establishing it as a sensitive and high-resolution probe of biomolecular structure and dynamics, supplementing traditional 13C/15N-based methods. This Review focuses on the advances in 19F solution NMR spectroscopy of proteins in the past 5 years, with an emphasis on novel 19F tags and labeling techniques, NMR experiments to probe protein structure and conformational dynamics in vitro, and in-cell NMR applications.
Collapse
Affiliation(s)
- Ishita Sengupta
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
10
|
Yau MQ, Liew CWY, Toh JH, Loo JSE. A head-to-head comparison of MM/PBSA and MM/GBSA in predicting binding affinities for the CB 1 cannabinoid ligands. J Mol Model 2024; 30:390. [PMID: 39480515 DOI: 10.1007/s00894-024-06189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
CONTEXT The substantial increase in the number of active and inactive-state CB1 receptor experimental structures has provided opportunities for CB1 drug discovery using various structure-based drug design methods, including the popular end-point methods for predicting binding free energies-Molecular Mechanics/Poisson-Boltzmann Surface Area (MM/PBSA) and Molecular Mechanics/Generalized Born Surface Area (MM/GBSA). In this study, we have therefore evaluated the performance of MM/PBSA and MM/GBSA in calculating binding free energies for CB1 receptor. Additionally, with both MM/PBSA and MM/GBSA being known for their highly individualized performance, we have evaluated the effects of various simulation parameters including the use of energy minimized structures, choice of solute dielectric constant, inclusion of entropy, and the effects of the five GB models. Generally, MM/GBSA provided higher correlations than MM/PBSA (rMM/GBSA = 0.433 - 0.652 vs. rMM/PBSA = 0.100 - 0.486) regardless of the simulation parameters, while also offering faster calculations. Improved correlations were observed with the use of molecular dynamics ensembles compared with energy minimized structures and larger solute dielectric constants. Incorporation of entropic terms led to unfavorable results for both MM/PBSA and MM/GBSA for a majority of the dataset, while the evaluation of the various GB models exerted a varying effect on both the datasets. The findings obtained in this study demonstrate the utility of MM/PBSA and MM/GBSA in predicting binding free energies for the CB1 receptor, hence providing a useful benchmark for their applicability in the endocannabinoid system as well as other G protein-coupled receptors. METHODS The study utilized the docked dataset (Induced Fit Docking with Glide XP scoring function) from Loo et al., consisting of 46 ligands-23 agonists and 23 antagonists. The equilibrated structures from Loo et al. were subjected to 30 ns production simulations using GROMACS 2018 at 300 K and 1 atm with the velocity rescaling thermostat and the Parinello-Rahman barostat. AMBER ff99SB*-ILDN was used for the proteins, General Amber Force Field (GAFF) was used for the ligands, and Slipids parameters were used for lipids. MM/PBSA and MM/GBSA binding free energies were then calculated using gmx_MMPBSA. The solute dielectric constant was varied between 1, 2, and 4 to study the effect of different solute dielectric constants on the performance of MM/PB(GB)SA. The effect of entropy on MM/PB(GB)SA binding free energies was evaluated using the interaction entropy module implemented in gmx_MMPBSA. Five GB models, GBHCT, GBOBC1, GBOBC2, GBNeck, and GBNeck2, were evaluated to study the effect of the choice of GB models in the performance of MM/GBSA. Pearson correlation coefficients were used to measure the correlation between experimental and predicted binding free energies.
Collapse
Affiliation(s)
- Mei Qian Yau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia.
- Digital Health and Medical Advancement Impact Lab, Taylor's University, No. 1 Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| | - Clarence W Y Liew
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia
| | - Jason S E Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, No. 1 Jalan Taylors 47500 Subang Jaya, Selangor, Malaysia
- Digital Health and Medical Advancement Impact Lab, Taylor's University, No. 1 Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| |
Collapse
|
11
|
Isu U, Polasa A, Moradi M. Differential Behavior of Conformational Dynamics in Active and Inactive States of Cannabinoid Receptor 1. J Phys Chem B 2024; 128:8437-8447. [PMID: 39169808 PMCID: PMC11382280 DOI: 10.1021/acs.jpcb.4c02828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Cannabinoid receptor 1 (CB1) is a G protein-coupled receptor that regulates critical physiological processes including pain, appetite, and cognition. Understanding the conformational dynamics of CB1 associated with transitions between inactive and active signaling states is imperative for developing targeted modulators. Using microsecond-level all-atom molecular dynamics simulations, we identified marked differences in the conformational ensembles of inactive and active CB1 in apo. The inactive state exhibited substantially increased structural heterogeneity and plasticity compared to the more rigidified active state in the absence of stabilizing ligands. Transmembrane helices TM3 and TM7 were identified as distinguishing factors modulating the state-dependent dynamics. TM7 displayed amplified fluctuations selectively in the inactive state simulations attributed to disruption of conserved electrostatic contacts anchoring it to surrounding helices in the active state. Additionally, we identified significant reorganizations in key salt bridge and hydrogen bond networks contributing to the CB1 activation/inactivation. For instance, D213-Y224 hydrogen bond and D184-K192 salt bridge showed marked rearrangements between the states. Collectively, these findings reveal the specialized role of TM7 in directing state-dependent CB1 dynamics through electrostatic switch mechanisms. By elucidating the intrinsic enhanced flexibility of inactive CB1, this study provides valuable insights into the conformational landscape enabling functional transitions. Our perspective advances understanding of CB1 activation mechanisms and offers opportunities for structure-based drug discovery targeting the state-specific conformational dynamics of this receptor.
Collapse
Affiliation(s)
- Ugochi
H. Isu
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Adithya Polasa
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
12
|
Pan B, Guo C, Liu D, Wüthrich K. Fluorine-19 labeling of the tryptophan residues in the G protein-coupled receptor NK1R using the 5-fluoroindole precursor in Pichia pastoris expression. JOURNAL OF BIOMOLECULAR NMR 2024; 78:133-138. [PMID: 38554216 DOI: 10.1007/s10858-024-00439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 04/01/2024]
Abstract
In NMR spectroscopy of biomolecular systems, the use of fluorine-19 probes benefits from a clean background and high sensitivity. Therefore, 19F-labeling procedures are of wide-spread interest. Here, we use 5-fluoroindole as a precursor for cost-effective residue-specific introduction of 5-fluorotryptophan (5F-Trp) into G protein-coupled receptors (GPCRs) expressed in Pichia pastoris. The method was successfully implemented with the neurokinin 1 receptor (NK1R). The 19F-NMR spectra of 5F-Trp-labeled NK1R showed one well-separated high field-shifted resonance, which was assigned by mutational studies to the "toggle switch tryptophan". Residue-selective labeling thus enables site-specific investigations of this functionally important residue. The method described here is inexpensive, requires minimal genetic manipulation and can be expected to be applicable for yeast expression of GPCRs at large.
Collapse
Affiliation(s)
- Benxun Pan
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Canyong Guo
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Department of Integrative Structural and Computational Biology, Scripps Research, La Jolla, CA, 92037, USA.
- Institute of Molecular Biology and Biophysics, ETH Zürich, Otto-Stern-Weg 5, Zürich, 8093, Switzerland.
| |
Collapse
|
13
|
Koch NG, Budisa N. Evolution of Pyrrolysyl-tRNA Synthetase: From Methanogenesis to Genetic Code Expansion. Chem Rev 2024; 124:9580-9608. [PMID: 38953775 PMCID: PMC11363022 DOI: 10.1021/acs.chemrev.4c00031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
Over 20 years ago, the pyrrolysine encoding translation system was discovered in specific archaea. Our Review provides an overview of how the once obscure pyrrolysyl-tRNA synthetase (PylRS) tRNA pair, originally responsible for accurately translating enzymes crucial in methanogenic metabolic pathways, laid the foundation for the burgeoning field of genetic code expansion. Our primary focus is the discussion of how to successfully engineer the PylRS to recognize new substrates and exhibit higher in vivo activity. We have compiled a comprehensive list of ncAAs incorporable with the PylRS system. Additionally, we also summarize recent successful applications of the PylRS system in creating innovative therapeutic solutions, such as new antibody-drug conjugates, advancements in vaccine modalities, and the potential production of new antimicrobials.
