1
|
Zhou N, Zhang Y, Wang X, Yang P, Lu W, Wan Q. Effective Near-Infrared Triplet Emitter Based on Hetero-Metal-Metal Interaction. J Am Chem Soc 2025. [PMID: 40434357 DOI: 10.1021/jacs.5c04585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
Incorporating metal-metal (M-M) interactions into excited states of closed-shell d8 and d10 metal complexes is an effective strategy in the design of near-infrared (NIR) phosphorescent materials. While extensive studies have focused on homometallic M-M-bonded excited states, the potential of heterometallic interactions remains relatively underexplored. Herein, we report a series of heterometallic Rh(I)-Pt(II) double salt complexes that achieve efficient NIR phosphorescence, with emission peak energy spanning 830-980 nm and room-temperature quantum yield up to 23%. In this system, the Rh(I) center lowers the emission energy, while the Pt(II) center enhances spin-orbit coupling (SOC) via its heavy-atom effect. The resulting materials exhibit an outstanding waveguiding performance in the NIR spectral region. Combined spectroscopic and time-dependent density functional theory (TDDFT) analyses reveal that the Rh(I)-Pt(II) interaction directly modulates the excited state character, enhancing the radiative decay while suppressing nonradiative decay pathways. This work establishes heterometallic M-M cooperativity as a design principle for high-performance NIR phosphorescence, opening avenues for tailored NIR phosphorescent materials beyond conventional homometallic frameworks.
Collapse
Affiliation(s)
- Ning Zhou
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yangbo Zhang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Xiong Wang
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, China
| | - Peng Yang
- Department of Chemistry, South University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Wei Lu
- Department of Chemistry, South University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qingyun Wan
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| |
Collapse
|
2
|
Yang D, Li L, Zhang X, Guo S, Xu Z, Cheng K, Wang Y, Xu Q, Zeng H. Achieving Excitation Wavelength Dependence of Cesium Cadmium Halogen Quantum Dots with Multi-Excitonic Emission Center. J Phys Chem Lett 2025:5480-5487. [PMID: 40423667 DOI: 10.1021/acs.jpclett.5c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Excitation wavelength-dependent emission or multiexcitonic emission in metal halide perovskite crystal is observed and has demonstrated broad application in the fields of imaging and lighting. However, these two interesting luminescence phenomena in all-inorganic lead-free halide perovskite quantum dots (QDs) are largely unexplored. Here, we have successfully synthesized CsCdCl3-xBrx (0 ≤ x ≤ 1.5) QDs with a uniform size distribution that present excitation wavelength-dependent emission caused by surface defect states and two other different emissions including the intrinsic host self-trapped excitons and Br-induced extrinsic self-trapped excitons, respectively. Structural characterizations and the calculated distortion index confirm that Br- ions partially occupy the sites of Cl- ions of the [CdCl6]4- octahedron with both C3v and D3d symmetry, which induces the local lattice distortion of CsCdCl3 QDs and promotes the formation of multiexcitonic emission. Meanwhile, the crystal structures of pure and Br-activated CsCdCl3 QDs are demonstrated by element mapping and surface states. Combined with the theory calculations, temperature-dependent photoluminescence measurements are performed to clarify the multiexcitonic emission mechanism and further verify the broad green emission comes from [CdCl6-nBrn]4- in the D3d and C3v symmetries. These findings put forward an effective strategy to design the novel excitation wavelength-dependent or multiexcitonic emissive perovskite and provide exciting opportunities for the application in X-ray images.
Collapse
Affiliation(s)
- Dandan Yang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ling Li
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xuebin Zhang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Shiying Guo
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Zhiheng Xu
- Department of Nuclear Science and Technology, Key Laboratory of Advanced Nuclear Technology and Radiation Protection, Ministry of Industry and Information Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Kaiye Cheng
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Ying Wang
- College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
| | - Qin Xu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haibo Zeng
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
3
|
Rex T, Mößer T, Vilela RRC, Hepp A, Grashoff C, Strassert CA. Supramolecular Assembly of Water-Soluble Platinum(II) Complexes: From Emission Modulation to Cell Imaging in Specific Organelles. Chemistry 2025; 31:e202404432. [PMID: 40297915 DOI: 10.1002/chem.202404432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Indexed: 04/30/2025]
Abstract
The control of self-organized metal complexes presents advantages regarding the modulation of luminescence through dynamic assembly, rendering them promising for bioimaging. Herein, we demonstrate a strategy towards a series of amphiphilic Pt(II) complexes featuring bis-cyclometalated ligands as tetradentate luminophores, which exhibit enhanced water solubility and tuneable self-assembly properties. The resulting nanostructures can be precisely controlled by adjusting concentration and solvent composition, yielding switchable luminescence from red (i. e., excimer-based) to green (i. e., monomer-centred) and reversible (dis-)assembly of the aggregates. Cytotoxicity assays confirmed the innocuous nature of these luminophores at concentrations below 10 μM, while cellular uptake studies demonstrated effective internalization in both living and fixed cells. Using photoluminescence lifetime imaging micro(spectro)scopy, we determined that the complexes localized preferentially within lysosomes of living cells, while accumulating in the nuclei of fixed cells, with differences in photophysical behavior depending on whether the species were monomeric or excimeric in nature. These new findings provide insights into the systematic design of water-soluble Pt(II)-based luminophores with photophysical properties controlled by supramolecular interactions, underlining their potential for use in cellular imaging and diagnostics.
Collapse
Affiliation(s)
- Tobias Rex
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28-30, D-48149, Münster, Germany
- CeNTech, Universität Münster, Heisenbergstraße 11, D-48149, Münster, Germany
| | - Theresa Mößer
- Institute of Integrative Cell Biology and Physiology, Universität Münster, Schlossplatz 5, D-48149, Münster, Germany
| | - Raquel R C Vilela
- São Carlos Institute of Physics, University of São Paulo, 13566-590, São Carlos, Brazil
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28-30, D-48149, Münster, Germany
| | - Carsten Grashoff
- Institute of Integrative Cell Biology and Physiology, Universität Münster, Schlossplatz 5, D-48149, Münster, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstraße 28-30, D-48149, Münster, Germany
- CeNTech, Universität Münster, Heisenbergstraße 11, D-48149, Münster, Germany
| |
Collapse
|
4
|
Liu Y, Liu Y, Cheng F, Gao C, Yang H, Wei W, He Q, Li B, Bu W. Mechanochromic Phosphorescence of Rhodium(I) Isocyanide Complexes in the NIR-II Window. Inorg Chem 2025; 64:9993-10000. [PMID: 40351266 DOI: 10.1021/acs.inorgchem.5c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Luminescent mechanochromic compounds that cover the second near-infrared (NIR-II, 950-1700 nm) window would provide an interesting type of mechanoresponsive materials and can be applicable in various fields. In this work, we report the synthesis of amino acid-functionalized tetrakis(phenylisocyano)rhodium(I) complexes and their phosphorescent mechanochromism in the entire NIR-II region. Grinding the pristine yellow polycrystalline complexes leads to the formation of green amorphous phases, and correspondingly, the emission wavelength was redshifted from 976 to 1220-1290 nm. Both of the NIR-II emission bands have large Stokes shifts and microsecond luminescence lifetimes, indicative of their phosphorescent nature. Upon successive solvent fumigation, the green amorphous powders convert back to the yellow polycrystalline complexes with an emission wavelength of 976 nm. Such reversible phosphorescence changes were found to arise from the reversible formation of trimeric aggregates via close Rh(I)···Rh(I) contacts. To the best of our knowledge, this research demonstrates unexplored examples of luminescent mechanochromic materials in the NIR-II window before or after exposure to mechanical stimulus.
