1
|
Chang F, Zhang M, Chen W, Lin J, Wang Y, Yang L. Kinetically Controlled Self-Assembly of Ag Nanoclusters with Enhanced Luminescence. ACS APPLIED MATERIALS & INTERFACES 2024; 16:39847-39856. [PMID: 39025679 DOI: 10.1021/acsami.4c07777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Constructing self-assembly with definite assembly structure-property correlation is of great significance for expanding the property richness and functional diversity of metal nanoclusters (NCs). Herein, a well-designed liquid reaction strategy was developed through which a highly ordered nanofiber superstructure with enhanced green photoluminescence (PL) was obtained via self-assembly of the individual silver nanoclusters (Ag NCs). By visual monitoring of the kinetic reaction process using time-dependent and in situ spectroscopy measurements, the assembling structure growth and the structure-determined luminescence mechanisms were revealed. The as-prepared nanofibers featured a series of advantages involving a high emission efficiency, large Stokes shift, homogeneous chromophore, excellent photostability, high temperature, and pH sensibility. By virtue of these merits, they were successfully employed in various fields of luminescent inks, encryption and anticounterfeiting platforms, and optoelectronic light-emitting diode (LED) devices.
Collapse
Affiliation(s)
- Fengjuan Chang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Mengting Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Wanying Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Jian Lin
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Yin Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| | - Lina Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, Anhui, P. R. China
| |
Collapse
|
2
|
Wang Z, Wang Y, Zhang C, Zhu YJ, Song KP, Aikens CM, Tung CH, Sun D. Silvery fullerene in Ag 102 nanosaucer. Natl Sci Rev 2024; 11:nwae192. [PMID: 39071102 PMCID: PMC11282957 DOI: 10.1093/nsr/nwae192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/25/2024] [Accepted: 05/14/2024] [Indexed: 07/30/2024] Open
Abstract
Despite the discovery of a series of fullerenes and a handful of noncarbon clusters with the typical topology of I h-C60, the smallest fullerene with a large degree of curvature, C20, and its other-element counterparts are difficult to isolate experimentally. In coinage metal nanoclusters (NCs), the first all-gold fullerene, Au32, was discovered after a long-lasting pursuit, but the isolation of similar silvery fullerene structures is still challenging. Herein, we report a flying saucer-shaped 102-nuclei silver NC (Ag102) with a silvery fullerene kernel of Ag32, which is embraced by a robust cyclic anionic passivation layer of (KPO4)10. This Ag32 kernel can be viewed as a non-centered icosahedron Ag12 encaged into a dodecahedron Ag20, forming the silvery fullerene of Ag12@Ag20. The anionic layer (KPO4)10 is located at the interlayer between the Ag32 kernel and Ag70 shell, passivating the Ag32 silvery fullerene and templating the Ag70 shell. The t BuPhS- and CF3COO- ligands on the silver shell show a regioselective arrangement with the 60 t BuPhS- ligands as expanders covering the upper and lower of the flying saucer and 10 CF3COO- as terminators neatly encircling the edges of the structure. In addition, Ag102 shows excellent photothermal conversion efficiency (η) from the visible to near-infrared region (η = 67.1% ± 0.9% at 450 nm, 60.9% ± 0.9% at 660 nm and 50.2% ± 0.5% at 808 nm), rendering it a promising material for photothermal converters and potential application in remote laser ignition. This work not only captures silver kernels with the topology of the smallest fullerene C20, but also provides a pathway for incorporating alkali metal (M) into coinage metal NCs via M-oxoanions.
Collapse
Affiliation(s)
- Zhi Wang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Yuchen Wang
- Department of Chemistry, Kansas State University, Manhattan 66506, USA
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Yan-Jie Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Ke-Peng Song
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | | | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| | - Di Sun
- School of Chemistry and Chemical Engineering, Shandong University, Ji'nan 250100, China
| |
Collapse
|
3
|
Lu X, Zhang K, Niu X, Ren DD, Zhou Z, Dang LL, Fu HR, Tan C, Ma L, Zang SQ. Encapsulation engineering of porous crystalline frameworks for delayed luminescence and circularly polarized luminescence. Chem Soc Rev 2024; 53:6694-6734. [PMID: 38747082 DOI: 10.1039/d3cs01026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Delayed luminescence (DF), including phosphorescence and thermally activated delayed fluorescence (TADF), and circularly polarized luminescence (CPL) exhibit common and broad application prospects in optoelectronic displays, biological imaging, and encryption. Thus, the combination of delayed luminescence and circularly polarized luminescence is attracting increasing attention. The encapsulation of guest emitters in various host matrices to form host-guest systems has been demonstrated to be an appealing strategy to further enhance and/or modulate their delayed luminescence and circularly polarized luminescence. Compared with conventional liquid crystals, polymers, and supramolecular matrices, porous crystalline frameworks (PCFs) including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), zeolites and hydrogen-bonded organic frameworks (HOFs) can not only overcome shortcomings such as flexibility and disorder but also achieve the ordered encapsulation of guests and long-term stability of chiral structures, providing new promising host platforms for the development of DF and CPL. In this review, we provide a comprehensive and critical summary of the recent progress in host-guest photochemistry via the encapsulation engineering of guest emitters in PCFs, particularly focusing on delayed luminescence and circularly polarized luminescence. Initially, the general principle of phosphorescence, TADF and CPL, the combination of DF and CPL, and energy transfer processes between host and guests are introduced. Subsequently, we comprehensively discuss the critical factors affecting the encapsulation engineering of guest emitters in PCFs, such as pore structures, the confinement effect, charge and energy transfer between the host and guest, conformational dynamics, and aggregation model of guest emitters. Thereafter, we summarize the effective methods for the preparation of host-guest systems, especially single-crystal-to-single-crystal (SC-SC) transformation and epitaxial growth, which are distinct from conventional methods based on amorphous materials. Then, the recent advancements in host-guest systems based on PCFs for delayed luminescence and circularly polarized luminescence are highlighted. Finally, we present our personal insights into the challenges and future opportunities in this promising field.
