1
|
Yan X, Pang Y, Niu K, Hu B, Zhu Z, Tan Z, Lei H. Wearable Sensors for Plants: Status and Prospects. BIOSENSORS 2025; 15:53. [PMID: 39852104 PMCID: PMC11763792 DOI: 10.3390/bios15010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/10/2025] [Accepted: 01/13/2025] [Indexed: 01/26/2025]
Abstract
The increasing demand for smart agriculture has led to the development of agricultural sensor technology. Wearable sensors show great potential for monitoring the physiological and surrounding environmental information for plants due to their high flexibility, biocompatibility, and scalability. However, wearable sensors for plants face several challenges that hinder their large-scale practical application. In this review, we summarize the current research status of wearable plant sensors by analyzing the classification, working principles, sensor materials, and structural design and discussing the multifunctional applications. More importantly, we comment on the challenges the wearable plant sensors face and provide our perspectives on further improving the sensitivity, reliability, and stability of wearable plant sensors for future smart agriculture.
Collapse
Affiliation(s)
- Xuexin Yan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.)
| | - Yawen Pang
- College of Physics and Optoelectronic Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| | - Kaiwen Niu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.)
| | - Bowen Hu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.)
| | - Zhengbo Zhu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.)
| | - Zuojun Tan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.)
| | - Hongwei Lei
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; (X.Y.)
| |
Collapse
|
2
|
Chen J, Feng J, Xu P, Yin Y. Magnetoplasmonic Triblock Nanorods for Collective Linear Dichroism. J Am Chem Soc 2024; 146:31205-31212. [PMID: 39470990 DOI: 10.1021/jacs.4c11377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Polarized light detection is crucial for advancements in optical imaging, positioning, and obstacle avoidance systems. While optical nanomaterials sensitive to polarization are well-established, the ability to align these materials remains a significant challenge. Here, we introduce Au-Fe3O4-Au triblock nanorods as a novel solution. Synthesized via a space-confined seeded growth method, these magnetoplasmonic nanocomposites uniquely combine the strong polarization capabilities of Au nanorods with the magnetic alignment properties of Fe3O4 nanorods. This architecture results in exceptional collective linear dichroism, achieving a polarization ratio of approximately 14 at the device level. Our nanorods exhibit high detection sensitivity and laser damage resistance, positioning them as a promising platform for developing advanced optical devices.
Collapse
Affiliation(s)
- Jinxing Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Ji Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Panpan Xu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
3
|
Cao A, Gong Y, Liu D, Yang F, Fan Y, Guo Y, Tian X, Li Y. Rapid fabrication of gold microsphere arrays with stable deep-pressing anisotropic conductivity for advanced packaging. Nat Commun 2024; 15:9182. [PMID: 39448579 PMCID: PMC11502786 DOI: 10.1038/s41467-024-53407-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Smooth metal microspheres with uniform sizes are ideal for constructing particle-arrayed anisotropic conductive films (ACF), but synthesis is hindered by challenges in controlling anisotropic metal growth. Here, we present a positioned transient-emulsion self-assembly and laser-irradiation strategy to fabricate pure gold microsphere arrays with smooth surfaces and uniform sizes. The fabrication involves assembling gold nanoparticles into uniform colloidosomes within a pre-designed microhole array, followed by rapid transformation into well-defined microspheres through laser heating. The gold nanoparticles melt and merge in a layer-by-layer manner due to the finite skin depth of the laser, leading to a localized photothermal effect. This strategy circumvents anisotropic growth, enables tunable control of microsphere size and positioning, and is compatible with conventional lithography. Importantly, these pure gold microspheres exhibit stable conductivity under deep compression, offering promising applications in soldering micro-sized chips onto integrated circuits.
Collapse
Affiliation(s)
- An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
| | - Yi Gong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
- China-Europe Electronic Materials International Innovation Center, Hefei, PR China
| | - Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China.
| | - Fan Yang
- Tiangong University, Tianjin, PR China
| | - Yulong Fan
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, PR China.
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, PR China.
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area (Guangdong), Shenzhen, PR China.
| | - Yinghui Guo
- National Key Laboratory of Optical Field Manipulation Science and Technology, Chinese Academy of Sciences, Chengdu, PR China
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu, PR China
| | - Xingyou Tian
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, PR China.