Collapse
Affiliation(s)
- Yujia Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yilin Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Fan Cheng
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chenxiang Gao
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hanrui Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Wenxuan Wei
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
5
|
Snetkov D, Luginin M, Gerasimova T, Paderina A, Grachova E. Bis-alkynylphosphine Oxide Pt(II) Complexes: Aggregation-Induced Phosphorescence Enhancement and Mechanochromic Luminescence Properties. Inorg Chem 2025; 64:8565-8577. [PMID: 40255083 DOI: 10.1021/acs.inorgchem.4c05525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Four bis-alkynyl Pt(II) complexes [Pt(dtbpy)(C2-L-P(O)Ph2)2] with dtbpy = 4,4'-ditertbutyl-2,2'-bipyridine and alkynylphosphine oxide ligands (L = no linker, Pt0; phenyl, Pt1; biphenyl, Pt2; naphthyl, Pt3) have been synthesized and fully characterized by spectroscopic methods and single crystal XRD analysis. It has been found that the nature of the π-conjugated linker is a key factor in fine-tuning the emission energy of the complexes in solution and in achieving the aggregation-induced phosphorescence enhancement (AIPE) effect for complex Pt0 with the most compact linker. Phosphine oxide fragment, which can be involved in weak intermolecular interactions, promotes the existence of two solid forms with different luminescence properties. These two forms can be switched from one to another upon grinding, thus featuring distinct mechanochromic luminescence properties. TDDFT calculations are consistent with the experimental results and assign mixed 3MLCT and 3LL'CT solution emission character and 3MMLCT and 3LL'CT emission nature in supramolecular dimeric structures.
Collapse
Affiliation(s)
- Dmitry Snetkov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| | - Maksim Luginin
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan 420088, Russia
| | - Aleksandra Paderina
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, St. Petersburg 198504, Russia
| |
Collapse
|
6
|
Yoshida M, Kato M. Control of Pt···Pt interactions in Pt(II) complex crystals as luminescence sensors for the detection of external stimuli: recent achievements and perspectives. ANAL SCI 2025:10.1007/s44211-025-00778-w. [PMID: 40304882 DOI: 10.1007/s44211-025-00778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/13/2025] [Indexed: 05/02/2025]
Abstract
This review summarizes recent advances in the control of the luminescent chromic behavior of Pt(II) complex crystals, focusing on the design strategies of their molecular and packing structures. Square-planar Pt(II) complexes exhibit unique chromic luminescence owing to flexible Pt···Pt interactions, enabling their use as highly sensitive optical sensors to visualize external stimuli and environmental changes. However, the energy of the Pt···Pt interaction is relatively weak, making it difficult to precisely design and control the chromic luminescence based on the Pt···Pt interactions. This review discusses the challenging control of Pt···Pt interactions based on molecular assembly and presents design strategies using hydrogen bonding, halogen interactions, π-π stacking, and ion-pairing and counterion effects, with specific examples for each approach. Future research will focus on expanding analytical approaches, integrating these materials into sensing devices, and exploring synergies between chromic luminescence and other physical properties such as magnetism and conductivity. These advancements are expected to lead to innovative sensing technologies and significant breakthroughs in analytical chemistry and materials science.
Collapse
Affiliation(s)
- Masaki Yoshida
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan.
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Masako Kato
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 1 Gakuen-Uegahara, Sanda, Hyogo, 669-1330, Japan.
| |
Collapse
|
7
|
Song M, Liu M, Zhang X, Qin H, Sun J, Wang J, Peng Q, Zhao Z, Zhao G, Yan X, Chang Y, Zhang Y, Wang D, Wang J, Zhao J, Qing G. An excitation-wavelength-dependent organic photoluminescent molecule with high quantum yield integrating both ESIPT and PCET mechanisms. Chem Sci 2025:d4sc08197h. [PMID: 40336988 PMCID: PMC12053778 DOI: 10.1039/d4sc08197h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
Excitation wavelength-dependent (Ex-De) chromophores, which exhibit changes in spectral composition with varying excitation wavelengths, have garnered significant interest. However, the pursuit of novel photoluminescence (PL) mechanisms and high luminescence quantum yields is facing huge challenges. Here, we discover that the introduction of a spinacine moiety to 2-(2-hydroxy-5-methylphenyl)benzothiazole, a traditional excited-state intramolecular proton transfer (ESIPT) fluorophore, results in a novel Ex-De PL molecule. The luminescent color of this compound can be effectively modulated from greenish-blue to yellow-green by adjusting either the excitation wavelength or temperature. Transient absorption and spectroelectrochemistry spectra elucidate the underlying mechanism, demonstrating the roles of ESIPT and proton-coupled electron transfer (PCET). When embedded in a poly(vinyl alcohol) film, the composite exhibits remarkable Ex-De PL behavior, achieving absolute fluorescence quantum yields of 55.6% (λ ex: 396 nm) and 69.6% (λ ex: 363 nm), as well as phosphorescence at room temperature. These properties highlight its potential for multiple encryption features, enhancing its application in anti-counterfeiting technologies.