Collapse
Affiliation(s)
- Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Kun Zhang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Xinkai Niu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- Xinjiang Production & Construction Corps Key Laboratory of Advanced Energy Storage Materials and Technology, College of Science, Shihezi University, Shihezi 832003, P. R. China
| | - Dan-Dan Ren
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- College of Materials and Chemical Engineering, China Three Gorges University, Yichang 443002, P. R. China
| | - Zhan Zhou
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Li-Long Dang
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Hong-Ru Fu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Chaoliang Tan
- Department Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, SAR 999077, P. R. China.
| | - Lufang Ma
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, P. R. China.
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China.
| |
Collapse
|
4
|
Liu Z, Fang JJ, Wang ZY, Xie YP, Lu X. Assembly of Copper Alkynyl Clusters into Dimensionally Diverse Coordinated Polymers Mediated by Pyridine Ligands. Inorg Chem 2024; 63:11146-11154. [PMID: 38838348 DOI: 10.1021/acs.inorgchem.4c00822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Surface ligands play crucial roles in modifying the properties of metal nanoclusters and stabilizing atomically precise structures, and also serve as vital linkers for constructing cluster-based coordination polymers. In this study, we present the results of the solvothermal synthesis of eight novel copper alkynyl clusters incorporating pyridine ligands using a one-pot method. The resulting compounds underwent characterization through elemental analysis, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD). Our observations revealed that distinct pyridine ligands with varying lengths and coordination sites exert significant influence on the structure and dimensionality of the clusters. The structural diversity of these clusters led to the formation of one-dimensional (1D), two-dimensional (2D), or dimer arrangements linked by seven pyridine bridging ligands. Remarkably, these complexes exhibited unique UV-vis absorption and photoluminescence properties, which were influenced by the specific bridging ligand and structural framework. Furthermore, density functional theory (DFT) calculations demonstrated the capability of the conjugated system in the pyridine ligand to impact the band gap of clusters. This study not only unveils the inherent structural diversity in coordination polymers based on copper alkynyl clusters but also offers valuable insights into harnessing ligand engineering for structural and property modulation.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jun-Jie Fang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi-Yi Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yun-Peng Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- School of Chemistry and Chemical Engineering, Hainan University, No. 58, Renmin Avenue, Haikou 570228, China
| |
Collapse
|
5
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
6
|
Chen RQ, Wang ST, Liu YJ, Zhang J, Fang WH. Assembly of Homochiral Aluminum Oxo Clusters for Circularly Polarized Luminescence. J Am Chem Soc 2024; 146:7524-7532. [PMID: 38451059 DOI: 10.1021/jacs.3c13244] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Chiral aluminum oxo clusters (cAlOCs) are distinguished from other classes of materials on account of their abundance in the earth's crust and their potential for sustainable development. However, the practical synthesis of cAlOCs is rarely known. Herein, we adopt a synergistic coordination strategy by using chiral amino acid ligands as bridges and auxiliary pyridine-2,6-dicarboxylic acid as chelating ligands and successfully isolate an extensive family of cAlOCs. They integrate molecular chirality, absolute helicity, and intrinsic hydrogen-bonded chiral topology. Moreover, they have the structural characteristics of one-dimensional channels and replaceable counteranions, which make them well combined with fluorescent dyes for circularly polarized luminescence (CPL). The absolute luminescence dissymmetry factor (glum) of up to the 10-3 order is comparable to several noble metals, revealing the enormous potential of cAlOCs in low-cost chiral materials. We hope this work will inspire new discoveries in the field of chirality and provide new opportunities for constructing low-cost chiral materials.