- Tiangong University, Tianjin, PR China.
| |
Collapse
|
4
|
Ye Z, Chen C, Cao L, Cai Z, Xu C, Kim HI, Giraldo JP, Kanaras AG, Yin Y. Reversible Modulation of Plasmonic Coupling of Gold Nanoparticles Confined within Swellable Polymer Colloidal Spheres. Angew Chem Int Ed Engl 2024; 63:e202408020. [PMID: 38845451 DOI: 10.1002/anie.202408020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Indexed: 07/21/2024]
Abstract
Dynamic optical modulation in response to stimuli provides exciting opportunities for designing novel sensing, actuating, and authentication devices. Here, we demonstrate that the reversible swelling and deswelling of crosslinked polymer colloidal spheres in response to pH and temperature changes can be utilized to drive the assembly and disassembly of the embedded gold nanoparticles (AuNPs), inducing their plasmonic coupling and decoupling and, correspondingly, color changes. The multi-responsive colloids are created by depositing a monolayer of AuNPs on the surface of resorcinol-formaldehyde (RF) nanospheres, then overcoating them with an additional RF layer, followed by a seeded growth process to enlarge the AuNPs and reduce their interparticle separation to induce significant plasmonic coupling. This configuration facilitates dynamic modulation of plasmonic coupling through the reversible swelling/deswelling of the polymer spheres in response to pH and temperature changes. The rapid and repeatable transitions between coupled and decoupled plasmonic states of AuNPs enable reversible color switching when the polymer spheres are in colloidal form or embedded in hydrogel substrates. Furthermore, leveraging the photothermal effect and stimuli-responsive plasmonic coupling of the embedded AuNPs enables the construction of hybrid hydrogel films featuring switchable anticounterfeiting patterns, showcasing the versatility and potential of this multi-stimuli-responsive plasmonic system.
Collapse
Affiliation(s)
- Zuyang Ye
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Chen Chen
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Licheng Cao
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Zepeng Cai
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Xu
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| | - Hye-In Kim
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Juan Pablo Giraldo
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Antonios G Kanaras
- School of Physics and Astronomy, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO171BJ, UK
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
5
|
Liang T, Li Z, Bai Y, Yin Y. Dichroic switching of core-shell plasmonic nanoparticles on reflective surfaces. EXPLORATION (BEIJING, CHINA) 2024; 4:20210234. [PMID: 38939865 PMCID: PMC11189573 DOI: 10.1002/exp.20210234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 06/29/2024]
Abstract
Plasmonic metal nanostructures can simultaneously scatter and absorb light, with resonance wavelength and strength depending on their morphology and composition. This work demonstrates that unique dichroic effects and high-contrast colour-switching can be achieved by leveraging the resonant scattering and absorption of light by plasmonic nanostructures and the specular reflection of the resulting transmitted light. Using core/shell nanostructures comprising a metal core and a dielectric shell, we show that their spray coating on reflective substrates produces dichroic films that can display colour switching at different viewing angles. The high-contrast colour switching, high flexibility in designing multicolour patterns, and convenience for large-scale production promise their wide range of applications, including anticounterfeiting, mechanochromic sensing, colour display, and printing.
Collapse
Affiliation(s)
- Tian Liang
- Hubei Key Laboratory of Radiation Chemistry and Functional MaterialsSchool of Nuclear Technology and Chemistry & BiologyHubei University of Science and TechnologyXianningChina
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Zhiwei Li
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Yaocai Bai
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| | - Yadong Yin
- Department of ChemistryUniversity of CaliforniaRiversideCaliforniaUSA
| |
Collapse
|
6
|
Liu S, Ye Z, Yin Y. Seeded Growth of Plasmonic Nanostructures in Deformable Polymer Confinement. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:8760-8770. [PMID: 38641343 DOI: 10.1021/acs.langmuir.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Plasmonic nanostructures exhibit optical properties highly related to their morphologies, enabling diverse applications in various areas such as biosensing, bioimaging, chemical detection, cancer therapy, and solar energy conversion. The expansive uses of these nanostructures necessitate robust and versatile synthesis methods suitable for large-scale production. Here, we introduce our recent efforts in developing a new strategy for controlling the seeded growth of plasmonic metal nanostructures, employing deformable polymer capsules to regulate the growth kinetics and the resulting particle morphology. Employing sol-gel-derived resorcinol-formaldehyde (RF) resin as a typical capsule material, we highlight its advanced features, including mechanical deformability and molecular permeability, that can be manipulated by tuning the capsule thickness and cross-linking degree. These features enable highly controllable confined seeded growth of plasmonic nanostructures. We reveal the significant role of the Ostwald ripening process of the seeds and the capsule structures in determining the morphological evolution of the plasmonic nanostructures. Moreover, we highlight some distinctive plasmonic nanostructures resulting from this unique synthesis strategy and their intriguing functionalities in various potential applications. Our discussion concludes with potential research directions to advance the development of the deformable polymer-confined seeded growth strategy into a general and robust synthesis platform for creating cutting-edge functional plasmonic nanostructures.