Collapse
Affiliation(s)
- Mengyuan Song
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Meng Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Haijuan Qin
- Research Centre of Modern Analytical Technology, Tianjin University of Science and Technology Tianjin 300457 P. R. China
| | - Jinglu Sun
- Key Laboratory of Chemical Lasers, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Juanjuan Wang
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qian Peng
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Zhiwei Zhao
- Laboratory of Advanced Spectroelectrochemistry and Li-ion Batteries, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Guohui Zhao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Xianchang Yan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yongxin Chang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Yahui Zhang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Dongdong Wang
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, Frontiers Science Centre for Smart Materials, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Guangyan Qing
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
8
|
Li Y, Huang Z, Shao A, Wu Z, He Z, Tian H, Ma X. Aqueous up-conversion organic phosphorescence and tunable dual emission in a single-molecular emitter. Chem Sci 2025; 16:6290-6297. [PMID: 40092596 PMCID: PMC11907368 DOI: 10.1039/d4sc08330j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/03/2025] [Indexed: 03/19/2025] Open
Abstract
Materials exhibiting up-conversion room-temperature phosphorescence (RTP) with multi-emissive properties in aqueous solutions hold significant potential for optical imaging and sensing applications. However, achieving such photophysical materials within a molecular emitter remains a formidable challenge. Herein, we report a series of single-molecule chromophores demonstrating aqueous tunable up-conversion RTP and fluorescence dual emission. The RTP and fluorescence emission could be finely adjusted by manipulating the excitation wavelength within the visible and near-infrared range, enabling dynamic color modulation across the entire visible spectrum from blue to orange-red. Furthermore, we utilized the up-conversion RTP capability of a single-molecular emitter to achieve two-photon and time-resolved imaging. More importantly, through ratiometric regulation of phosphorescence by temperature combined with stable fluorescence as an internal reference, the RTP molecule enabled reliable temperature sensing in living cells. This study unveils a highly efficient strategy for fabricating intelligent organic RTP materials and sensors featuring dynamically controlled multi-emission.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
- School of Chemical Engineering & Pharmacy, Pharmaceutical Research Institute, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology Wuhan 430205 China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Aixing Shao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhiqin Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Zhenyi He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| | - Xiang Ma
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
9
|
Lv XT, Zheng D, Wan FS, Liu YL, Guo ZH, Cao DK, Yang XL. Pt(II) Complexes Showing Multicolor Emissions from Nanoparticles in Solution and Reversible Grinding- and Heating-Induced Luminescence Switching in Solid State. Chemistry 2025; 31:e202403886. [PMID: 39918249 DOI: 10.1002/chem.202403886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Indexed: 03/27/2025]
Abstract
To well understand luminescence modulation of Pt(II) complexes by inter-molecular interactions, three platinum complexes [Pt(moppy)Cl(L)] have been synthesized (Scheme 1) through incorporating the same C^N ligand moppyH=2-(4-methoxyphenyl)pyridine, while different auxillary ligands L: SEt2 in 1, iccy=isocyanocyclohexane in 2, and icna=isocyanonaphthalene in 3. Crystal structures indicate that neighbouring molecules are connected through π⋅⋅⋅π interactions, forming supramolecular dimer structures in both 1 and 2, while supramolecular chain structure in 3. In a CH3CN-H2O mixed solvent, complexes 1-3 reveal enhanced luminescence due to nanoparticle formation. Upon increasing water fraction from 0 % to 90 %, complex 1 exhibits increasing green luminescence with two broad emissions at 450 and 516 nm. In contrast, both 2 and 3 show multicolour emissions, transiting from blue to yellow-green for 2, and from blue green to orange red for 3. Moreover, complex 3 exhibits reversible luminescence switching between on state with orange-red emission and off state upon alternately grinding and heating. In this paper, we discuss the influences of molecular structures and inter-molecular π⋅⋅⋅π and Pt-Pt interactions on luminescence behaviours of complexes 1-3.
Collapse
Affiliation(s)
- Xin-Tong Lv
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Dong Zheng
- National Laboratory of Solid State Microstructures, Collaborative Innovation Centre of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, P. R. China
- Atom Manufacturing Institute (AMI), Nanjing, 211805, P. R. China
| | - Fu-Shun Wan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yi-Lei Liu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zi-Hao Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Deng-Ke Cao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xiao-Liang Yang
- Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
10
|
Yang X, Zhao H, Wen Z, Bai Y, Meng Q, Sun H, Ding X, Jiang J, Huang D, Yu WW, Liu F. On-Off Switching of Singlet Self-Trapped Exciton Emission Endows Antimony-Doped Indium Halides with Excitation-Wavelength-Dependent Luminescence. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407892. [PMID: 39487640 DOI: 10.1002/smll.202407892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Indexed: 11/04/2024]
Abstract
Excitation-wavelength-dependent (Ex-De) emitters are a fascinating category of luminescent materials whose emission properties vary with the wavelength of the light used for excitation. Antimony (Sb3+)-doped indium (In)-based metal halides are efficient light emitters; however, the peak fluorescence emission of most Sb3+-activated In-halide remains independent of the excitation wavelength. Here, the study introduces a new Sb3+-doped In-halide cluster, (BDPA)2InCl5:Sb (BDPA+ = C15H18N+, benzyldimethylphenylammonium), which demonstrates efficient Ex-De emission originating from the on-off switchable fluorescence behavior of singlet self-trapped exciton (STE) in 5-coordinate Sb3+ dopant. Interestingly, when excited within the range of 240-370 nm, photoluminescence (PL) spectra of (BDPA)2InCl5:Sb show both singlet and triplet STE emission. However, under excitation wavelengths of 370 to 420 nm, the singlet STE emission is absent, resulting in a noticeable correlated color temperature change from 1700 to 3800 K. The study provides a new approach to designing color-tunable Sb3+-based luminophores, and also presents a novel application scenario for the widely recognized Sb3+ doping strategy.
Collapse
Affiliation(s)
- Xinyu Yang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Hongyuan Zhao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Ziying Wen
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Yunfei Bai
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Qichao Meng
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Haibo Sun
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| | - Xihong Ding
- Anhui Province Quartz Sand Purification and Photovoltaic Glass Engineering Research Center, Chuzhou, 233100, P. R. China
| | - Junke Jiang
- Univ Rennes, ENSCR, CNRS, ISCR-UMR 6226, Rennes Cedex, F-35000, France
| | - Dan Huang
- State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - William W Yu
- School of Chemistry and Chemical Engineering, Ministry of Education, Key Laboratory of Special Functional Aggregated Materials, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, Shandong University, Jinan, 250100, P. R. China
- Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Shandong University, Qingdao, 266237, P. R. China
| | - Feng Liu
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
11
|
Liu X, Liu J, Zhu D, Yan X, Chen J, Duan L, Kang Y, Ma D. Structural Rigidification Strategy Based on Self-Assembly Enabled Reversible Excited-State Conversion of Iridium(III) Complexes for Multiple-Stimulus-Responsive Data Encryption. J Am Chem Soc 2024; 146:29955-29963. [PMID: 39405363 DOI: 10.1021/jacs.4c12454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Stimulus-responsive chromic materials exhibit color-switching properties under specific external stimuli and have been widely used in various fields. Transition-metal complexes show great potential applications as promising candidates for stimulus-responsive chromic materials, as their excited states not only depend on the chemical composition but are also affected by the intermolecular stacking modes. Owing to the intrinsic difficulty in the ordered stacking of the octahedral configuration, changing the stacking modes of iridium(III) complexes for multiple-stimulus responsiveness remains a significant challenge. In this work, we propose a structural rigidification strategy based on self-assembly to reversibly regulate the excited states of iridium(III) complexes, therefore achieving color switch under different stimulus conditions. We prepare cationic iridium(III) complexes by using tetrakis(perfluorophenyl)-borate ([B(PhF5)4]-) as the counterion, whose matching tetrahedral configuration and electron-deficient aromaticity enables polar-π interaction with the octahedral iridium(III) cations, inducing self-assembly to form structural rigidification. The structural rigidity restricts the large conformational changes of the metal-to-ligand charge transfer (3MLCT) excited state, and facilitates the conversion from the 3MLCT to the ligand-center (3LC) excited state in aggregated states. The excited-state conversion results in a 54 nm blue shift (from yellow to sky blue) in the photoluminescence spectra. As a result, we report a series of cationic iridium(III) complexes with different responses to low temperature, vapor fuming, and mechanical force, therefore achieving multiple-stimulus-responsive data encryption. Our work provides a novel strategy to achieve ordered stacking of octahedral complexes, shows a deeper understanding of the photophysical processes of transition-metal complexes, and offers a new perspective to develop multiple-stimulus-responsive chromic materials.