Collapse
Affiliation(s)
- Ran-Qi Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
7
|
Titov AA, Smol'yakov AF, Chernyadyev AY, Godovikov IA, Filippov OA, Shubina ES. Pyrazolate vs. phenylethynide: direct exchange of the anionic bridging ligand in a cyclic trinuclear silver complex. Chem Commun (Camb) 2024; 60:847-850. [PMID: 38131431 DOI: 10.1039/d3cc05659g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Cyclic trinuclear Ag(I) pyrazolate interacts with phenylacetylene forming a mix-ligand complex in which one pyrazolate ligand is changed to phenylethynide. The CC- fragment coordinates only to two silver(I) atoms via one carbon atom demonstrating unique μ2-η1 σ-coordination with close Ag-C bond lengths and Ag-C-C angles. The complex exhibits blue emission under UV irradiation.
Collapse
Affiliation(s)
- Aleksei A Titov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
| | - Alexander F Smol'yakov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
- Plekhanov Russian University of Economics, Stremyanny per. 36, Moscow 117997, Russia
| | - Andrey Yu Chernyadyev
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, 199071 Moscow, Russia
| | - Ivan A Godovikov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
| | - Oleg A Filippov
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
| | - Elena S Shubina
- A.N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS), 119991 Moscow, Vavilov St. 28, bld. 1, Russia.
| |
Collapse
|
8
|
Zhou Y, Wang Y, Song Y, Zhao S, Zhang M, Li G, Guo Q, Tong Z, Li Z, Jin S, Yao HB, Zhu M, Zhuang T. Helical-caging enables single-emitted large asymmetric full-color circularly polarized luminescence. Nat Commun 2024; 15:251. [PMID: 38177173 PMCID: PMC10767107 DOI: 10.1038/s41467-023-44643-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 12/27/2023] [Indexed: 01/06/2024] Open
Abstract
Colorful circularly polarized luminescence materials are desired for 3D displays, information security and asymmetric synthesis, in which single-emitted materials are ideal owing to self-absorption avoidance, evenly entire-visible-spectrum-covered photon emission and facile device fabrication. However, restricted by the synthesis of chiral broad-luminescent emitters, the realization and application of high-performing single-emitted full-color circularly polarized luminescence is in its infancy. Here, we disclose a single-emitted full-color circularly polarized luminescence system (spiral full-color emission generator), composed of whole-vis-spectrum emissive quantum dots and chiral liquid crystals. The system achieves a maximum luminescence dissymmetry factor of 0.8 and remains an order of 10-1 in visible region by tuning its photonic bandgap. We then expand it to a series of desired customized-color circularly polarized luminescence, build chiral devices and further demonstrate the working scenario in the photoinduced enantioselective polymerization. This work contributes to the design and synthesis of efficient chiroptical materials, device fabrication and photoinduced asymmetric synthesis.
Collapse
Affiliation(s)
- Yajie Zhou
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yaxin Wang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Yonghui Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shanshan Zhao
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Mingjiang Zhang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Guangen Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Guo
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zhi Tong
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Zeyi Li
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Shan Jin
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, PR China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, PR China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, Hefei, 230601, PR China
| | - Taotao Zhuang
- Department of Chemistry, University of Science and Technology of China, Hefei, 230026, PR China.
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, PR China.
| |
Collapse
|
9
|
Yang S, Gong T, Dai Y, Xiao X, Liu J, Chen L, Zhao J. An Unusual Bismuth-Antimony-Europium Cluster-Imbedded Polyoxotungstate and Its Bidirectional Luminescence Detection. Inorg Chem 2023; 62:17861-17869. [PMID: 37844198 DOI: 10.1021/acs.inorgchem.3c02682] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
An unprecedented aggregate formed by two bismuth-antimony-europium cluster-imbedded tungsten-oxo clusters and one Krebs-type polyoxotungstate linker [H2N(CH3)2]14Na30H6[W4O10][B-β-BiW9O33]2{[Bi5.35Sb0.65Eu3O9(H2O)9][B-α-SbW9O33]3}2·124H2O (1) was prepared. The polyoxoanion skeleton of 1 contains a Krebs-type polyoxotungstate [W4O10][B-β-BiW9O33]2}14- ({Bi2W22}) (1a) as a linker that offers six active coordinate O atoms (two μ3-O and four μ2-O atoms) to grasp two Bi-Sb-Eu cluster-imbedded tungsten-oxo clusters {[Bi5.35Sb0.65Eu3O9(H2O)9][B-α-SbW9O33]3}18- (1b) through Bi-O-W and Sb-O-W bonds. 1b comprises an unprecedented nona-nuclearity Bi-Sb-Eu [Bi5.35Sb0.65Eu3O9(H2O)9]9+ cluster encircled by three trivacant [B-α-SbW9O33]9-segments in a triangular motif through Eu-O-W, Sb-O-W, and Bi-O-W linkages into a trilobal trimer. Moreover, a bidirectional detection method by using 1 as an effective luminescence probe was proposed to recognize both Mn2+ and CO32- through an "on-off-on" mode. 1 can be used as an "on-off" luminescent sensor to detect Mn2+ ions in aqueous solution. The limit of detection was 0.05 μM (9 × 10-6 mg L-1), which is much lower than the World Health Organization (WHO) guideline for Mn2+ concentration in drinking water (0.05 mg L-1). Then the Mn2+-quenching system can be used as an "off-on" sensor to detect CO32- in water system. This work provides a new research idea for the application of rare-earth-imbedded polyoxotungstate-based materials in the field of optical smart detection.