Collapse
Affiliation(s)
- Nikolaj G. Koch
- Department
of Chemistry, Institute of Physical Chemistry, University of Basel, 4058 Basel, Switzerland
- Department
of Biosystems Science and Engineering, ETH
Zurich, 4058 Basel, Switzerland
| | - Nediljko Budisa
- Biocatalysis
Group, Institute of Chemistry, Technische
Universität Berlin, 10623 Berlin, Germany
- Chemical
Synthetic Biology Chair, Department of Chemistry, University of Manitoba, Winnipeg MB R3T 2N2, Canada
| |
Collapse
|
14
|
Hanson GSM, Coxon CR. Fluorinated Tags to Study Protein Conformation and Interactions Using 19F NMR. Chembiochem 2024; 25:e202400195. [PMID: 38744671 DOI: 10.1002/cbic.202400195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The incorporation of fluorine atoms into a biomacromolecule provides a background-free and environmentally sensitive reporter of structure, conformation and interactions using 19F NMR. There are several methods to introduce the 19F reporter - either by synthetic incorporation via solid phase peptide synthesis; by suppressing the incorporation or biosynthesis of a natural amino acid and supplementing the growth media with a fluorinated counterpart during protein expression; and by genetic code expansion to add new amino acids to the amino acid alphabet. This review aims to discuss progress in the field of introducing fluorinated handles into biomolecules for NMR studies by post-translational bioconjugation or 'fluorine-tagging'. We will discuss the range of chemical tagging 'warheads' that have been used, explore the applications of fluorine tags, discuss ways to enhance reporter sensitivity and how the signal to noise ratios can be boosted. Finally, we consider some key challenges of the field and offer some ideas for future directions.
Collapse
Affiliation(s)
- George S M Hanson
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| | - Christopher R Coxon
- EaStChem School of Chemistry, University of Edinburgh, Joseph Black Building, Kings Buildings, West Mains Road, EH9 3FJ, Edinburgh, UK
| |
Collapse
|
15
|
Green HM, Yang L, Zhu X, Finlay DB, Duffull SB, Glass M. Insight into the mechanism of action of ORG27569 at the cannabinoid type one receptor utilising a unified mathematical model. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5105-5118. [PMID: 38227196 PMCID: PMC11166842 DOI: 10.1007/s00210-023-02923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/21/2023] [Indexed: 01/17/2024]
Abstract
Allosteric modulation of CB1 is therapeutically advantageous compared to orthosteric activation as it potentially offers reduced on-target adverse effects. ORG27569 is an allosteric modulator that increases orthosteric agonist binding to CB1 but decreases functional signalling. ORG27569 is characterised by a delay in disinhibition of agonist-induced cAMP inhibition (lag); however, the mechanism behind this kinetic lag is yet to be identified. We aimed to utilise a mathematical model to predict data and design in vitro experiments to elucidate mechanisms behind the unique signalling profile of ORG27569. The established kinetic ternary complex model includes the existence of a transitional state of CB1 bound to ORG27569 and CP55940 and was used to simulate kinetic cAMP data using NONMEM 7.4 and Matlab R2020b. These data were compared with empirical cAMP BRET data in HEK293 cells stably expressing hCB1. The pharmacometric model suggested that the kinetic lag in cAMP disinhibition by ORG27569 is caused by signal amplification in the cAMP assay and can be reduced by decreasing receptor number. This was confirmed experimentally, as reducing receptor number through agonist-induced internalisation resulted in a decreased kinetic lag by ORG27569. ORG27569 was found to have a similar interaction with CP55940 and the high efficacy agonist WIN55,212-2, and was suggested to have lower affinity for CB1 bound by the partial agonist THC compared to CP55940. Allosteric modulators have unique signalling profiles that are often difficult to interrogate exclusively in vitro. We have used a combined mathematical and in vitro approach to prove that ORG27569 causes a delay in disinhibition of agonist-induced cAMP inhibition due to large receptor reserve in this pathway. We also used the pharmacometric model to investigate the common phenomenon of probe dependence, to propose that ORG27569 binds with higher affinity to CB1 bound by high efficacy orthosteric agonists.
Collapse
Affiliation(s)
- Hayley M Green
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Liang Yang
- Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Xiao Zhu
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fudan University, Shanghai, China
| | - David B Finlay
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand
| | - Stephen B Duffull
- Otago Pharmacometrics Group, School of Pharmacy, University of Otago, Dunedin, New Zealand
- , Certara, Princeton, NJ, USA
| | - Michelle Glass
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| |
Collapse
|
16
|
Li H, Zhang J, Wang Z, Shi P, Shi C. Genetically encoded site-specific 19F unnatural amino acid incorporation in V. natriegens for in-cell NMR analysis. Protein Expr Purif 2024; 219:106461. [PMID: 38460621 DOI: 10.1016/j.pep.2024.106461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/22/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy NMR is a well-established technique for probing protein structure, dynamics and conformational changes. Taking advantage of the high signal sensitivity and broad chemical shift range of 19F nuclei, 19F NMR has been applied to investigate protein function at atomic resolution. In this report, we extend the unnatural amino acid site-specific incorporation into V. natriegens, an alternate protein expression system. The unnatural amino acid L-4-trifluoromethylphenylalanine (tfmF) was site-specifically introduced into the mitogen-activated protein kinase MEKK3 in V. natriegens using genetically encoded technology, which will be an extensive method for in-cell protein structure and dynamic investigation.
Collapse
Affiliation(s)
- Hao Li
- Anhui Vocational and Technical College, Hefei, Anhui, 230011, PR China; Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| | - Jin Zhang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Zilong Wang
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Pan Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China
| | - Chaowei Shi
- Hefei National Research Center for Interdisciplinary Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui, 230027, PR China.
| |
Collapse
|
17
|
Szwabowski GL, Griffing M, Mugabe EJ, O’Malley D, Baker LN, Baker DL, Parrill AL. G Protein-Coupled Receptor-Ligand Pose and Functional Class Prediction. Int J Mol Sci 2024; 25:6876. [PMID: 38999982 PMCID: PMC11241240 DOI: 10.3390/ijms25136876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/13/2024] [Accepted: 06/19/2024] [Indexed: 07/14/2024] Open
Abstract
G protein-coupled receptor (GPCR) transmembrane protein family members play essential roles in physiology. Numerous pharmaceuticals target GPCRs, and many drug discovery programs utilize virtual screening (VS) against GPCR targets. Improvements in the accuracy of predicting new molecules that bind to and either activate or inhibit GPCR function would accelerate such drug discovery programs. This work addresses two significant research questions. First, do ligand interaction fingerprints provide a substantial advantage over automated methods of binding site selection for classical docking? Second, can the functional status of prospective screening candidates be predicted from ligand interaction fingerprints using a random forest classifier? Ligand interaction fingerprints were found to offer modest advantages in sampling accurate poses, but no substantial advantage in the final set of top-ranked poses after scoring, and, thus, were not used in the generation of the ligand-receptor complexes used to train and test the random forest classifier. A binary classifier which treated agonists, antagonists, and inverse agonists as active and all other ligands as inactive proved highly effective in ligand function prediction in an external test set of GPR31 and TAAR2 candidate ligands with a hit rate of 82.6% actual actives within the set of predicted actives.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel L. Baker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| | - Abby L. Parrill
- Department of Chemistry, University of Memphis, Memphis, TN 38152, USA; (G.L.S.); (M.G.); (E.J.M.); (D.O.); (L.N.B.)
| |
Collapse
|
18
|
Yi HB, Lee S, Seo K, Kim H, Kim M, Lee HS. Cellular and Biophysical Applications of Genetic Code Expansion. Chem Rev 2024; 124:7465-7530. [PMID: 38753805 DOI: 10.1021/acs.chemrev.4c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Despite their diverse functions, proteins are inherently constructed from a limited set of building blocks. These compositional constraints pose significant challenges to protein research and its practical applications. Strategically manipulating the cellular protein synthesis system to incorporate novel building blocks has emerged as a critical approach for overcoming these constraints in protein research and application. In the past two decades, the field of genetic code expansion (GCE) has achieved significant advancements, enabling the integration of numerous novel functionalities into proteins across a variety of organisms. This technological evolution has paved the way for the extensive application of genetic code expansion across multiple domains, including protein imaging, the introduction of probes for protein research, analysis of protein-protein interactions, spatiotemporal control of protein function, exploration of proteome changes induced by external stimuli, and the synthesis of proteins endowed with novel functions. In this comprehensive Review, we aim to provide an overview of cellular and biophysical applications that have employed GCE technology over the past two decades.