Collapse
Affiliation(s)
- Xiangyu Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
| | - Jing Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Danlei Zhu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
| | - Xinghua Yan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
| | - Jiawei Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| | - Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing Beijing 100083, P. R. China
| | - Dongxin Ma
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
12
|
Rico A, Le Poul P, Rodríguez-López J, Achelle S, Gauthier S. Exploring structural and optical properties of a new series of soft salts based on cyclometalated platinum complexes. Dalton Trans 2024; 53:11417-11425. [PMID: 38900145 DOI: 10.1039/d4dt01188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A series of nine new soft salts based on two platinum(II) complexes, namely ([Pt(C^N)(CN)2]-[Pt(C^N)(en)]+) (en = ethane-1,2-diamine), has been developed and synthesized. Their photophysical properties in both solution and the solid state were described. All soft salt complexes exhibit phosphorescence emission with PLQY in the solid state up to 0.36. Most of these materials displayed aggregation-induced emission (AIE) or aggregation-induced emission enhancement (AIEE) in water/DMSO solutions as the water ratio increased. Structure-property relationships were analyzed in relation to emission properties. The presence of the free nitrogen atoms in soft salt complexes with a C^N pyrimidine-based ligand allowed for reversible sensitivity to acidic vapors, resulting in the quenching of phosphorescence emission. Additionally, for selected soft salts, we described reversible vapochromism behaviour, making these new materials interesting for multi-detection purposes in anti-counterfeiting applications.
Collapse
Affiliation(s)
- Alexandre Rico
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Pascal Le Poul
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Julián Rodríguez-López
- Universidad de Castilla-La Mancha, Área de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas, Avda. Camilo José Cela 10, 13071, Ciudad Real, Spain
| | - Sylvain Achelle
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| | - Sébastien Gauthier
- Univ. Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes), UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
13
|
Lei X, Ai Y, Shu Z, Wang W, Li Y. Precise Regulation the Multiemission Based on Soft Double Salt for Information Encryption. Inorg Chem 2024; 63:11354-11360. [PMID: 38842865 DOI: 10.1021/acs.inorgchem.4c01399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Manipulation of multiemissive luminophores is meaningful for exploring luminescent materials. Herein, we report a soft double salt assembly strategy that could result in well-organized nanostructures and different luminescence based on multiple weak intermolecular interactions thanks to the existence of electrostatic attraction between the anionic and cationic platinum(II) complexes. The cationic complexes B1 and B2 can coassemble with anionic complex A, respectively, and the emission switches from monomeric and excimeric emission to the triplet metal-metal-to-ligand charge transfer (3MMLCT) along with morphology changes from 0-dimensional (0-D) nanospheres to 3-dimensional (3-D) nanostructures. It is demonstrated that an isodesmic growth mechanism is adopted during the spontaneous self-assembly process, and the relative negative ΔG values make the anionic and cationic complex molecules prefer to form aggregates based on π-π stacking, Pt···Pt interactions, and electrostatic interactions. The coassembly strategy between anionic and cationic complexes endows them with multicolor luminescent and apparent color as optical materials for advanced information encryption.
Collapse
Affiliation(s)
- Xin Lei
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yeye Ai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhu Shu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Wei Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongguang Li
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
14
|
He X, Yu J, Yin R, Zhang P, Xiao C, Chen X. A Nanoscale Trans-Platinum(II)-Based Supramolecular Coordination Self-Assembly with a Distinct Anticancer Mechanism. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312488. [PMID: 38301714 DOI: 10.1002/adma.202312488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Drug resistance significantly hampers the clinical application of existing platinum-based anticancer drugs. New platinum medications that possess distinct mechanisms of action are highly desired for the treatment of Pt-resistant cancers. Herein, a nanoscale trans-platinum(II)-based supramolecular coordination self-assembly (Pt-TCPP-BA) is prepared via using trans-[PtCl2(pyridine)(NH3)] (transpyroplatin), tetracarboxylporphyrin (TCPP), and benzoic acid (BA) as building blocks to combat drug resistance in platinum-based chemotherapy. Mechanistic studies indicate that Pt-TCPP-BA shows a hydrogen-peroxide-responsive dissociation behavior along with the generation of bioactive trans-Pt(II) and TCPP-Pt species. Different from cisplatin, these degradation products interact with DNA via interstrand cross-links and small groove binding, and induce significant upregulation of cell-death-related proteins such as p53, cleaved caspase 3, p21, and phosphorylated H2A histone family member X in cisplatin-resistant cancer cells. As a result, Pt-TCPP-BA exhibits potent killing effects against Pt-resistant tumors both in vitro and in vivo. Overall, this work not only provides a new platinum drug for combating drug-resistant cancer but also offers a new paradigm for the development of platinum-based supramolecular anticancer drugs.