Collapse
Affiliation(s)
- Sen Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yongchao Dai
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Xinxian Xiao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
10
|
Liu R, Feng Z, Yan X, Lv Y, Wei J, Hao J, Yang Z. Small Molecules Mediated the Chirality Transfer in Self-Assembled Nanocomposites with Strong Circularly Polarized Luminescence. J Am Chem Soc 2023; 145:17274-17283. [PMID: 37493589 DOI: 10.1021/jacs.3c04615] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Manipulation of the chirality at all scales has a cross-disciplinary importance and may address key challenges at the heart of physical sciences. One critical question in this field is how the chirality of one entity can be transferred to the asymmetry of another entity. Here, we find that small molecules play a crucial role in the chirality transfer from chiral organic molecules to CdSe/CdS nanorods, where the handedness of the nanorod assemblies either agrees or disagrees with that of the molecular assemblies, leading to the positive or inverse chirality transfer. The assembling mode of nanorods on the molecular assemblies, where the nanorods are either lying or standing, is closely associated with the handedness of the nanorod assemblies, resulting in opposite chirality. Furthermore, we have found that circularly polarized emission from chiral assemblies of nanorods is dependent on molecular additives. The promoted luminescence dissymmetry factor (glum) of the nanocomposites with a high value of ∼0.3 could be attained under optimal conditions.
Collapse
Affiliation(s)
- Rongjuan Liu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhenyu Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Xiangyu Yan
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yujia Lv
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingjing Wei
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Zhijie Yang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
11
|
Wang S, He W, Cui Y, Zhou Z, Ma L, Zang SQ. Atomically precise chiral silver clusters based on non-chiral ligands for acid/base stimulated luminescence response. NANOSCALE 2023. [PMID: 37466042 DOI: 10.1039/d3nr03095d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Chiral metal nanoclusters synthesized by non-chiral ligands are usually in the form of racemates. Thus, resolving racemic compounds continues to be a great challenge. Herein, we report a case of the racemic compound hexanuclear silver cluster (Ag6-Rac) protected by the non-chiral sulfhydryl ligand sodium 1H-1,2,3-triazole-5-thiolate (SHTT) and 2,6-bis(diphenylphosphino)pyridine (dpppy). The homochiral clusters in Ag6-Rac are able to spontaneously crystallize and undergo chiral resolution to obtain a racemic conglomerate (Ag6-S/Ag6-R) by solvent-induced crystallization. Interestingly, the Ag6-Rac clusters exhibit strong luminescence in solid and solution, which can respond to trifluoroacetic acid (TFA) and reversible cycling over five times using diethylamine (DEA). This work provides a new research model for resolving racemic clusters and constructing stimulus-responsive clusters.
Collapse
Affiliation(s)
- Shuaibo Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Weimiao He
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yujia Cui
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhan Zhou
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Lufang Ma
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
12
|
Chen X, Liu Y, Wang B, Liu X, Lu C. Understanding role of microstructures of nanomaterials in electrochemiluminescence properties and their applications. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.117030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
13
|
Zhao YY, Zhou Y, Li R, Li B. Synthesis, Characterization and Efficient Detection of Antibiotics of Two CdII-Based Coordination Polymers. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
14
|
Tao L, Zhan H, Cheng Y, Qin C, Wang L. Enhanced Circularly Polarized Photoluminescence of Chiral Perovskite Films by Surface Passivation with Chiral Amines. J Phys Chem Lett 2023; 14:2317-2322. [PMID: 36847471 DOI: 10.1021/acs.jpclett.3c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hybrid organic-inorganic perovskites have shown promise in circularly polarized light source applications when chirality has been introduced. Circularly polarized photoluminescence (CPL) is a significant tool for investigating the chiroptical properties of perovskites. However, further research is still urgently needed, especially with regard to optimization. Here we demonstrate that chiral ligands can influence the electronic structure of perovskites, increasing the asymmetry and emitting circularly polarized photons in photoluminescence. After the modification of chiral amines, the defects of films are passivated, leading to enhanced radiation recombination for which more circularly polarized photons are emitted. Meanwhile, the modification increases the asymmetry in the electronic structure of perovskites, manifested by an increase in the magnetic dipole moment from 0.166 to 0.257 μB and an enhanced CPL signal. This approach offers the possibility of fabricating and refining circularly polarized light-emitting diodes.