Collapse
Affiliation(s)
- Han Bin Yi
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Seungeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Kyungdeok Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyeongjo Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Minah Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| | - Hyun Soo Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul 04107, Republic of Korea
| |
Collapse
|
19
|
Gloriam D, Thorsen T, Kulkarni Y, Sykes D, Bøggild A, Drace T, Hompluem P, Iliopoulos-Tsoutsouvas C, Nikas S, Daver H, Makriyannis A, Nissen P, Gajhede M, Veprintsev D, Boesen T, Kastrup J. Structural basis of Δ 9-THC analog activity at the Cannabinoid 1 receptor. RESEARCH SQUARE 2024:rs.3.rs-4277209. [PMID: 38826401 PMCID: PMC11142349 DOI: 10.21203/rs.3.rs-4277209/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Δ9-tetrahydrocannabinol (THC) is the principal psychoactive compound derived from the cannabis plant Cannabis sativa and approved for emetic conditions, appetite stimulation and sleep apnea relief. THC's psychoactive actions are mediated primarily by the cannabinoid receptor CB1. Here, we determine the cryo-EM structure of HU210, a THC analog and widely used tool compound, bound to CB1 and its primary transducer, Gi1. We leverage this structure for docking and 1,000 ns molecular dynamics simulations of THC and 10 structural analogs delineating their spatiotemporal interactions at the molecular level. Furthermore, we pharmacologically profile their recruitment of Gi and β-arrestins and reversibility of binding from an active complex. By combining detailed CB1 structural information with molecular models and signaling data we uncover the differential spatiotemporal interactions these ligands make to receptors governing potency, efficacy, bias and kinetics. This may help explain the actions of abused substances, advance fundamental receptor activation studies and design better medicines.
Collapse
|
20
|
Haghdoost M, López de los Santos Y, Brunstetter M, Ferretti ML, Roberts M, Bonn-Miller MO. Using In Silico Molecular Docking to Explain Differences in Receptor Binding Behavior of HHC and THCV Isomers: Revealing New Binding Modes. Pharmaceuticals (Basel) 2024; 17:637. [PMID: 38794207 PMCID: PMC11125018 DOI: 10.3390/ph17050637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/10/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Even slight structural differences between phytocannabinoid isomers are usually enough to cause a change in their biological properties. In this study, we used in vitro CB1 agonism/antagonism assays to compare the receptor binding functionality of THCV (tetrahydrocannabivarin) and HHC (hexahydrocannabinol) isomers and applied molecular docking to provide an explanation for the difference in the activities. No CB1 agonism was observed for ∆9- and ∆8-THCV. Instead, both isomers antagonized CP 55940, with ∆9-THCV being approximately two times more potent than the ∆8 counterpart (IC50 = 52.4 nM and 119.6 nM for ∆9- and ∆8-THCV, respectively). Docking simulations found two binding poses for THCV isomers, one very similar to ∆9-THC and one newly discovered pose involving the occupation of side pocket 1 of the CB1 receptor by the alkyl chain of the ligand. We suggested the latter as a potential antagonist pose. In addition, our results established 9R-HHC and 9S-HHC among partial agonists of the CB1 receptor. The 9R-HHC (EC50 = 53.4 nM) isomer was a significantly more potent agonist than 9S (EC50 = 624.3 nM). ∆9-THC and 9R-HHC showed comparable binding poses inside the receptor pocket, whereas 9S-HHC adopted a new and different binding posture that can explain its weak agonist activity.
Collapse
Affiliation(s)
- Mehdi Haghdoost
- Nalu Bio Inc., 38 Keyes Avenue, Suite 117, San Francisco, CA 94129, USA; (M.H.); (M.R.)
| | - Yossef López de los Santos
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | | | - Morgan L. Ferretti
- Department of Psychological Science, University of Arkansas, 216 MEMH, Fayetteville, AR 72701, USA;
| | - Matthew Roberts
- Nalu Bio Inc., 38 Keyes Avenue, Suite 117, San Francisco, CA 94129, USA; (M.H.); (M.R.)
| | | |
Collapse
|
21
|
Isu UH, Polasa A, Moradi M. Differential Behavior of Conformational Dynamics in Active and Inactive States of Cannabinoid Receptor 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589939. [PMID: 38659869 PMCID: PMC11042334 DOI: 10.1101/2024.04.17.589939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
The cannabinoid receptor CB1 is a G protein-coupled receptor that regulates critical physiological processes including pain, appetite, and cognition. Understanding the conformational dynamics of CB1 associated with transitions between inactive and active signaling states is imperative for developing targeted modulators. Using microsecond-level all-atom molecular dynamics simulations, we identified marked differences in the conformational ensembles of inactive and active CB1 states in apo conditions. The inactive state exhibited substantially increased structural heterogeneity and plasticity compared to the more rigidified active state in the absence of stabilizing ligands. Transmembrane helices TM3 and TM7 were identified as distinguishing factors modulating the state-dependent dynamics. TM7 displayed amplified fluctuations selectively in the inactive state simulations attributed to disruption of conserved electrostatic contacts anchoring it to surrounding helices in the active state. Additionally, we identified significant reorganization of key salt bridge and hydrogen bond networks known to control CB1 activation between states. For instance, a conserved D213-Y224 hydrogen bond and D184-K192 salt bridge interactions showed marked rearrangements between the states. Collectively, these findings reveal the specialized role of TM7 in directing state-dependent CB1 dynamics through electrostatic switch mechanisms. By elucidating the intrinsic enhanced flexibility of inactive CB1, this study provides valuable insights into the conformational landscape enabling functional transitions. Our perspective advances understanding of CB1 activation mechanisms and offers opportunities for structure-based drug discovery targeting the state-specific conformational dynamics of this receptor.
Collapse
|
22
|
Chai Z, Li C. In-Cell 19F NMR of Proteins: Recent Progress and Future Opportunities. Chemistry 2024; 30:e202303988. [PMID: 38269421 DOI: 10.1002/chem.202303988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
In vitro, 19F NMR methodology is preferably selected as a complementary and straightforward method for unveiling the conformations, dynamics, and interactions of biological molecules. Its effectiveness in vivo has seen continuous improvement, addressing challenges faced by conventional heteronuclear NMR experiments on structured proteins, such as severe line broadening, low signal-to-noise ratio, and background signals. Herein, we summarize the distinctive advantages of 19F NMR, along with recent progress in sample preparation and applications within the realm of in-cell NMR. Additionally, we offer insights into the future directions and prospects of this methodology based on our understanding.
Collapse
Affiliation(s)
- Zhaofei Chai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| | - Conggang Li
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, China
| |
Collapse
|
23
|
Wang T, Tang W, Zhao Z, Zhao R, Lv Z, Guo X, Gu Q, Liu B, Lv H, Chen J, Zhang K, Li F, Wang J. Fenofibrate Recognition and G q Protein Coupling Mechanisms of the Human Cannabinoid Receptor CB1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306311. [PMID: 38298116 PMCID: PMC11005724 DOI: 10.1002/advs.202306311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/21/2023] [Indexed: 02/02/2024]
Abstract
The G-protein-coupled human cannabinoid receptor 1 (CB1) is a promising therapeutic target for pain management, inflammation, obesity, and substance abuse disorders. The structures of CB1-Gi complexes in synthetic agonist-bound forms have been resolved to date. However, the commercial drug recognition and Gq coupling mechanisms of CB1 remain elusive. Herein, the cryo-electron microscopy (cryo-EM) structure of CB1-Gq complex, in fenofibrate-bound form, at near-atomic resolution, is reported. The structure elucidates the delicate mechanisms of the precise fenofibrate recognition and Gq protein coupling by CB1 and will facilitate future drug discovery and design.