Collapse
Affiliation(s)
- Xidong He
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jie Yu
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Renyong Yin
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Peng Zhang
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Jilin Biomedical Polymers Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
15
|
Arimura S, Matsumoto I, Sekiya R, Haino T. Intermediate Color Emission via Nanographenes with Organic Fluorophores. Angew Chem Int Ed Engl 2024; 63:e202315508. [PMID: 38191241 DOI: 10.1002/anie.202315508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Photoluminescence (PL) color can be tuned by mixing fluorophores emitting the three primary colors in an appropriate ratio. When color tuning is achieved on a single substrate, we can simplify device structures. We demonstrated that nanographenes (NGs), which are graphene fragments with a size of tens of nanometers, could be utilized as carriers of fluorophores. The addition of red- and blue-light-emitting fluorophores on the edge successfully reproduced the purple light. The relative PL intensities of the fluorophores could be regulated by the excitation wavelength, enabling multicolor emission between blue and red light. Owing to the triphenylamine units of the fluorophores, the NGs showed PL enhancement due to aggregation. This characteristic was valuable for the fabrication of solid polymer materials. Specifically, the functionalized NGs can be dispersed into polyvinylidene difluoride. The resultant polymer films emitted red, blue, and purple color. Our study demonstrated the potential applicability of NGs for fluorophore carriers capable of reproducing intermediate colors of light.
Collapse
Affiliation(s)
- Saki Arimura
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ikuya Matsumoto
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Ryo Sekiya
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Takeharu Haino
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, 2-313 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8527, Japan
| |
Collapse
|
16
|
Yang B, Yan S, Zhang Y, Feng F, Huang W. Stimuli-responsive luminescence from polar cyano/isocyano-derived luminophores via structural tailoring and self-assembly. Dalton Trans 2024; 53:5320-5341. [PMID: 38411983 DOI: 10.1039/d3dt04049f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Polar cyano fragments and their isomeric isocyano counterparts have attracted great attention as stimuli-responsive luminescent materials in a wide range of fields including organic light-emitting diode devices, chemical fluorescent sensors, photoelectric semiconductors, anti-counterfeit products, etc., mainly because of their typical electron-deficient activity, noncovalent recognition ability, and variable coordination capacity. The electron-deficient and polar nature of these blocks have significant effects on the properties of the cyano/isocyano-based luminophore materials, especially concerning their condensed state-dependent electronic structures. Among them, donor-acceptor (D-A) derived unimolecular and co-assembled luminophores have attracted more attention because their large delocalized structures and noncovalent interaction recognition sites can rebuild the electronic transfer character in the aggregative state, thus endowing them with outstanding stimuli-responsive luminescent behavior via intermolecular and intramolecular charge transfer in polytropic morphologies. In this perspective paper, we give a brief introduction on stimuli-responsive organic and coordinated luminophores and the documented typical design concepts and applications in recent years. It is expected that this perspective article will not only summarize the recent developments of polar cyano/isocyano-derived luminophores and their coordination compounds via structural tailoring and self-assembly but also throw light on the future of the design of more sophisticated stimuli-responsive architectures and their versatile properties.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu Province 210093, P. R. China.
- Shenzhen Research Institute of Nanjing University, Shenzhen 518005, P. R. China
| |
Collapse
|
17
|
Honda J, Sugawa K, Honma K, Fukumura S, Katoh R, Tahara H, Otsuki J. Development of excitation power-responsive anti-stokes emission wavelength switching and their energy saving induced by localized surface plasmon resonance. DISCOVER NANO 2024; 19:47. [PMID: 38485894 PMCID: PMC10940560 DOI: 10.1186/s11671-024-03991-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/09/2024] [Indexed: 03/18/2024]
Abstract
We designed an external stimulus-responsive anti-Stokes emission switching using dual-annihilator-based triplet-triplet annihilation upconversion systems. This system, which was constructed by incorporating a palladium porphyrin derivative as a sensitizer and 9,10-diphenylanthracene (DPA) and 9,10-bis(triisopropylsilyl)ethynylanthracene (TIPS) as annihilators into polymer thin films, produced TIPS- and DPA-based anti-Stokes emission under low and high excitation powers, respectively. The mechanism involves the following: under low excitation power, triplet energy transfer from triplet-excited PdOEP to DPA is induced, followed by relay to TIPS. This results in the generation of triplet-excited TIPS, and the subsequent triplet-triplet annihilation between them produces TIPS-based anti-Stokes emission. Conversely, under high excitation power, the high-density triplet-excited DPA, generated through triplet energy transfer from PdOEP, undergoes triplet-triplet annihilation among themselves, resulting in the generation of DPA-based anti-Stokes emission. Additionally, we achieved energy savings by reducing the required excitation power for switching through the utilization of plasmonic metal nanoparticles. The strong local electromagnetic fields associated with the localized surface plasmon resonance of metal nanoparticles enhance the photoexcitation efficiency of PdOEP, subsequently increasing the density of triplet-excited DPA. As a result, anti-Stokes emission switching becomes feasible at lower excitation powers.
Collapse
Affiliation(s)
- Jotaro Honda
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo, 101-8308, Japan
| | - Kosuke Sugawa
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo, 101-8308, Japan
| | - Koki Honma
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo, 101-8308, Japan
| | - Seiya Fukumura
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo, 101-8308, Japan
| | - Ryuzi Katoh
- Department of Chemical Biology and Applied Chemistry, College of Engineering, Nihon University, Koriyama, Fukushima, 963-8642, Japan
| | - Hironobu Tahara
- Graduate School of Engineering, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Joe Otsuki
- Department of Materials and Applied Chemistry, College of Science and Technology, Nihon University, Chiyoda, Tokyo, 101-8308, Japan
| |
Collapse
|
18
|
Rzepiela J, Liberka M, Zychowicz M, Wang J, Tokoro H, Piotrowska K, Baś S, Ohkoshi SI, Chorazy S. SHG-active luminescent thermometers based on chiral cyclometalated dicyanidoiridate(iii) complexes. Inorg Chem Front 2024; 11:1366-1380. [PMID: 38420599 PMCID: PMC10897766 DOI: 10.1039/d3qi02482b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024]
Abstract
Multifunctional optical materials can be realized by combining stimuli-responsive photoluminescence (PL), e.g., optical thermometry, with non-linear optical (NLO) effects, such as second-harmonic generation (SHG). We report a novel approach towards SHG-active luminescent thermometers achieved by constructing unique iridium(iii) complexes, cis-[IrIII(CN)2(R,R-pinppy)2]- (R,R-pinppy = (R,R)-2-phenyl-4,5-pinenopyridine), bearing both a chiral 2-phenylpyridine derivative and cyanido ligands, the latter enabling the formation of a series of molecular materials: (TBA)[IrIII(CN)2(R,R-pinppy)2]·2MeCN (1) (TBA+ = tetrabutylammonium) and (nBu-DABCO)2[IrIII(CN)2(R,R-pinppy)2](i)·MeCN (2) (nBu-DABCO+ = 1-(n-butyl)-1,4-diazabicyclo-[2.2.2]octan-1-ium) hybrid salts, (TBA)2{[LaIII(NO3)3(H2O)0.5]2[IrIII(CN)2(R,R-pinppy)2]2} (3) square molecules, and {[LaIII(NO3)2(dmf)3][IrIII(CN)2(R,R-pinppy)2]}·MeCN (4) coordination chains. Thanks to the chiral pinene group, 1-4 crystallize in non-centrosymmetric space groups leading to SHG activity, while the N,C-coordination of ppy-type ligands to Ir(iii) centers generates visible charge-transfer (CT) photoluminescence. The PL characteristics are distinctly temperature-dependent which was utilized in achieving ratiometric optical thermometry below 220 K. The PL phenomena were rationalized by DFT/TD-DFT calculations indicating an MLCT-type of the emission in obtained Ir(iii) complexes with the rich vibronic structure providing a few emission bands that variously depend on temperature due to the role of thermally activated vibrations. As these crucial vibrational modes depend on the crystal lattice, the thermometry performance differs within 1-4 being the most efficient in 4 while the SHG is by far the best also for 4. This proves that pinene-functionalized cyclometalated dicyanidoiridates(iii) are great prerequisites for tunable PL-NLO conjunction with the most effective multifunctionality ensured by the insertion of these anions into bimetallic frameworks.