Collapse
Affiliation(s)
- Lutao Tao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Hongmei Zhan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Yanxiang Cheng
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Chuanjiang Qin
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| |
Collapse
|
15
|
Geng Z, Liu Z, Li H, Zhang Y, Zheng W, Quan Y, Cheng Y. Inverted and Amplified CP-EL Behavior Promoted by AIE-Active Chiral Co-Assembled Helical Nanofibers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2209495. [PMID: 36479735 DOI: 10.1002/adma.202209495] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
It is well-known that high-performance circularly polarized organic light-emitting diodes (CP-OLEDs) remain a formidable challenge to the future application of circularly polarized luminescent (CPL)-active materials. Herein, the design of a pair of AIE-active chiral enantiomers (L/D-HP) is described to construct chiral co-assemblies with an achiral naphthalimide dye (NTi). The resulting co-assemblies emit an inverted CPL signal compared with that from the L/D-HP enantiomers. After thermal annealing at 120 °C, the inverted CPL signal of this kind of L/D-HP-NTi with a 1:1 molar ratio shows regular and ordered helical nanofibers arranged through intermolecularly ordered layered packing and is accompanied with a further amplified effect (|gem | = 0.032, λem = 535 nm). Significantly, non-doped CP-OLEDs based on a device emitting layer (EML) of L/D-HP-NTi exhibits a low turn-on voltage (Von ) of 4.7 V, a high maximum brightness (Lmax ) of 2001 cd m-2 , and moderate maximum external quantum efficiency (EQEmax ) of 2.3%, as well as excellent circularly polarized electroluminescence (CP-EL) (|gEL | = 0.023, λem = 533 nm).
Collapse
Affiliation(s)
- Zhongxing Geng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Zheng Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hang Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenhua Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yixiang Cheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
16
|
Zhang TS, Fei W, Li N, Zhang Y, Xu C, Luo Q, Li MB. Open Nitrogen Site-Induced Kinetic Resolution and Catalysis of a Gold Nanocluster. NANO LETTERS 2023; 23:235-242. [PMID: 36574348 DOI: 10.1021/acs.nanolett.2c04163] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The emerging metal nanocluster provides a platform for the investigation of structural features, unique properties, and structure-property correlation of nanomaterials at the atomic level. Construction of open sites on the surface of the metal nanocluster is a long-pursued but challenging goal. Herein, we realized the construction of "open organic sites" in a metal nanocluster for the first time. Specifically, we introduce the PNP (2,6-bis(diphenylphosphinomethyl)pyridine) pincer ligand in the synthesis of the gold nanocluster, enabling the construction of a structurally precise Au8(PNP)4 nanocluster. The rigidity and the unique bonding mode of PNP lead to open nitrogen sites on the surface of the Au8(PNP)4 nanocluster, which have been utilized as multifunctional sites in this work for efficient kinetic resolution and catalysis. The gold pincer nanocluster and the open nitrogen site-induced performance will be enlightening for the construction of multifunctional metal nanoclusters.
Collapse
Affiliation(s)
- Tai-Song Zhang
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Wenwen Fei
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Na Li
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Ying Zhang
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Qiquan Luo
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Man-Bo Li
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
17
|
Liu Y, Du M, Zhang P, Wang H, Dong X, Wang Z, Wang Y, Ji L. Host-guest interaction enabled chiroptical property, morphology transition, and phase switch in azobenzene-glutamide amphiphile based hydrogel. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Miao H, Pan X, Li M, Zhaxi W, Wu J, Huang Z, Liu L, Ma X, Jiang S, Huang W, Zhang Q, Wu D. A Copper Iodide Cluster-Based Coordination Polymer as an Unconventional Zero-Thermal-Quenching Phosphor. Inorg Chem 2022; 61:18779-18788. [DOI: 10.1021/acs.inorgchem.2c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Huixian Miao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xiancheng Pan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Wenjiang Zhaxi
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Jing Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zetao Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Luying Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Xiao Ma
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Shenlong Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Wei Huang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Qun Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemical Physics, Synergetic Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei 230026, Anhui, P. R. China
| | - Dayu Wu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis & Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| |
Collapse
|
19
|
Gong T, Jiang J, Yang S, Liu J, Chen L, Zhao J. Lanthanide-Incorporated Polyoxometalates Assembled from Mixed-Heteroatom-Oriented Three-Layered Cage Clusters. Inorg Chem 2022; 61:18147-18153. [DOI: 10.1021/acs.inorgchem.2c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tiantian Gong
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jun Jiang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Sen Yang
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jiancai Liu
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Lijuan Chen
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Junwei Zhao
- Henan Key Laboratory of Polyoxometalate Chemistry, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| |
Collapse
|
20
|
|
21
|
Zhou C, Pan P, Wei X, Lin Z, Chen C, Kang X, Zhu M. Horizontal expansion of biicosahedral M 13-based nanoclusters: resolving decades-long questions. NANOSCALE HORIZONS 2022; 7:1397-1403. [PMID: 36196687 DOI: 10.1039/d2nh00321j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
For metal nanoclusters with the "cluster of clusters" intramolecular evolution pattern, most efforts have been made towards the vertical superposition of icosahedral nanobuilding blocks (e.g., from mono-icosahedral Au13 to bi-icosahedral Au25 and tri-icosahedral Au37), while the horizontal expansion of these rod-shaped multi-icosahedral aggregates was largely neglected. We herein report the horizontal expansion of the biicosahedral M25 cluster framework, yielding an [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ nanocluster that contains an Au13Ag12 kernel and six Au1(DPPM)1(S-Adm)1 peripheral wings. The structural determination of [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ resolved a decades-long question towards rod-shaped multi-icosahedral aggregates: how to load bidentate phosphine and bulky thiol ligands onto the nanocluster framework? The structural comparison between [Au19Ag12(S-Adm)6(DPPM)6Cl7]2+ and previously reported [Au13Ag12(PPh3)10Cl8]2+ or [Au13Ag12(SR)5(PPh3)10Cl2]2+ rationalized the unique packing of Au1(DPPM)1(S-Adm)1 motif structures on the surface of the former nanocluster. Overall, this work presents the horizontal expansion of rod-shaped multi-icosahedral nanoclusters, which provides new insights into the preparation of novel icosahedron-based aggregates with both vertically and horizontally growing extensions.