Collapse
Affiliation(s)
- Sangmo Liu
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Li Z, Fan Q, Ye Z, Wu C, Wang Z, Yin Y. A magnetic assembly approach to chiral superstructures. Science 2023; 380:1384-1390. [PMID: 37384698 DOI: 10.1126/science.adg2657] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/22/2023] [Indexed: 07/01/2023]
Abstract
Colloidal assembly into chiral superstructures is usually accomplished with templating or lithographic patterning methods that are only applicable to materials with specific compositions and morphologies over narrow size ranges. Here, chiral superstructures can be rapidly formed by magnetically assembling materials of any chemical compositions at all scales, from molecules to nano- and microstructures. We show that a quadrupole field chirality is generated by permanent magnets caused by consistent field rotation in space. Applying the chiral field to magnetic nanoparticles produces long-range chiral superstructures controlled by field strength at the samples and orientation of the magnets. Transferring the chirality to any achiral molecules is enabled by incorporating guest molecules such as metals, polymers, oxides, semiconductors, dyes, and fluorophores into the magnetic nanostructures.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chaolumen Wu
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Zhongxiang Wang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Chen M, Chen XT, Zhang LY, Meng W, Chen YJ, Zhang YS, Chen ZC, Wang HM, Luo CM, Shi XD, Zhang WH, Wang MS, Chen JX. Kinetically and thermodynamically controlled one-pot growth of gold nanoshells with NIR-II absorption for multimodal imaging-guided photothermal therapy. J Nanobiotechnology 2023; 21:138. [PMID: 37106405 PMCID: PMC10141956 DOI: 10.1186/s12951-023-01907-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Since the successful clinical trial of AuroShell for photothermal therapy, there is currently intense interest in developing gold-based core-shell structures with near-infrared (NIR) absorption ranging from NIR-I (650-900 nm) to NIR-II (900-1700 nm). Here, we propose a seed-mediated successive growth approach to produce gold nanoshells on the surface of the nanoscale metal-organic framework (NMOF) of UiO-66-NH2 (UiO = the University of Oslo) in one pot. The key to this strategy is to modulate the proportion of the formaldehyde (reductant) and its regulator / oxidative product of formic acid to harness the particle nucleation and growth rate within the same system. The gold nanoshells propagate through a well-oriented and controllable diffusion growth pattern (points → facets → octahedron), which has not been identified. Most strikingly, the gold nanoshells prepared hereby exhibit an exceedingly broad and strong absorption in NIR-II with a peak beyond 1300 nm and outstanding photothermal conversion efficiency of 74.0%. Owing to such superior performance, these gold nanoshells show promising outcomes in photoacoustic (PA), computed tomography (CT), and photothermal imaging-guided photothermal therapy (PTT) for breast cancer, as demonstrated both in vitro and in vivo.
Collapse
Affiliation(s)
- Ming Chen
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Xiao-Tong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lian-Ying Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wei Meng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yong-Jian Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ying-Shan Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhi-Cong Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hui-Min Wang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Chun-Mei Luo
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Xiu-Dong Shi
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wen-Hua Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Mao-Sheng Wang
- The People's Hospital of Gaozhou, Maoming, 525200, China
| | - Jin-Xiang Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
9
|
Wang L, Li Z. Smart Nanostructured Materials for SARS-CoV-2 and Variants Prevention, Biosensing and Vaccination. BIOSENSORS 2022; 12:1129. [PMID: 36551096 PMCID: PMC9775677 DOI: 10.3390/bios12121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has raised great concerns about human health globally. At the current stage, prevention and vaccination are still the most efficient ways to slow down the pandemic and to treat SARS-CoV-2 in various aspects. In this review, we summarize current progress and research activities in developing smart nanostructured materials for COVID-19 prevention, sensing, and vaccination. A few established concepts to prevent the spreading of SARS-CoV-2 and the variants of concerns (VOCs) are firstly reviewed, which emphasizes the importance of smart nanostructures in cutting the virus spreading chains. In the second part, we focus our discussion on the development of stimuli-responsive nanostructures for high-performance biosensing and detection of SARS-CoV-2 and VOCs. The use of nanostructures in developing effective and reliable vaccines for SARS-CoV-2 and VOCs will be introduced in the following section. In the conclusion, we summarize the current research focus on smart nanostructured materials for SARS-CoV-2 treatment. Some existing challenges are also provided, which need continuous efforts in creating smart nanostructured materials for coronavirus biosensing, treatment, and vaccination.