Collapse
Affiliation(s)
- Jan Rzepiela
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Michal Liberka
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Mikolaj Zychowicz
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Junhao Wang
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Hiroko Tokoro
- Department of Materials Science, Faculty of Pure and Applied Science, University of Tsukuba 1-1-1 Tennodai Tsukuba Ibaraki 305-8573 Japan
| | - Kinga Piotrowska
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Sebastian Baś
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
19
|
Zhao H, Wang Q, Wen Z, Sun H, Ji S, Meng X, Zhang R, Jiang J, Tang Z, Liu F. Excitation Wavelength-Dependent Fluorescence of a Lanthanide Organic Metal Halide Cluster for Anti-Counterfeiting Applications. Angew Chem Int Ed Engl 2023; 62:e202316336. [PMID: 37966337 DOI: 10.1002/anie.202316336] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
The achievement of significant photoluminescence (PL) in lanthanide ions (Ln3+ ) has primarily relied on host sensitization, where energy is transferred from the excited host material to the Ln3+ ions. However, this luminous mechanism involves only one optical antenna, namely the host material, which limits the accessibility of excitation wavelength-dependent (Ex-De) PL. Consequently, the wider application of Ln3+ ions in light-emitting devices is hindered. In this study, we present an organic-inorganic compound, (DMA)4 LnCl7 (DMA+ =[CH3 NH2 CH3 ]+ , Ln3+ =Ce3+ , Tb3+ ), which serves as an independent host lattice material for efficient Ex-De emission by doping it with trivalent antimony (Sb3+ ). The pristine (DMA)4 LnCl7 compounds exhibit high luminescence, maintaining the characteristic sharp emission bands of Ln3+ and demonstrating a high PL quantum yield of 90-100 %. Upon Sb3+ doping, the compound exhibits noticeable Ex-De emission with switchable colors. Through a detailed spectral study, we observe that the prominent energy transfer process observed in traditional host-sensitized systems is absent in these materials. Instead, they exhibit two independent emission centers from Ln3+ and Sb3+ , each displaying distinct features in luminous color and radiative lifetime. These findings open up new possibilities for designing Ex-De emitters based on Ln3+ ions.
Collapse
Affiliation(s)
- Hongyuan Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Qiujie Wang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Ziying Wen
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Haibo Sun
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Sujun Ji
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Xuan Meng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Ruiling Zhang
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| | - Junke Jiang
- Materials Simulation and Modelling, Department of Applied Physics, and Center for Computational Energy Research, Department of Applied Physics, Eindhoven University of Technology, 5600 MB, Eindhoven, The Netherlands
- Current address: Univ. Rennes, ENSCR, CNRS, ISCR-UMR 6226, 35000, Rennes, France
| | - Zhe Tang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
| | - Feng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, 266237, P. R. China
| |
Collapse
|
20
|
Sardari N, Abdollahi A, Farokhi Yaychi M. Chameleon-like Photoluminescent Janus Nanoparticles as Full-Color Multicomponent Organic Nanoinks: Combination of Förster Resonance Energy Transfer and Photochromism for Encryption and Anticounterfeiting with Multilevel Authentication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035478 DOI: 10.1021/acsami.3c14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing the security by the multilevel authentication mechanism was the most significant challenge in recent years for the development of anticounterfeiting inks based on photoluminescent nanomaterials. For this purpose, the greatest strategy is the use of multicomponent organic materials and a combination of Förster resonance energy transfer (FRET) with the intelligent behavior of photochromic compounds like spiropyran. Here, the hydroxyl-functionalized polymer nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different compositions (0-30 wt % of HEMA). Results illustrated that the size of the nanoparticles changed from 64 to 204 nm, and a morphology evolution from spherical to Janus shape was observed by increasing the concentration of HEMA. Photoluminescent inks with red, green, and blue (RGB) fluorescence emissions were prepared by modification of nanoparticles containing 15 wt % of HEMA with spiropyran, fluorescein, and coumarin, respectively. To develop dual-color and multicolor photoluminescent inks that display static and dynamic emission, RGB latex samples were mixed together in different ratios and printed on cellulosic paper. Results display that the fluorescence emission of developed inks can be photoswitched between different statuses, including white to blue, green to blue, green to red/orange, purple to pink, and white to pink, utilizing the FRET phenomenon, photochromism, and a combination of both phenomena. Samples containing spiropyran displayed dynamic color changes in the emission to red, orange, and pink depending on the composition. Hence, developed dual-color and multicolor photoluminescent inks were used for printing of security tags and also painting of some hand-drawn artworks, which obtained results indicating high printability, maximum fluorescence intensity, high resolution, and fast responsivity upon UV-light irradiations of 254 nm (for static mode) and 365 nm (for dynamic mode). In addition, the multilevel authentication mechanism by a static emission under UV-light irradiation of 254 nm, a dynamic emission under UV-light irradiation of 365 nm, and photochromic color change was observed, resulting in increasing the security of developed inks. Actually, developed multicolor photoluminescent inks are the most efficient candidates for developing a new category of chameleon-like high-security anticounterfeiting inks that have tunable optical properties and complex multilevel authentication mechanisms.