Collapse
Affiliation(s)
- Chuanjun Zhou
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Peiyao Pan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Xiao Wei
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Cheng Chen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, P. R. China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, P. R. China
| |
Collapse
|
22
|
Jing X, Fu F, Wang R, Xin X, Qin L, Lv H, Yang GY. Robust Enantiomeric Two-Dimensional Assembly of Atomically Precise Silver Clusters. ACS NANO 2022; 16:15188-15196. [PMID: 36053191 DOI: 10.1021/acsnano.2c06492] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The facile syntheses of enantiomeric atomically precise silver clusters starting from achiral ligands remain a substantial challenge to explore. In this work, a pair of atomically precise enantiomers of R/S-[Ag17Cl(iPrS)9S(CH3COO)5H2O] (R/S-Ag17, iPrS = isopropanethiolate) clusters have been synthesized using a viable solvothermal approach. The chirality of the resulting enantiomeric R/S-Ag17 clusters is attributed to the asymmetric arrangement of surface achiral ligands. Both R/S-Ag17 enantiomers could form the two-dimensional (2D) assemblies via intercluster interactions of basic building blocks containing Ag16S8 moieties, iPrS-Ag motifs, and S2- linkers. Such a small ligand-induced 2D assembly greatly contributes to the enhancement of thermal stability and photocatalytic activity of R/S-Ag17 clusters, providing possibilities for exploring robust coinage cluster-based assembly with attractive catalytic properties.
Collapse
Affiliation(s)
- Xuemeng Jing
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Fangyu Fu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Ruijie Wang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Xing Xin
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Lin Qin
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Hongjin Lv
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| | - Guo-Yu Yang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectric/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, People's Republic of China
| |
Collapse
|
23
|
Zheng Y, Han X, Cheng P, Jia X, Xu J, Bu XH. Induction of Chiral Hybrid Metal Halides from Achiral Building Blocks. J Am Chem Soc 2022; 144:16471-16479. [PMID: 36063390 DOI: 10.1021/jacs.2c05063] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Chiral hybrid organic-inorganic metal halides (HOMHs) with intrinsic noncentrosymmetry have shown great promise for broad applications in chiroptoelectronics, spintronics, and ferroelectronics. However, the construction strategies for chiral HOMHs often involve chiral building blocks in their frameworks, which greatly limit their chemical diversity. Here, we take advantage of a chiral induction approach and have successfully constructed a series of chiral HOMHs, DMA4MX7 (DMA = dimethylammonium, M = Sb or Bi, X = Cl or Br), based on achiral precursors. The resulting chiral products demonstrate a clear enantioenrichment, as confirmed by single-crystal X-ray diffraction analysis and solid-state circular dichroism (CD) spectroscopy. The induction of chiral HOMHs enables superior nonlinear optical performances with very high thermal stability and laser resistance. The successful employment of such a chiral induction approach might facilitate the construction of libraries of chiral HOMH crystals from diverse achiral precursors, in particular those into which it is not easy to introduce intrinsic chiral centers, and would thus pave a new way for rational preparation and application of chiral HOMH materials.