Collapse
Affiliation(s)
- Tianxin Wang
- CAS Key Laboratory of Quantitative Engineering BiologyInstitute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadPudongShanghai201210China
| | - Wenqin Tang
- Institute of BiophysicsChinese Academy of Sciences15 Datun RoadChaoyang DistrictBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Ziyi Zhao
- Institute of BiophysicsChinese Academy of Sciences15 Datun RoadChaoyang DistrictBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Ran Zhao
- Institute of BiophysicsChinese Academy of Sciences15 Datun RoadChaoyang DistrictBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Zhenyu Lv
- Institute of BiophysicsChinese Academy of Sciences15 Datun RoadChaoyang DistrictBeijing100101China
- Key Laboratory of BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Xuzhen Guo
- CAS Key Laboratory of Quantitative Engineering BiologyInstitute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Quanchang Gu
- Institute of BiophysicsChinese Academy of Sciences15 Datun RoadChaoyang DistrictBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Boxiang Liu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadPudongShanghai201210China
| | - Haoyu Lv
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadPudongShanghai201210China
| | - Jiayan Chen
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadPudongShanghai201210China
| | - Kaiquan Zhang
- Institute of BiophysicsChinese Academy of Sciences15 Datun RoadChaoyang DistrictBeijing100101China
- Key Laboratory of BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Fahui Li
- Institute of BiophysicsChinese Academy of Sciences15 Datun RoadChaoyang DistrictBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of BiomacromoleculesChinese Academy of SciencesBeijing100101China
| | - Jiangyun Wang
- Institute of BiophysicsChinese Academy of Sciences15 Datun RoadChaoyang DistrictBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
- Key Laboratory of BiomacromoleculesChinese Academy of SciencesBeijing100101China
| |
Collapse
|
24
|
Jones AJY, Harman TH, Harris M, Lewis OE, Ladds G, Nietlispach D. Binding kinetics drive G protein subtype selectivity at the β 1-adrenergic receptor. Nat Commun 2024; 15:1334. [PMID: 38351103 PMCID: PMC10864275 DOI: 10.1038/s41467-024-45680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/01/2024] [Indexed: 02/16/2024] Open
Abstract
G protein-coupled receptors (GPCRs) bind to different G protein α-subtypes with varying degrees of selectivity. The mechanism by which GPCRs achieve this selectivity is still unclear. Using 13C methyl methionine and 19F NMR, we investigate the agonist-bound active state of β1AR and its ternary complexes with different G proteins in solution. We find the receptor in the ternary complexes adopts very similar conformations. In contrast, the full agonist-bound receptor active state assumes a conformation differing from previously characterised activation intermediates or from β1AR in ternary complexes. Assessing the kinetics of binding for the agonist-bound receptor with different G proteins, we find the increased affinity of β1AR for Gs results from its much faster association with the receptor. Consequently, we suggest a kinetic-driven selectivity gate between canonical and secondary coupling which arises from differential favourability of G protein binding to the agonist-bound receptor active state.
Collapse
Affiliation(s)
- Andrew J Y Jones
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Thomas H Harman
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Matthew Harris
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Oliver E Lewis
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Graham Ladds
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1PD, UK
| | - Daniel Nietlispach
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK.
| |
Collapse
|
25
|
Johari S, Johan MR, Khaligh NG. Organocatalytic Synthesis of (Hetero)arylidene Malononitriles Using a More Sustainable, Greener, and Scalable Strategy. Curr Org Synth 2024; 21:704-716. [PMID: 38231061 DOI: 10.2174/0115701794268766231108110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/22/2023] [Accepted: 10/03/2023] [Indexed: 01/18/2024]
Abstract
AIM AND OBJECTIVE The establishment of a green and sustainable Knoevenagel condensation reaction in organic chemistry is still crucial. This work aimed to provide a newly developed metal-free and halogen-free catalytic methodology for the synthesis of CS and (hetero-) arylidene malononitriles in the laboratory and industrial scale. The Knoevenagel condensation reaction of various carbonyl groups with malononitrile was investigated in ethanol, an ecofriendly medium, in the presence of seven nitrogen-based organocatalysts. MATERIALS AND METHODS A comparative study was conducted using two as-obtained and four commercially available nitrogen-based organocatalysts in Knoevenagel condensation reactions. The synthesis of CS gas (2-chlorobenzylidene malononitrile) using a closed catalytic system was optimized based on their efficiency and greener approach. RESULTS The conversion of 100% and excellent yields were obtained in a short time. The products could be crystallized directly from the reaction mixture. After separating pure products, the residue solution was employed directly in the next run without any concentration, activation, purification, or separation. Furthermore, the synthesis of 2-chlorobenzylidenemahmonitrile (CS) was carried out on a large scale using imidazole as a selected nitrogen-based catalyst, afforded crystalline products with 95 ± 2% yield in five consecutive runs. CONCLUSION Energy efficiency, cost saving, greener conditions, using only 5 mol% of organocatalyst, high recyclability of catalyst, prevention of waste, recycling extractant by a rotary evaporator for non-crystallized products, demonstrated the potential commercial production of CS using imidazole in ethanol as an efficient and highly recyclable catalytic system.
Collapse
Affiliation(s)
- Suzaimi Johari
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies (IAS), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Rafie Johan
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies (IAS), University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Nader Ghaffari Khaligh
- Nanotechnology and Catalysis Research Center, Institute for Advanced Studies (IAS), University of Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
26
|
Do HN, Wang J, Miao Y. Deep Learning Dynamic Allostery of G-Protein-Coupled Receptors. JACS AU 2023; 3:3165-3180. [PMID: 38034960 PMCID: PMC10685416 DOI: 10.1021/jacsau.3c00503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/10/2023] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
G-protein-coupled receptors (GPCRs) make up the largest superfamily of human membrane proteins and represent primary targets of ∼1/3 of currently marketed drugs. Allosteric modulators have emerged as more selective drug candidates compared with orthosteric agonists and antagonists. However, many X-ray and cryo-EM structures of GPCRs resolved so far exhibit negligible differences upon the binding of positive and negative allosteric modulators (PAMs and NAMs). The mechanism of dynamic allosteric modulation in GPCRs remains unclear. In this work, we have systematically mapped dynamic changes in free energy landscapes of GPCRs upon binding of allosteric modulators using the Gaussian accelerated molecular dynamics (GaMD), deep learning (DL), and free energy prOfiling Workflow (GLOW). GaMD simulations were performed for a total of 66 μs on 44 GPCR systems in the presence and absence of the modulator. DL and free energy calculations revealed significantly reduced dynamic fluctuations and conformational space of GPCRs upon modulator binding. While the modulator-free GPCRs often sampled multiple low-energy conformational states, the NAMs and PAMs confined the inactive and active agonist-G-protein-bound GPCRs, respectively, to mostly only one specific conformation for signaling. Such cooperative effects were significantly reduced for binding of the selective modulators to "non-cognate" receptor subtypes. Therefore, GPCR allostery exhibits a dynamic "conformational selection" mechanism. In the absence of available modulator-bound structures as for most current GPCRs, it is critical to use a structural ensemble of representative GPCR conformations rather than a single structure for compound docking ("ensemble docking"), which will potentially improve structure-based design of novel allosteric drugs of GPCRs.
Collapse
Affiliation(s)
| | - Jinan Wang
- Computational Biology Program
and Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
27
|
Prosser RS, Alonzi NA. Discerning conformational dynamics and binding kinetics of GPCRs by 19F NMR. Curr Opin Pharmacol 2023; 72:102377. [PMID: 37612172 DOI: 10.1016/j.coph.2023.102377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 08/25/2023]
Abstract
19F NMR provides a way of monitoring conformational dynamics of G-protein coupled receptors (GPCRs) from the perspective of an ensemble. While X-ray crystallography provides exquisitely resolved high-resolution structures of specific states, it generally does not recapitulate the true ensemble of functional states. Fluorine (19F) NMR provides a highly sensitive spectroscopic window into the conformational ensemble, generally permitting the direct quantification of resolvable states. Moreover, straightforward T1- and T2-based relaxation experiments allow for the study of fluctuations within a given state and exchange between states, on timescales spanning nanoseconds to seconds. Conveniently, most biological systems are free of fluorine. Thus, via fluorinated amino acid analogues or thiol-reactive fluorinated tags, F or CF3 reporters can be site specifically incorporated into proteins of interest. In this review, fluorine labeling protocols and 19F NMR experiments will be presented, from the perspective of small molecule NMR (i.e. drug or small molecule interactions with receptors) or macromolecular NMR (i.e. conformational dynamics of receptors and receptor-G-protein complexes).
Collapse
Affiliation(s)
- R S Prosser
- Chemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada; Biochemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada.
| | - Nicholas A Alonzi
- Chemistry Department, University of Toronto, CPS UTM, Davis Building, Rm 4052, 3359 Mississauga Rd North, Mississauga, Ontario, L5L 1C6, Canada
| |
Collapse
|
28
|
Becker-Baldus J, Yeliseev A, Joseph TT, Sigurdsson ST, Zoubak L, Hines K, Iyer MR, van den Berg A, Stepnowski S, Zmuda J, Gawrisch K, Glaubitz C. Probing the Conformational Space of the Cannabinoid Receptor 2 and a Systematic Investigation of DNP-Enhanced MAS NMR Spectroscopy of Proteins in Detergent Micelles. ACS OMEGA 2023; 8:32963-32976. [PMID: 37720784 PMCID: PMC10500644 DOI: 10.1021/acsomega.3c04681] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/09/2023] [Indexed: 09/19/2023]
Abstract
Tremendous progress has been made in determining the structures of G-protein coupled receptors (GPCR) and their complexes in recent years. However, understanding activation and signaling in GPCRs is still challenging due to the role of protein dynamics in these processes. Here, we show how dynamic nuclear polarization (DNP)-enhanced magic angle spinning nuclear magnetic resonance in combination with a unique pair labeling approach can be used to study the conformational ensemble at specific sites of the cannabinoid receptor 2. To improve the signal-to-noise, we carefully optimized the DNP sample conditions and utilized the recently introduced AsymPol-POK as a polarizing agent. We could show qualitatively that the conformational space available to the protein backbone is different in different parts of the receptor and that a site in TM7 is sensitive to the nature of the ligand, whereas a site in ICL3 always showed large conformational freedom.