Collapse
Affiliation(s)
- Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mojtaba Farokhi Yaychi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
21
|
Ren YY, Deng BY, Liao ZH, Zhou ZR, Tung CH, Wu LZ, Wang F. A Smart Single-Fluorophore Polymer: Self-Assembly Shapechromic Multicolor Fluorescence and Erasable Ink. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307971. [PMID: 37743568 DOI: 10.1002/adma.202307971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Indexed: 09/26/2023]
Abstract
A novel smart fluorescent polymer polyethyleneimine-grafted pyrene (PGP) is developed by incorporating four stimuli-triggers at molecular level. The triggers are amphiphilicity, supramolecular host-guest sites, pyrene fluorescence indicator, and reversible chelation sites. PGP exhibits smart deformation and shape-dependent fluorescence in response to external stimuli. It can deform into three typical shapes with a characteristic fluorescence color, namely, spherical core-shell micelles of cyan-green fluorescence, standard rectangular nanosheets of yellow fluorescence, and irregular branches of deep-blue fluorescence. A quasi-reversible deformation between the first two shapes can be dynamically manipulated. Moreover, driven by reversible coordination and the resulting intramolecular photoinduced electron transfer, PGP can be used as an aqueous fluorescence ink with erasable and recoverable properties. The fluorescent patterns printed by PGP ink on paper can be rapidly erased and recovered by simple spraying a sequence of Cu2+ and ethylene diamine tetraacetic acid aqueous solutions. This erase/recover transformation can be repeated multiple times on the same paper. The multiple stimulus responsiveness of PGP makes it have potential applications in nanorobots, sensing, information encryption, and anticounterfeiting.
Collapse
Affiliation(s)
- Ying-Yi Ren
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Bo-Yi Deng
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Hao Liao
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Rong Zhou
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Wang
- Key Laboratory of Materials Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology) of Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
22
|
Wei W, Wang J, Kang X, Li H, He Q, Chang G, Bu W. Synthesis, supramolecular aggregation, and NIR-II phosphorescence of isocyanorhodium(i) zwitterions. Chem Sci 2023; 14:11490-11498. [PMID: 37886099 PMCID: PMC10599467 DOI: 10.1039/d3sc03508e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/30/2023] [Indexed: 10/28/2023] Open
Abstract
Development of new second near-infrared (NIR-II, 1000-1700 nm) luminophores is highly desirable, and d8 square-planar metal complexes with NIR-II phosphorescence have been rarely reported. Herein, we explore an asymmetric coordination paradigm to achieve the first creation of NIR-II phosphorescent isocyanorhodium(i) zwitterions. They show a strong tendency for aggregation in solution, arising from close Rh(i)⋯Rh(i) contacts that are further intensified by π-π stacking interactions and the hydrophilic-hydrophobic effect. Based on such supramolecular aggregation, zwitterions 2 and 5 are found to yield NIR-II phosphorescence emissions centered at 1005 and 1120 (1210, shoulder) nm in methanol-water mixed solvents, respectively. These two bands show red shifts to 1070 and 1130 (1230, shoulder) nm in the corresponding polymer nanoparticles in water. The resulting polymer nanoparticles can brighten in vivo tumor issues in the NIR-II region with a long-circulating time. In view of the synthetic diversity established by the asymmetric coordination paradigm, this work provides an extraordinary opportunity to explore NIR-II luminophores.
Collapse
Affiliation(s)
- Wenxuan Wei
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Jun Wang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China Hengyang 421001 China
| | - Xiaomei Kang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Haoquan Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Guanjun Chang
- State Key Laboratory of Environment-Friendly Energy Materials & School of Material Science and Engineering, Southwest University of Science and Technology Mianyang 621010 China
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences Lanzhou 730000 China
| |
Collapse
|
23
|
Ai Y, Ni Z, Shu Z, Zeng Q, Lei X, Zhu Y, Zhang Y, Fei Y, Li Y. Supramolecular Strategy to Achieve Distinct Optical Characteristics and Boosted Chiroptical Enhancement Based on the Closed Conformation of Platinum(II) Complexes. Inorg Chem 2023. [PMID: 37365822 DOI: 10.1021/acs.inorgchem.3c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Synthesis of chiral molecules for understanding and revealing the expression, transfer, and amplification of chirality is beneficial to explore effective chiral medicines and high-performance chiroptical materials. Herein, we report a series of square-planar phosphorescent platinum(II) complexes adopting a dominantly closed conformation that exhibit efficient chiroptical transfer and enhancement due to the nonclassical intramolecular C-H···O or C-H···F hydrogen bonds between bipyridyl chelating and alkynyl auxiliary ligands as well as the intermolecular π-π stacking and metal-metal interactions. The spectroscopic and theoretical calculation results demonstrate that the chirality and optic properties are regulated from the molecular level to hierarchical assemblies. Notably, a 154 times larger gabs value of the circular dichroism signals is obtained. This study provides a feasible design principle to achieve large chiropticity and control the expression and transfer of the chirality.
Collapse
Affiliation(s)
- Yeye Ai
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhigang Ni
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Zhu Shu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Qingguo Zeng
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Xin Lei
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yihang Zhu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yinghao Zhang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yuexuan Fei
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| | - Yongguang Li
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, P. R. China
| |
Collapse
|
24
|
Joy F, Devasia J, Nair Y, Nizam A. Excitation dependent emissive multi stimuli responsive ESIPT organic luminogen for monitoring sea food freshness. Food Chem 2023; 427:136643. [PMID: 37385062 DOI: 10.1016/j.foodchem.2023.136643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Excited state intramolecular proton transfer (ESIPT) organic luminophores with excitation wavelength-dependent color tunability have drawn significant attention due to their exceptional photoluminescent properties in solution and solid state. A novel salicylaldehyde-based Schiff's base molecule, (E)-N'-(3,5-dibromo-2-hydroxybenzylidene)benzohydrazide (BHN) exhibited stimuli (excitation wavelength and pH) induced changes in fluorescence properties which was utilised for applications like trace level water sensing in organic solvents (THF, acetone and DMF), detection and quantification of biogenic amines and anticounterfeiting. In the solution state, BHN rendered a ratiometric detection and quantification of ammonia, diethylamine and trimethylamine, which is further supported by DFT studies. The photoluminescent response of BHN towards various biogenic amines was later utilised to monitor shrimp freshness. The investigation carried out highlights the potential versatility of ESIPT hydrazones, which renders multi stimuli responsive behaviour that can be utilised for water sensing, anticounterfeiting and the detection and quantification of biogenic amines.