Collapse
Affiliation(s)
- Yongshen Zheng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xiaodi Jia
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, 300350 Tianjin, P. R. China
| |
Collapse
|
24
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022; 61:e202208574. [DOI: 10.1002/anie.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Xin Song
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Shuai Qiu
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Wei Tian
- Shaanxi Key Laboratory of Macromolecular Science and Technology MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions School of Chemistry and Chemical Engineering Northwestern Polytechnical University Xi'an 710072, Shaanxi P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
25
|
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y, Zhu M. Fluorescence or Phosphorescence? The Metallic Composition of the Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl 2022; 61:e202205947. [PMID: 35596616 DOI: 10.1002/anie.202205947] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Indexed: 12/20/2022]
Abstract
It remains challenging to manipulate the nature of photoluminescence as either fluorescence or phosphorescence for a correlated cluster series. In this work, two correlated nanoclusters, Au5 Ag11 (SR)8 (DPPOE)2 and Pt1 Ag16 (SR)8 (DPPOE)2 with comparable structure features, were synthesized and structurally determined. These two alloy nanoclusters displayed distinct photoluminescent nature-the Au5 Ag11 nanocluster is fluorescent, whereas the Pt1 Ag16 nanocluster is phosphorescent. The decay processes of the excited electrons in these two nanoclusters have been explicitly mapped out by both experimental and theoretical approaches, disclosing the mechanisms of their fluorescence and phosphorescence. Specifically, the metallic compositions of the nanocluster kernels mattered in determining their photoluminescent nature. The results herein provide an intriguing nanomodel that enables us to grasp the origin of photoluminescence at the atomic level, which further paves the way for fabricating novel nanoclusters or cluster-based nanomaterials with customized photophysical properties.
Collapse
Affiliation(s)
- Chen Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Junsheng Xin
- Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| | - Jing Li
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, China, P. R. China
| | - Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yong Pei
- Department of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Hunan Province, China, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China.,Institutes of Physical Science and Information Technology and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
26
|
Chen J, Zhang S, Pan X, Li R, Ye S, Cheetham AK, Mao L. Structural Origin of Enhanced Circularly Polarized Luminescence in Hybrid Manganese Bromides. Angew Chem Int Ed Engl 2022; 61:e202205906. [PMID: 35535865 DOI: 10.1002/anie.202205906] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/09/2022]
Abstract
Chiral hybrid metal halides with a high dissymmetry factor (glum ) and a superior photoluminescence quantum yield (PLQY) are promising candidates for circularly polarized luminescence (CPL) light sources. Here, we report eight new chiral hybrid manganese halides, crystallizing in the non-centrosymmetric space group P21 21 21 and showing intense CPL emissions. Oppositely-signed circular dichroism (CD) and CPL signals are detected according to the R- and S-configurations of the chiral alkanolammonium cations. Time-resolved PL spectra show long averaged decay lifetimes up to 1 ms for (R-3-quinuclidinol)MnBr3 (R-1). The glum of polycrystalline samples for coordinated structures (23×10-3 ) is more than doubled compared with the non-coordinated ones (8.5×10-3 ), due to the structural variations. R-1 exhibit both a high glum and a high PLQY (50.2 %). The effective chirality transfer mechanism through coordination bonds, with strongly emissive MnII centers, enables a new class of high-performance CPL materials.
Collapse
Affiliation(s)
- Jian Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shuai Zhang
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510641, China.,Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Xin Pan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Ruiqian Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Shi Ye
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong 510641, China.,Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Anthony K Cheetham
- Materials Research Laboratory and Materials Department, University of California, Santa Barbara, CA 93106, USA.,Department of Materials Science & Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
27
|
Song X, Zhu X, Qiu S, Tian W, Liu M. Self‐Assembly of Adaptive Chiral [1]Rotaxane for Thermo‐Rulable Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xin Song
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Xuefeng Zhu
- Institute of Chemistry CAS: Institute of Chemistry Chinese Academy of Sciences Key Laboratory of Colloid, Interface and Chemical Thermodynamics CHINA
| | - Shuai Qiu
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Wei Tian
- Northwestern Polytechnic University School of Chemistry and Chemical Engineering CHINA
| | - Minghua Liu
- Institute of Chemistry, CAS Laboratory of Colloid and Interface Scie Zhong Guancun 100080 Beijing CHINA
| |
Collapse
|
28
|
Tang L, Yin Z, Wang R, Wang B, Jiang K, Ding M, Wang S. Understanding a ligand's effects on intra-cluster and inter-cluster assembly. NANOSCALE 2022; 14:8842-8848. [PMID: 35695330 DOI: 10.1039/d2nr01765b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ligands play an essential role in cluster assembly; however, understanding this behavior at the atomic level is far off. In this work, Cd12Ag32(S-PhOMe)36(PPh)4@Cd6Ag2(S-PhOMe)6Cl6(PPh3)8@Ag6(S-PhOMe)6Cl2 (Abbrev. Cd12Ag32-1) and Cd12Ag32(S-c-C6H11)36 (Abbrev. Cd12Ag32-2) were synthesized and structurally determined by single-crystal X-ray diffraction. An important finding is the selective adsorption of phosphine ligands that is caused by the different types of thiol ligands. In addition, Cd12Ag32-1 follows a unique stacking pattern in a superlattice with multiple inter-cluster channels. Overall, this study is helpful for an in-depth understanding of the effect of mixed ligands on nanocluster formation and the correlation between structure and properties in the nanocluster range.