Collapse
Affiliation(s)
- Johanna Becker-Baldus
- Institute
of Biophysical Chemistry and Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Alexei Yeliseev
- National
Institute on Alcohol Abuse and Alcoholism, National Institutes of
Health, Bethesda, Maryland 20852, United States
| | - Thomas T. Joseph
- Department
of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Snorri Th. Sigurdsson
- Department
of Chemistry, Science Institute, University
of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Lioudmila Zoubak
- National
Institute on Alcohol Abuse and Alcoholism, National Institutes of
Health, Bethesda, Maryland 20852, United States
| | - Kirk Hines
- National
Institute on Alcohol Abuse and Alcoholism, National Institutes of
Health, Bethesda, Maryland 20852, United States
| | - Malliga R. Iyer
- Section
on Medicinal Chemistry, National Institute
on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland 20852, United States
| | - Arjen van den Berg
- ThermoFisher
Scientific, 7335 Executive
Way, Frederick, Maryland 21704, United States
| | - Sam Stepnowski
- ThermoFisher
Scientific, 7335 Executive
Way, Frederick, Maryland 21704, United States
| | - Jon Zmuda
- ThermoFisher
Scientific, 7335 Executive
Way, Frederick, Maryland 21704, United States
| | - Klaus Gawrisch
- National
Institute on Alcohol Abuse and Alcoholism, National Institutes of
Health, Bethesda, Maryland 20852, United States
| | - Clemens Glaubitz
- Institute
of Biophysical Chemistry and Centre of Biomolecular Magnetic Resonance, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
29
|
Brust CA, Swanson MA, Bohn LM. Structural and functional insights into the G protein-coupled receptors: CB1 and CB2. Biochem Soc Trans 2023; 51:1533-1543. [PMID: 37646476 PMCID: PMC10586759 DOI: 10.1042/bst20221316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 09/01/2023]
Abstract
The cannabinoid receptors CB1 and CB2 mediate a variety of physiological processes and continue to be explored as desirable drug targets. Both receptors are activated by the endogenous endocannabinoids and the psychoactive components of marijuana. Over the years, many efforts have been made to make selective ligands; however, the high degree of homology between cannabinoid receptor subtypes introduces challenges in studying either receptor in isolation. Recent advancements in structure biology have resulted in a surge of high-resolution structures, enriching our knowledge and understanding of receptor structure and function. In this review, of recent cannabinoid receptor structures, key features of the inactive and active state CB1 and CB2 are presented. These structures will provide additional insight into the modulation and signaling mechanism of cannabinoid receptors CB1 and CB2 and aid in the development of future therapeutics.
Collapse
Affiliation(s)
- Christina A. Brust
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, U.S.A
- The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, La Jolla, CA 92037, U.S.A
| | - Matthew A. Swanson
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, U.S.A
- The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, La Jolla, CA 92037, U.S.A
| | - Laura M. Bohn
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technology, Jupiter, FL 33458, U.S.A
- The Skaggs Graduate School of Chemical and Biological Sciences at Scripps Research, La Jolla, CA 92037, U.S.A
| |
Collapse
|
30
|
Zhang S, Wang F, Zhang D, Liu D, Ding W, Springer TA, Song G. Structural insights into MIC2 recognition by MIC2-associated protein in Toxoplasma gondii. Commun Biol 2023; 6:895. [PMID: 37652989 PMCID: PMC10471735 DOI: 10.1038/s42003-023-05277-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Microneme protein 2 (MIC2) and MIC2-associated protein (M2AP) play crucial roles in the gliding motility and host cell invasion of Toxoplasma gondii. Complex formation between MIC2 and M2AP is required for maturation and transport from the microneme to the parasite surface. Previous studies showed that M2AP associates with the 6th TSR domain of MIC2 (TSR6), but the detailed interaction remains unclear. In this study, we report crystal structures of M2AP alone and in complex with TSR6. TSR domains have an unusually thin, long structure with a layer of intercalated residues on one side. The non-layered side of TSR6 with hotspot residue His-620 at the center binds to M2AP. Remarkably, we show that TSR6 residue Y602 is dynamic; it equilibrates between being part of the layer (the layered state) and in a flipped-out state in the absence of M2AP. However, when bound to M2AP, Y602 shifts to the flipped-out state. Our findings provide insights into the association and stabilization of MIC2-M2AP complex, and may be used to develop new therapies to prevent infections caused by this parasite.
Collapse
Affiliation(s)
- Su Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Fangfang Wang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Dujuan Zhang
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, 201210, Shanghai, China
| | - Wei Ding
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
| | - Timothy A Springer
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, and Departments of Biological Chemistry and Molecular Pharmacology and of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Gaojie Song
- Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, 200241, Shanghai, China.
| |
Collapse
|
31
|
Dutta S, Shukla D. Distinct activation mechanisms regulate subtype selectivity of Cannabinoid receptors. Commun Biol 2023; 6:485. [PMID: 37147497 PMCID: PMC10163236 DOI: 10.1038/s42003-023-04868-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Design of cannabinergic subtype selective ligands is challenging because of high sequence and structural similarities of cannabinoid receptors (CB1 and CB2). We hypothesize that the subtype selectivity of designed selective ligands can be explained by the ligand binding to the conformationally distinct states between cannabinoid receptors. Analysis of ~ 700 μs of unbiased simulations using Markov state models and VAMPnets identifies the similarities and distinctions between the activation mechanism of both receptors. Structural and dynamic comparisons of metastable intermediate states allow us to observe the distinction in the binding pocket volume change during CB1 and CB2 activation. Docking analysis reveals that only a few of the intermediate metastable states of CB1 show high affinity towards CB2 selective agonists. In contrast, all the CB2 metastable states show a similar affinity for these agonists. These results mechanistically explain the subtype selectivity of these agonists by deciphering the activation mechanism of cannabinoid receptors.
Collapse
Affiliation(s)
- Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
32
|
Ekanayake KB, Mahawaththa MC, Qianzhu H, Abdelkader EH, George J, Ullrich S, Murphy RB, Fry SE, Johansen-Leete J, Payne RJ, Nitsche C, Huber T, Otting G. Probing Ligand Binding Sites on Large Proteins by Nuclear Magnetic Resonance Spectroscopy of Genetically Encoded Non-Canonical Amino Acids. J Med Chem 2023; 66:5289-5304. [PMID: 36920850 DOI: 10.1021/acs.jmedchem.3c00222] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
N6-(((trimethylsilyl)-methoxy)carbonyl)-l-lysine (TMSK) and N6-trifluoroacetyl-l-lysine (TFAK) are non-canonical amino acids, which can be installed in proteins by genetic encoding. In addition, we describe a new aminoacyl-tRNA synthetase specific for N6-(((trimethylsilyl)methyl)-carbamoyl)-l-lysine (TMSNK), which is chemically more stable than TMSK. Using the dimeric SARS-CoV-2 main protease (Mpro) as a model system with three different ligands, we show that the 1H and 19F nuclei of the solvent-exposed trimethylsilyl and CF3 groups produce intense signals in the nuclear magnetic resonance (NMR) spectrum. Their response to active-site ligands differed significantly when positioned near rather than far from the active site. Conversely, the NMR probes failed to confirm the previously reported binding site of the ligand pelitinib, which was found to enhance the activity of Mpro by promoting the formation of the enzymatically active dimer. In summary, the amino acids TMSK, TMSNK, and TFAK open an attractive path for site-specific NMR analysis of ligand binding to large proteins of limited stability and at low concentrations.