Collapse
Affiliation(s)
- Lifeng Wang
- Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou 215000, China
| | - Zhiwei Li
- Department of Chemistry, International Institute of Nanotechnology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|
10
|
Qiao M, Xing Y, Xie L, Kong B, Kleitz F, Li X, Du X. Temperature-Regulated Core Swelling and Asymmetric Shrinkage for Tunable Yolk@Shell Polydopamine@Mesoporous Silica Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205576. [PMID: 36399632 DOI: 10.1002/smll.202205576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Facile and controllable synthesis of functional yolk@shell structured nanospheres with a tunable inner core ('yolk') and mesoporous shell is highly desirable, yet it remains a great challenge. Herein, xx developed a strategy based on temperature-regulated swelling and restricted asymmetric shrinkage of polydopamine (PDA) nanospheres, combined with heterogeneous interface self-assembly growth. This method allows a simple and versatile preparation of PDA@mesoporous silica (MS) nanospheres exhibiting tunable yolk@shell architectures and shell pore sizes. Through reaction temperature-regulated swelling degree and confined shrinkage of PDA nanospheres, the volume ratio of the hollow cavity that the PDA core occupies can easily be tuned from ca. 2/3 to ca. 1/2, then to ca. 2/5, finally to ca. 1/3. Owing to the presence of PDA with excellent photothermal conversion capacity, the PDA@MS nanocomposites with asymmetric yolk distributions can become a colloidal nanomotor propelled by near-infrared (NIR) light. Noteworthily, the PDA@MS with half PDA yolk and microcracks in silica shell reaches 2.18 µm2 s-1 of effective diffusion coefficient (De) in the presence of 1.0 W cm-2 NIR light. This temperature-controlled swelling approach may provide new insight into the design and facile preparation of functional PDA-based yolk@shell structured nanocomposites for wide applications in biology and medicine.
Collapse
Affiliation(s)
- Minghang Qiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Yi Xing
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| | - Lei Xie
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Biao Kong
- Department of Chemistry, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, Shanghai, 200438, P. R. China
| | - Freddy Kleitz
- Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Vienna, 1090, Austria
| | - Xiaoyu Li
- National Engineering Research Center of green recycling for Strategic Metal Resources, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academic of Sciences, University of Chinese Academic of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Du
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing, 100083, China
| |
Collapse
|
11
|
Zhong L, Li J, Zu B, Zhu X, Lei D, Wang G, Hu X, Zhang T, Dou X. Highly Retentive, Anti-Interference, and Covert Individual Marking Taggant with Exceptional Skin Penetration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201497. [PMID: 35748174 PMCID: PMC9443463 DOI: 10.1002/advs.202201497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Indexed: 06/15/2023]
Abstract
The development of high-performance individual marking taggants is of great significance. However, the interaction between taggant and skin is not fully understood, and a standard for marking taggants has yet to be realized. To achieve a highly retentive, anti-interference, and covert individual marking fluorescent taggant, Mn2+ -doped NaYF4 :Yb/Er upconversion nanoparticles (UCNPs), are surface-functionalized with polyethyleneimine (PEI) to remarkably enhance the interaction between the amino groups and skin, and thus to facilitate the surface adhesion and chemical penetration of the taggant. Electrostatic interaction between PEI600 -UCNPs and skin as well as remarkable penetration inside the epidermis is responsible for excellent taggant retention capability, even while faced with robust washing, vigorous wiping, and rubbing for more than 100 cycles. Good anti-interference capability and reliable marking performance in real cases are ensured by an intrinsic upconversion characteristic with a distinct red luminescent emission under 980 nm excitation. The present methodology is expected to shed light on the design of high-performance individual marking taggants from the perspective of the underlying interaction between taggant and skin, and to help advance the use of fluorescent taggants for practical application, such as special character tracking.