Collapse
Affiliation(s)
- Li Tang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Zhengmao Yin
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Ru Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Bin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Kefan Jiang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Mei Ding
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| |
Collapse
|
29
|
Geng Z, Zhang Y, Zhang Y, Quan Y, Cheng Y. Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Co-assembly Polymers. Angew Chem Int Ed Engl 2022; 61:e202202718. [PMID: 35318788 DOI: 10.1002/anie.202202718] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Indexed: 11/09/2022]
Abstract
Two chiral binaphthyl polymers (R/S-P1 and R/S-P2) with different dihedral angles of the binaphthyl moiety were chosen as chiral inducers to construct chiral co-assemblies with an achiral pyrene-naphthalimide dye (NPy) and then acted as the emitting layer (EML) of circularly polarized electroluminescence (CP-EL) devices. The anchored dihedral angle of R/S-P2 not only exhibited the enhanced chirality signal, but also had a strong chirality-inducing effect on the achiral NPy dye in the chiral co-assembly (R/S-P2)0.6 -(NPy)0.4 . After annealing at 120 °C, the CPL signal (|gem |) of ordered helical nano-fibers (R/S-P2)0.6 -(NPy)0.4 was amplified to 5.6×10-2 , which was about 6-fold larger than that of (R/S-P1)0.6 -(NPy)0.4 . The amplified gem value of (R/S-P2)0.6 -(NPy)0.4 was due to the formation of a helical co-assembly through the strong π-π stacking interaction between the R/S-P2 and the achiral NPy. This kind of ordered helical nano-fibers (R/S-P2)0.6 -(NPy)0.4 acted as the EML of CP-OLEDs, and achieved an excellent CP-EL performance (|gEL |=4.8×10-2 ).
Collapse
Affiliation(s)
- Zhongxing Geng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
30
|
Chen J, Zhang S, Pan X, Li R, Ye S, Cheetham AK, Mao L. Structural Origin of Enhanced Circularly Polarized Luminescence in Hybrid Manganese Bromides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jian Chen
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shuai Zhang
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong 510641 China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques South China University of Technology Guangzhou Guangdong 510641 China
| | - Xin Pan
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Ruiqian Li
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Shi Ye
- State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong 510641 China
- Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques South China University of Technology Guangzhou Guangdong 510641 China
| | - Anthony K. Cheetham
- Materials Research Laboratory and Materials Department University of California Santa Barbara CA 93106 USA
- Department of Materials Science & Engineering National University of Singapore Singapore 117576 Singapore
| | - Lingling Mao
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
31
|
Zhu C, Xin J, Li J, Li H, Kang X, Pei Y, Zhu M. Fluorescence or Phosphorescence? The Metallic Composition of Nanocluster Kernel Does Matter. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chen Zhu
- Anhui University Department of Chemistry CHINA
| | | | - Jing Li
- Xiangtan University Department of Chemistry CHINA
| | - Hao Li
- Anhui University Department of Chemistry CHINA
| | - Xi Kang
- Anhui University Department of Chemistry CHINA
| | - Yong Pei
- Xiangtan University Department of Chemistry CHINA
| | - Manzhou Zhu
- Anhui University Department of Chemistry and Chemical Engineering 111 Jiulong Rd 230601 Hefei CHINA
| |
Collapse
|
32
|
Ma G, Tang Y, Chen L, Qin L, Shen Q, Wang L, Tang Z. Homoleptic Alkynyl‐Protected Au(I)9‐Ag(I)9 Cluster: Structure Analysis, Optical Property, and Catalytic Implications. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Guanyu Ma
- South China University of Technology School of Environment and Energy CHINA
| | - Yun Tang
- South China University of Technology School of Environment and Energy CHINA
| | - Leyi Chen
- South China University of Technology School of Environment and Energy CHINA
| | - Lubing Qin
- South China University of Technology School of Environment and Energy CHINA
| | - Quanli Shen
- South China University of Technology School of Environment and Energy CHINA
| | - Likai Wang
- Shandong University of Technology School of Chemistry and Chemical Engineering CHINA
| | - Zhenghua Tang
- New Energy Research Institute School of Environement and Energy Guangzhou Higher Education Mega Centre 510006 Guangzhou CHINA
| |
Collapse
|
33
|
Geng Z, Zhang Y, Zhang Y, Quan Y, Cheng Y. Amplified Circularly Polarized Electroluminescence Behavior Triggered by Helical Nanofibers from Chiral Co‐assembly Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Zhongxing Geng
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yuxia Zhang
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yu Zhang
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yiwu Quan
- Key Laboratory of High Performance Polymer Materials and Technology of Ministry of Education School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| | - Yixiang Cheng
- Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 China
| |
Collapse
|
34
|
Xia Y, Xia XY, Fang JJ, Liu Z, Xie YP, Lu X. Anion-templated silver thiolated clusters effected by carboxylate ligands. Dalton Trans 2022; 51:14557-14562. [DOI: 10.1039/d2dt02194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Under the guidance of anion templates V10O286- and SO42-, the novelty of assembly can be increased by using different carboxylate ligands. Herein, the synthesis, crystal structure and electrochemical properties of...
Collapse
|