Collapse
Affiliation(s)
- Kasuni B Ekanayake
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Mithun C Mahawaththa
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Haocheng Qianzhu
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Elwy H Abdelkader
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| | - Josemon George
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Sven Ullrich
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Rhys B Murphy
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Sarah E Fry
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jason Johansen-Leete
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Richard J Payne
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Thomas Huber
- Research School of Chemistry, Australian National University, Acton, Canberra 2601, Australia
| | - Gottfried Otting
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Acton, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
33
|
Liu J, Wu XL, Zeng YT, Hu ZH, Lu JX. Solid-state NMR studies of amyloids. Structure 2023; 31:230-243. [PMID: 36750098 DOI: 10.1016/j.str.2023.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023]
Abstract
Amyloids have special structural properties and are involved in many aspects of biological function. In particular, amyloids are the cause or hallmarks of a group of notorious and incurable neurodegenerative diseases. The extraordinary high molecular weight and aggregation states of amyloids have posed a challenge for researchers studying them. Solid-state NMR (SSNMR) has been extensively applied to study the structures and dynamics of amyloids for the past 20 or more years and brought us tremendous progress in understanding their structure and related diseases. These studies, at the same time, helped to push SSNMR technical developments in sensitivity and resolution. In this review, some interesting research studies and important technical developments are highlighted to give the reader an overview of the current state of this field.
Collapse
Affiliation(s)
- Jing Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xia-Lian Wu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yu-Teng Zeng
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi-Heng Hu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jun-Xia Lu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
34
|
Moreau CJ, Audic G, Lemel L, García-Fernández MD, Nieścierowicz K. Interactions of cholesterol molecules with GPCRs in different states: A comparative analysis of GPCRs' structures. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184100. [PMID: 36521554 DOI: 10.1016/j.bbamem.2022.184100] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Affiliation(s)
| | - Guillaume Audic
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Laura Lemel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | | |
Collapse
|
35
|
Gong X, Zhang H, Shen Y, Fu X. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pyl Pair and Derivatives for Genetic Code Expansion. J Bacteriol 2023; 205:e0038522. [PMID: 36695595 PMCID: PMC9945579 DOI: 10.1128/jb.00385-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNAPyl. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNAPyl-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNAPyl-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNAPyl pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNAPyl pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNAPyl-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.
Collapse
Affiliation(s)
- Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| |
Collapse
|
36
|
Mattheisen JM, Wollowitz JS, Huber T, Sakmar TP. Genetic code expansion to enable site-specific bioorthogonal labeling of functional G protein-coupled receptors in live cells. Protein Sci 2023; 32:e4550. [PMID: 36540928 PMCID: PMC9847076 DOI: 10.1002/pro.4550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
For use in site-specific bioorthogonal labeling of expressed G protein-coupled receptors (GPCRs) in live cells, we developed a luciferase-based reporter assay. The assay was used to compare amber codon suppression efficiency, receptor functionality, and efficiency of different bioorthogonal labeling chemistries. We used the assay system to compare side-by-side the efficiency of incorporation of three different noncanonical amino acids [4-azido-l-phenylalanine (azF), cyclopropene-l-lysine (CpK), and trans-cyclooct-2-en-l-lysine (TCOK)] at three different sites on a GPCR using three different genetic code expansion plasmid systems. As a model GPCR, we engineered an epitope-tagged C-C chemokine receptor 5 (CCR5)-RLuc3 fusion for expression in HEK293T cells. Satisfactory incorporation of azF, CpK, and TCOK into heterologously expressed CCR5 was achieved. We also carried out cell-based calcium mobilization assays to measure the function of the engineered CCR5, and in the same cells, we performed bioorthogonal labeling of the engineered mutants using heterobivalent compounds containing bioorthogonal tethering groups linked to either a small-molecule fluorophore or a peptide. Favorable reaction kinetics of tetrazine-containing compounds with CCR5 harboring TCOK was observed. However, bioorthogonal labeling in live cells of CCR5 harboring CpK with tetrazine-containing compounds using the inverse electron demand Diels-Alder ligation was overall slightly more efficient than other reactions tested.
Collapse
Affiliation(s)
- Jordan M. Mattheisen
- Laboratory of Chemical Biology and Signal TransductionThe Rockefeller UniversityNew YorkNew YorkUSA
- Tri‐Institutional PhD Program in Chemical BiologyNew YorkNew YorkUSA
| | - Jaina S. Wollowitz
- Laboratory of Chemical Biology and Signal TransductionThe Rockefeller UniversityNew YorkNew YorkUSA
- Tri‐Institutional PhD Program in Chemical BiologyNew YorkNew YorkUSA
| | - Thomas Huber
- Laboratory of Chemical Biology and Signal TransductionThe Rockefeller UniversityNew YorkNew YorkUSA
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal TransductionThe Rockefeller UniversityNew YorkNew YorkUSA
| |
Collapse
|
37
|
Martinez Ramirez CE, Ruiz-Pérez G, Stollenwerk TM, Behlke C, Doherty A, Hillard CJ. Endocannabinoid signaling in the central nervous system. Glia 2023; 71:5-35. [PMID: 36308424 PMCID: PMC10167744 DOI: 10.1002/glia.24280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/02/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022]
Abstract
It is hard to overestimate the influence of the endocannabinoid signaling (ECS) system on central nervous system (CNS) function. In the 40 years since cannabinoids were found to trigger specific cell signaling cascades, studies of the ECS system continue to cause amazement, surprise, and confusion! CB1 cannabinoid receptors are expressed widely in the CNS and regulate cell-cell communication via effects on the release of both neurotransmitters and gliotransmitters. CB2 cannabinoid receptors are difficult to detect in the CNS but seem to "punch above their weight" as compounds targeting these receptors have significant effects on inflammatory state and behavior. Positive and negative allosteric modulators for both receptors have been identified and examined in preclinical studies. Concentrations of the endocannabinoid ligands, N-arachidonoylethanolamine and 2-arachidonoylglycerol (2-AG), are regulated by a combination of enzymatic synthesis and degradation and inhibitors of these processes are available and making their way into clinical trials. Importantly, ECS regulates many essential brain functions, including regulation of reward, anxiety, inflammation, motor control, and cellular development. While the field is on the cusp of preclinical discoveries providing impactful clinical and therapeutic insights into many CNS disorders, there is still much to be learned about this remarkable and versatile modulatory system.
Collapse
Affiliation(s)
- César E Martinez Ramirez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Gonzalo Ruiz-Pérez
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Todd M Stollenwerk
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Christina Behlke
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Ashley Doherty
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Cecilia J Hillard
- Neuroscience Research Center and Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| |
Collapse
|
38
|
Wang Y, Cai W, Han B, Liu T. Protein Expression with Biosynthesized Noncanonical Amino Acids. Methods Mol Biol 2023; 2676:87-100. [PMID: 37277626 DOI: 10.1007/978-1-0716-3251-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Natural proteins are normally made by 20 canonical amino acids. Genetic code expansion (GCE) enables incorporation of diverse chemically synthesized noncanonical amino acids (ncAAs) by orthogonal aminoacyl-tRNA synthetase (aaRS)/tRNA pairs using nonsense codons, which could significantly expand new functionalities of proteins in both scientific and biomedical applications. Here, by hijacking the cysteine biosynthetic enzymes, we describe a method combining amino acid biosynthesis and GCE to introduce around 50 structurally novel ncAAs into proteins by supplementation of commercially available aromatic thiol precursors, thus eliminating the need to chemically synthesize these ncAAs. A screening method is also provided for improving the incorporation efficiency of a particular ncAA. Furthermore, we demonstrate bioorthogonal groups, such as azide and ketone, that are compatible with our system and can be easily introduced into protein for subsequent site-specific labeling.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wenkang Cai
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Boyang Han
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China
| | - Tao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, Department of Molecular and Cellular Pharmacology, Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
39
|
Díaz O, Renault P, Giraldo J. Evaluating Allosteric Perturbations in Cannabinoid Receptor 1 by In Silico Single-Point Mutation. ACS OMEGA 2022; 7:37873-37884. [PMID: 36312415 PMCID: PMC9608382 DOI: 10.1021/acsomega.2c04980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Cannabinoid receptor 1 (CB1) is a promising drug target involved in many physiological processes. Using atomistic molecular dynamics (MD) simulations, we examined the structural effect of F237L mutation on CB1, a mutation that has qualitatively similar effects to allosteric ligand ORG27569 binding. This mutation showed a global effect on CB1 conformations. Among the observed effects, TM6 outward movement and the conformational change of the NPxxY motif upon receptor activation by CB1 agonist CP55940 were hindered compared to wt CB1. Within the orthosteric binding site, CP55940 interactions with CB1 were altered. Our results revealed that allosteric perturbations introduced by the mutation had a global impact on receptor conformations, suggesting that the mutation site is a key region for allosteric modulation in CB1.