Collapse
Affiliation(s)
- Lianggen Zhong
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Jiguang Li
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Baiyi Zu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaodan Zhu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Da Lei
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Guangfa Wang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
| | - Xiaoyun Hu
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Tianshi Zhang
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| | - Xincun Dou
- Xinjiang Key laboratory of Explosives Safety ScienceXinjiang Technical Institute of Physics & ChemistryChinese Academy of SciencesUrumqi830011China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
12
|
Li Z, Poon W, Ye Z, Qi F, Park BH, Yin Y. Magnetic Field-Modulated Plasmonic Scattering of Hybrid Nanorods for FFT-Weighted OCT Imaging in NIR-II. ACS NANO 2022; 16:12738-12746. [PMID: 35925674 DOI: 10.1021/acsnano.2c04590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
We report a method for fast Fourier transform (FFT)-weighted optical coherence tomography (OCT) in the second biological tissue transparency window by actively modulating the plasmonic scattering of Fe3O4@Au hybrid nanorods using magnetic fields. Instead of tracking the nanoparticles' lateral displacement in conventional magnetomotive OCT imaging, we monitor the nanorod rotation and optical signal changes under an alternating magnetic field in real time. The coherent rotation of the nanorods with the field produces periodic OCT signals, and the FFT is then used to convert the periodic OCT signals in the time domain to a single peak in the frequency domain. This allows automatic screening of nanorod signals from the random biological noises and reconstruction of FFT-weighted images using a computer program based on a time-sequence image set. Compared with conventional magnetomotive OCT, the FFT-weighted imaging technique creates enhanced OCT images with dB-scale contrast over an order of magnitude higher than the original images.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Wesley Poon
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Zuyang Ye
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Fenglian Qi
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
13
|
Xie Y, Song Y, Sun G, Hu P, Bednarkiewicz A, Sun L. Lanthanide-doped heterostructured nanocomposites toward advanced optical anti-counterfeiting and information storage. LIGHT, SCIENCE & APPLICATIONS 2022; 11:150. [PMID: 35595732 PMCID: PMC9122995 DOI: 10.1038/s41377-022-00813-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/12/2022] [Accepted: 04/22/2022] [Indexed: 05/27/2023]
Abstract
The continuously growing importance of information storage, transmission, and authentication impose many new demands and challenges for modern nano-photonic materials and information storage technologies, both in security and storage capacity. Recently, luminescent lanthanide-doped nanomaterials have drawn much attention in this field because of their photostability, multimodal/multicolor/narrowband emissions, and long luminescence lifetime. Here, we report a multimodal nanocomposite composed of lanthanide-doped upconverting nanoparticle and EuSe semiconductor, which was constructed by utilizing a cation exchange strategy. The nanocomposite can emit blue and white light under 365 and 394 nm excitation, respectively. Meanwhile, the nanocomposites show different colors under 980 nm laser excitation when the content of Tb3+ ions is changed in the upconversion nanoparticles. Moreover, the time-gating technology is used to filter the upconversion emission of a long lifetime from Tb3+ or Eu3+, and the possibilities for modulating the emission color of the nanocomposites are further expanded. Based on the advantage of multiple tunable luminescence, the nanocomposites are designed as optical modules to load optical information. This work enables multi-dimensional storage of information and provides new insights into the design and fabrication of next-generation storage materials.
Collapse
Affiliation(s)
- Yao Xie
- Department of Physics, College of Sciences, Shanghai University, Shanghai, 200444, China
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Yapai Song
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Guotao Sun
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China
| | - Pengfei Hu
- Instrumental Analysis & Research Center, Shanghai University, Shanghai, 200444, China
| | - Artur Bednarkiewicz
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 50-422, Wrocław, Poland
| | - Lining Sun
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, China.
- School of Materials Science and Engineering, Shanghai University, Shanghai, 200444, China.
- Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
14
|
Li Z, Wang X, Han L, Zhu C, Xin H, Yin Y. Multicolor Photonic Pigments for Rotation-Asymmetric Mechanochromic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107398. [PMID: 34710254 DOI: 10.1002/adma.202107398] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Photonic crystals are extensively explored to replace inorganic pigments and organic dyes as coloring elements in printing, painting, sensing, and anti-counterfeiting due to their brilliant structural colors, chemical stability, and environmental friendliness. However, most existing photonic-crystal-based pigments can only display monochromatic colors once made, and generating multicolors has to start with designing different building blocks. Here, a novel photonic pigment featuring highly tunable structural colors in the entire visible spectrum, made by the magnetic assembly of monodisperse nanorods into body-centered-tetragonal photonic crystals, is reported. Their prominent magnetic and crystal anisotropy makes it efficient to generate multicolors using one photonic pigment by magnetically controlling the crystal orientation. Further, the combination of angle-dependent diffraction and magnetic orientation control enables the design of rotation-asymmetric photonic films that display distinct patterns and encrypted information in response to rotation. The efficient multicolor generation through precise orientational control makes this novel photonic pigment promising in developing high-performance structural-colored materials and optical devices.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Xiaojing Wang
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| | - Lili Han
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA, 92697, USA
| | - Chenhui Zhu
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Huolin Xin
- Department of Physics and Astronomy, University of California-Irvine, Irvine, CA, 92697, USA
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, Riverside, CA, 92521, USA
| |
Collapse
|