Collapse
Affiliation(s)
- Oscar Díaz
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Pedro Renault
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| | - Jesús Giraldo
- Laboratory
of Molecular Neuropharmacology and Bioinformatics, Unitat de Bioestadística
and Institut de Neurociències, Universitat
Autònoma de Barcelona, Bellaterra 08193, Spain
- Instituto
de Salud Carlos III, Centro de Investigación
Biomédica en Red de Salud Mental (CIBERSAM), Madrid 28029, Spain
- Unitat
de Neurociència Traslacional, Parc Taulí Hospital Universitari,
Institut d’Investigació i Innovació Parc Taulí
(I3PT), Institut de Neurociències, Universitat Autònoma de Barcelona, Bellaterra 08193, Spain
| |
Collapse
|
40
|
Stasiulewicz A, Lesniak A, Setny P, Bujalska-Zadrożny M, Sulkowska JI. Identification of CB1 Ligands among Drugs, Phytochemicals and Natural-Like Compounds: Virtual Screening and In Vitro Verification. ACS Chem Neurosci 2022; 13:2991-3007. [PMID: 36197801 PMCID: PMC9585589 DOI: 10.1021/acschemneuro.2c00502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Cannabinoid receptor type 1 (CB1) is an important modulator of many key physiological functions and thus a compelling molecular target. However, safe CB1 targeting is a non-trivial task. In recent years, there has been a surge of data indicating that drugs successfully used in the clinic for years (e.g. paracetamol) show CB1 activity. Moreover, there is a lot of promise in finding CB1 ligands in plants other than Cannabis sativa. In this study, we searched for possible CB1 activity among already existing drugs, their metabolites, phytochemicals, and natural-like molecules. We conducted two iterations of virtual screening, verifying the results with in vitro binding and functional assays. The in silico procedure consisted of a wide range of structure- and ligand-based methods, including docking, molecular dynamics, and quantitative structure-activity relationship (QSAR). As a result, we identified travoprost and ginkgetin as CB1 ligands, which provides a starting point for future research on the impact of their metabolites or preparations on the endocannabinoid system. Moreover, we found five natural-like compounds with submicromolar or low micromolar affinity to CB1, including one mixed partial agonist/antagonist viable for hit-to-lead phase. Finally, the computational procedure established in this work will be of use for future screening campaigns for novel CB1 ligands.
Collapse
Affiliation(s)
- Adam Stasiulewicz
- Department
of Drug Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland,Centre of
New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Anna Lesniak
- Department
of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Piotr Setny
- Centre of
New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland
| | - Magdalena Bujalska-Zadrożny
- Department
of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Joanna I. Sulkowska
- Centre of
New Technologies, University of Warsaw, Banacha 2c, 02-097 Warsaw, Poland,
| |
Collapse
|
41
|
Ye L, Wang X, McFarland A, Madsen JJ. 19F NMR: A promising tool for dynamic conformational studies of G protein-coupled receptors. Structure 2022; 30:1372-1384. [PMID: 36130592 DOI: 10.1016/j.str.2022.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 07/31/2022] [Accepted: 08/23/2022] [Indexed: 10/14/2022]
Abstract
Advances in X-ray crystallography and cryoelectron microscopy enabled unprecedented insights into the activation processes of G protein-coupled receptors (GPCRs). However, these static receptor structures provide limited information about dynamics and conformational transitions that play pivotal roles in mediating signaling diversity through the multifaceted interactions between ligands, receptors, and transducers. Developing NMR approaches to probe the dynamics of conformational transitions will push the frontier of receptor science toward a more comprehensive understanding of these signaling processes. Although much progress has been made during the last decades, it remains challenging to delineate receptor conformational states and interrogate the functions of the individual states at a quantitative level. Here we cover the progress of 19F NMR applications in GPCR conformational and dynamic studies during the past 20 years. Current challenges and limitations of 19F NMR for studying GPCR dynamics are also discussed, along with experimental strategies that will drive this field forward.
Collapse
Affiliation(s)
- Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA; H. Lee Moffitt Cancer Center & Research Institute, 12902 USF Magnolia Drive, Tampa, FL 33612, USA.
| | - Xudong Wang
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Aidan McFarland
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL 33620, USA
| | - Jesper J Madsen
- Global and Planetary Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
42
|
Yang L, Liu D, Wüthrich K. GPCR structural characterization by NMR spectroscopy in solution. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1207-1212. [PMID: 36017890 PMCID: PMC9828178 DOI: 10.3724/abbs.2022106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the human proteome, 826 G-protein-coupled receptors (GPCRs) interact with extracellular stimuli to initiate cascades of intracellular signaling. Determining conformational dynamics and intermolecular interactions are key to understand GPCR function as a basis for drug design. X-ray crystallography and cryo-electron microscopy (cryo-EM) contribute molecular architectures of GPCRs and GPCR-signaling complexes. NMR spectroscopy is complementary by providing information on the dynamics of GPCR structures at physiological temperature. In this review, several NMR approaches in use to probe GPCR dynamics and intermolecular interactions are discussed. The topics include uniform stable-isotope labeling, amino acid residue-selective stable-isotope labeling, site-specific labeling by genetic engineering, the introduction of 19F-NMR probes, and the use of paramagnetic nitroxide spin labels. The unique information provided by NMR spectroscopy contributes to our understanding of GPCR biology and thus adds to the foundations for rational drug design.
Collapse
Affiliation(s)
- Lingyun Yang
- iHuman InstituteShanghaiTech UniversityShanghai201210China
| | - Dongsheng Liu
- iHuman InstituteShanghaiTech UniversityShanghai201210China,Correspondence address. Tel: +86-21-20685124; E-mail:
| | - Kurt Wüthrich
- iHuman InstituteShanghaiTech UniversityShanghai201210China,Department of Integrative Structural and Computational BiologyScripps ResearchLa JollaCA92037USA,Institute of Molecular Biology and BiophysicsETH ZürichOtto-Stern-Weg 58093ZürichSwitzerland
| |
Collapse
|
43
|
Liauw BWH, Foroutan A, Schamber MR, Lu W, Samareh Afsari H, Vafabakhsh R. Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2. eLife 2022; 11:e78982. [PMID: 35775730 PMCID: PMC9299836 DOI: 10.7554/elife.78982] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed fluorescence resonance energy transfer (FRET) sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM (egative allosteric modulator) increases the occupancy of one of the intermediate states while a positive allosteric modulator increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.
Collapse
Affiliation(s)
| | - Arash Foroutan
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Michael R Schamber
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Weifeng Lu
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Hamid Samareh Afsari
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| | - Reza Vafabakhsh
- Department of Molecular Biosciences, Northwestern UniversityEvanstonUnited States
| |
Collapse
|
44
|
Tian R, Yin J, Yao Q, Wang T, Chen J, Liang Q, Li Q, Zhao X. Development of an Allostery Responsive Chromatographic Method for Screening Potential Allosteric Modulator of Beta2-adrenoceptor from a Natural Product-Derived DNA-Encoded Chemical Library. Anal Chem 2022; 94:9048-9057. [PMID: 35695812 DOI: 10.1021/acs.analchem.2c01210] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Allosteric ligands are promising drugs owing to their remote regulations of the orthosteric ligand signaling pathway. There are few allosteric ligands due to the lack of handy and efficacious method for the screening. Herein, we developed an affinity chromatographic method for allosteric ligand screening by immobilizing purified beta2 adrenoceptor (β2-AR) onto macroporous silica gel by a two-point tethering method. The method relies on the occupation of the orthosteric site by an antagonist and the chelation of N-terminal His-tag of the receptor and Ni2+ coated on the gel. The immobilized β2-AR demonstrated the greatest allosteric responsive feature when Cmpd-15 (0.25 μM) was included in the mobile phase. Under the same conditions, the association constants of three agonists (salbutamol, terbutaline, and tulobuterol) reduced to 47%, 19%, and 27% compared with the data without the inclusion of Cmpd-15 in the mobile phase. APF was screened as a potential allosteric modulator of β2-AR by applying the immobilized receptor in a natural product-derived DNA-encoded chemical library (DEL). Relying on these results, we reasoned that the current method has potential in screening allosteric ligands of the receptor. We expect that it is applicable for the discovery of new allosteric binding sites of a target protein and screening allosteric modulators of the other receptors from complex samples.
Collapse
Affiliation(s)
- Rui Tian
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jiatai Yin
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qingqing Yao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Taotao Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jiahuan Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qi Liang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| |
Collapse
|
45
|
Clark ET, Sievers EE, Debelouchina GT. A Chemical Biology Primer for NMR Spectroscopists. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100044. [PMID: 35494416 PMCID: PMC9053072 DOI: 10.1016/j.jmro.2022.100044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Among structural biology techniques, NMR spectroscopy offers unique capabilities that enable the atomic resolution studies of dynamic and heterogeneous biological systems under physiological and native conditions. Complex biological systems, however, often challenge NMR spectroscopists with their low sensitivity, crowded spectra or large linewidths that reflect their intricate interaction patterns and dynamics. While some of these challenges can be overcome with the development of new spectroscopic approaches, chemical biology can also offer elegant and efficient solutions at the sample preparation stage. In this tutorial, we aim to present several chemical biology tools that enable the preparation of selectively and segmentally labeled protein samples, as well as the introduction of site-specific spectroscopic probes and post-translational modifications. The four tools covered here, namely cysteine chemistry, inteins, native chemical ligation, and unnatural amino acid incorporation, have been developed and optimized in recent years to be more efficient and applicable to a wider range of proteins than ever before. We briefly introduce each tool, describe its advantages and disadvantages in the context of NMR experiments, and offer practical advice for sample preparation and analysis. We hope that this tutorial will introduce beginning researchers in the field to the possibilities chemical biology can offer to NMR spectroscopists, and that it will inspire new and exciting applications in the quest to understand protein function in health and disease.
Collapse
Affiliation(s)
- Evan T. Clark
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Elanor E. Sievers
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, Division of Physical Sciences, University of California, San Diego, La Jolla, CA 92093, U.S.A
- Corresponding author: Galia Debelouchina, University of California, San Diego, Natural Sciences Building 4322, 9500 Gilman Dr., La Jolla, CA 92093, 858-534-3038,
| |
Collapse
|
46
|
Liddle I, Glass M, Tyndall JDA, Vernall AJ. Covalent cannabinoid receptor ligands - structural insight and selectivity challenges. RSC Med Chem 2022; 13:497-510. [PMID: 35694688 PMCID: PMC9132230 DOI: 10.1039/d2md00006g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/31/2022] [Indexed: 11/21/2022] Open
Abstract
X-ray crystallography and cryogenic electronic microscopy have provided significant advancement in the knowledge of GPCR structure and have allowed the rational design of GPCR ligands. The class A GPCRs cannabinoid receptor type 1 and type 2 are implicated in many pathophysiological processes and thus rational design of drug and tool compounds is of great interest. Recent structural insight into cannabinoid receptors has already led to a greater understanding of ligand binding sites and receptor residues that likely contribute to ligand selectivity. Herein, classes of heterocyclic covalent cannabinoid receptor ligands are reviewed in light of the recent advances in structural knowledge of cannabinoid receptors, with particular discussion regarding covalent ligand selectivity and rationale design.
Collapse
Affiliation(s)
- Ian Liddle
- Department of Chemistry, University of Otago Dunedin New Zealand +64 3 479 5214
| | - Michelle Glass
- Department of Pharmacology and Toxicology, University of Otago Dunedin New Zealand
| | | | - Andrea J Vernall
- Department of Chemistry, University of Otago Dunedin New Zealand +64 3 479 5214
| |
Collapse
|
47
|
Laurents DV. AlphaFold 2 and NMR Spectroscopy: Partners to Understand Protein Structure, Dynamics and Function. Front Mol Biosci 2022; 9:906437. [PMID: 35655760 PMCID: PMC9152297 DOI: 10.3389/fmolb.2022.906437] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 04/25/2022] [Indexed: 11/29/2022] Open
Abstract
The artificial intelligence program AlphaFold 2 is revolutionizing the field of protein structure determination as it accurately predicts the 3D structure of two thirds of the human proteome. Its predictions can be used directly as structural models or indirectly as aids for experimental structure determination using X-ray crystallography, CryoEM or NMR spectroscopy. Nevertheless, AlphaFold 2 can neither afford insight into how proteins fold, nor can it determine protein stability or dynamics. Rare folds or minor alternative conformations are also not predicted by AlphaFold 2 and the program does not forecast the impact of post translational modifications, mutations or ligand binding. The remaining third of human proteome which is poorly predicted largely corresponds to intrinsically disordered regions of proteins. Key to regulation and signaling networks, these disordered regions often form biomolecular condensates or amyloids. Fortunately, the limitations of AlphaFold 2 are largely complemented by NMR spectroscopy. This experimental approach provides information on protein folding and dynamics as well as biomolecular condensates and amyloids and their modulation by experimental conditions, small molecules, post translational modifications, mutations, flanking sequence, interactions with other proteins, RNA and virus. Together, NMR spectroscopy and AlphaFold 2 can collaborate to advance our comprehension of proteins.
Collapse
|
48
|
G Protein-coupled Receptor (GPCR) Reconstitution and Labeling for Solution Nuclear Magnetic Resonance (NMR) Studies of the Structural Basis of Transmembrane Signaling. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092658. [PMID: 35566006 PMCID: PMC9101874 DOI: 10.3390/molecules27092658] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/14/2022] [Accepted: 04/14/2022] [Indexed: 11/17/2022]
Abstract
G protein-coupled receptors (GPCRs) are a large membrane protein family found in higher organisms, including the human body. GPCRs mediate cellular responses to diverse extracellular stimuli and thus control key physiological functions, which makes them important targets for drug design. Signaling by GPCRs is related to the structure and dynamics of these proteins, which are modulated by extrinsic ligands as well as by intracellular binding partners such as G proteins and arrestins. Here, we review some basics of using nuclear magnetic resonance (NMR) spectroscopy in solution for the characterization of GPCR conformations and intermolecular interactions that relate to transmembrane signaling.
Collapse
|
49
|
GPCR large-amplitude dynamics by 19F-NMR of aprepitant bound to the neurokinin 1 receptor. Proc Natl Acad Sci U S A 2022; 119:e2122682119. [PMID: 35377814 PMCID: PMC9169749 DOI: 10.1073/pnas.2122682119] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Comparisons of G protein-coupled receptor (GPCR) complexes with agonists and antagonists based on X-ray crystallography and cryo-electron microscopy structure determinations show differences in the width of the orthosteric ligand binding groove over the range from 0.3 to 2.9 Å. Here, we show that there are transient structure fluctuations with amplitudes up to at least 6 Å. The experiments were performed with the neurokinin 1 receptor (NK1R), a GPCR of class A that is involved in inflammation, pain, and cancer. We used 19F-NMR observation of aprepitant, which is an approved drug that targets NK1R for the treatment of chemotherapy-induced nausea and vomiting. Aprepitant includes a bis-trifluoromethyl-phenyl ring attached with a single bond to the core of the molecule; 19F-NMR revealed 180° flipping motions of this ring about this bond. In the picture emerging from the 19F-NMR data, the GPCR transmembrane helices undergo large-scale floating motions in the lipid bilayer. The functional implication is of extensive promiscuity of initial ligand binding, primarily determined by size and shape of the ligand, with subsequent selection by unique interactions between atom groups of the ligand and the GPCR within the binding groove. This second step ensures the wide range of different efficacies documented for GPCR-targeting drugs. The NK1R data also provide a rationale for the observation that diffracting GPCR crystals are obtained for complexes with only very few of the ligands from libraries of approved drugs and lead compounds that bind to the receptors.
Collapse
|
50
|
Abstract
In-cell structural biology aims at extracting structural information about proteins or nucleic acids in their native, cellular environment. This emerging field holds great promise and is already providing new facts and outlooks of interest at both fundamental and applied levels. NMR spectroscopy has important contributions on this stage: It brings information on a broad variety of nuclei at the atomic scale, which ensures its great versatility and uniqueness. Here, we detail the methods, the fundamental knowledge, and the applications in biomedical engineering related to in-cell structural biology by NMR. We finally propose a brief overview of the main other techniques in the field (EPR, smFRET, cryo-ET, etc.) to draw some advisable developments for in-cell NMR. In the era of large-scale screenings and deep learning, both accurate and qualitative experimental evidence are as essential as ever to understand the interior life of cells. In-cell structural biology by NMR spectroscopy can generate such a knowledge, and it does so at the atomic scale. This review is meant to deliver comprehensive but accessible information, with advanced technical details and reflections on the methods, the nature of the results, and the future of the field.
Collapse
Affiliation(s)
- Francois-Xavier Theillet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|