Collapse
Affiliation(s)
- Francis Joy
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Jyothis Devasia
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Yamuna Nair
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India
| | - Aatika Nizam
- Department of Chemistry, CHRIST (Deemed to be University), Hosur Road, Bangalore, Karnataka 560029, India.
| |
Collapse
|
25
|
Yuan L, Han S. Benzimidazole-based covalent organic polymer nanosheets incorporated in mesoporous organosilica nanoparticles with excitation-dependent fluorescence for sensing of Cu2+. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Shen Y, An Z, Liu H, Yang B, Zhang Y. Excitation-Dependent Multicolour Luminescence of Organic Materials: Internal Mechanism and Potential Applications. Angew Chem Int Ed Engl 2023; 62:e202214483. [PMID: 36346193 DOI: 10.1002/anie.202214483] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/10/2022]
Abstract
Excitation-dependent emission (Ex-de) materials have been of considerable academic interest and have potential applications in real life. Such multicolour luminescence is a characteristic exception to the ubiquitously accepted Kasha's rule. This phenomenon has been increasingly presented in some studies on different luminescence systems; however, a systematic overview of the mechanisms underlying this phenomenon is currently absent. Herein, we resolve this issue by classifying multicolour luminescence from single chromophores and dual/ternary chromophores, as well as multiple emitting species. The underlying processes are described based on electronic and/or geometrical conditions under which the phenomenon occurs. Before we present it in categories, related photophysical and photochemical foundations are introduced. This systematic overview will provide a clear approach to designing multicolour luminescence materials for special applications.
Collapse
Affiliation(s)
- Yunxia Shen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No. 688, Jinhua, 321004, P. R. China
| | - Zhongfu An
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yujian Zhang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, Yingbin Road No. 688, Jinhua, 321004, P. R. China
| |
Collapse
|
27
|
Yang J, Wang P, Wang W, Yang R, Liao X, Luo H, Yang B, Gao C. Anion-selective "Turn-on" two color phosphorescent probes based on "Pd-Pd" interaction of a series of cyclometallated Palladium (II) complexes induced by a self-assembly in aqueous solution. J Inorg Biochem 2023; 239:112083. [PMID: 36508972 DOI: 10.1016/j.jinorgbio.2022.112083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/14/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
Herein, three pairs of cationic cyclometallated palladium (II) complexes with different types of C^N ligands, which is non-phosphorescent in aqueous solution, interestingly, they can be utilized as turn-on blue phosphorescent probes selectively for ClO-, HSO3- and CO32-, and turn-on green phosphorescent probe for HSO3- in aqueous solution. These different phosphorescent turn-on responses of Pd(II) complexes could be attributed to the degree of coordination and electrostatic interaction between them with specific anion. It suggests that the selectivity towards specific anion of these cyclometallated Pd(II) complexes can be further improved by rationally tuning the structure and enhancing aromaticity of C^N ligand. Our study reveals that these specific species of anions can effectively induce self-assembly of Pd(II) compounds with different C^N ligand based on PdPd interaction, the aggregation and morphology of palladium complex with anion in aqueous media was also investigated by various means of 1H NMR, UV/Vis, fluorescence spectra, and dynamic light scattering (DLS) analysis. Moreover, transmission electron microscopy (TEM) reveals that nanowires with increased length of diameters of Pd complexes can form in aqueous solution in presence of anions with different high concentration. Furthermore, the cellular uptake and location of Pd2a was also investigated by confocal imaging for the first time. DFT calculation of monomer and dimer of Pd2a was also performed, which is helpful to explain the turn on phosphorescent effect during self-assembly process.
Collapse
Affiliation(s)
- Jing Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Pengchao Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Wenting Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Rui Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Hejiang Luo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China..
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China..
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China..
| |
Collapse
|
28
|
Sadeghian M, Gómez de Segura D, Golbon Haghighi M, Safari N, Lalinde E, Moreno MT. Luminescent Anionic Cyclometalated Organoplatinum (II) Complexes with Terminal and Bridging Cyanide Ligand: Structural and Photophysical Properties. Inorg Chem 2023; 62:1513-1529. [PMID: 36651903 PMCID: PMC9890487 DOI: 10.1021/acs.inorgchem.2c03668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We present the synthesis and characterization of two series of mononuclear heteroleptic anionic cycloplatinated(II) complexes featuring terminal cyanide ligand Q+[Pt(C^N)(p-MeC6H4)(CN)]- [C^N = benzoquinolate (bzq), Q+ = K+ 1 and NBu4+ 4; 2-phenylpyridinate (ppy), Q+ = K+ 2 and NBu4+ 5 and 2-(2,4- difluorophenyl)pyridinate (dfppy), Q+ = K+ 3 and NBu4+ 6] and a series of symmetrical binuclear complexes (NBu4)[Pt2(C^N)2(p-MeC6H4)2(μ-CN)] (C^N = bzq 7, ppy 8, dfppy 9). Compounds 5, 6, and 7-9 were further determined by single-crystal X-ray diffraction. There are no apparent intermolecular Pt···Pt interactions owing to the presence of bulky NBu4+ counterion. Slow crystallization of K[Pt(ppy)(p-MeC6H4)(CN)] 2 in acetone/hexane evolves with formation of yellow crystals, which were identified by single-crystal X-ray diffraction methods as the salt complex {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}[Pt(ppy)(p-MeC6H4)(μ-CN)Pt(ppy)(p-MeC6H4)]·2acetone (10), featuring the binuclear anionic unit 8- neutralized by an hybrid inorganic-organometallic coordination polymer {[Pt(ppy)(p-MeC6H4)(CN)]2K3(OCMe2)4(μ-OCMe2)2}+. The photophysical properties of all compounds were recorded in powder, polystyrene film, and solution states with a quantum yield up to 21% for 9 in the solid state. All complexes displayed bright emission in rigid media, and for the interpretation of their absorption and emission properties, density functional theory (DFT) and time-dependent DFT calculations were applied.
Collapse
Affiliation(s)
- Mina Sadeghian
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran,Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | - David Gómez de Segura
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain
| | | | - Nasser Safari
- Department
of Chemistry, Shahid Beheshti University, Evin, Tehran 19839-69411, Iran
| | - Elena Lalinde
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| | - M. Teresa Moreno
- Departamento
de Química-Centro de Síntesis Química de La Rioja
(CISQ), Universidad de La Rioja, 26006 Logroño, Spain,
| |
Collapse
|
29
|
Huang R, Wang C, Tan D, Wang K, Zou B, Shao Y, Liu T, Peng H, Liu X, Fang Y. Single‐Fluorophore‐Based Organic Crystals with Distinct Conformers Enabling Wide‐Range Excitation‐Dependent Emissions. Angew Chem Int Ed Engl 2022; 61:e202211106. [DOI: 10.1002/anie.202211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Rongrong Huang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Chao Wang
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Davin Tan
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Kai Wang
- State Key Laboratory of Superhard Materials Jilin University Changchun Jilin 130012 P. R. China
| | - Bo Zou
- State Key Laboratory of Superhard Materials Jilin University Changchun Jilin 130012 P. R. China
| | - Yangtao Shao
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Taihong Liu
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Haonan Peng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| | - Xiaogang Liu
- Fluorescence Research Group Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Yu Fang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education) School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an Shaanxi 710119 P. R. China
| |
Collapse
|
30
|
Sokolova E, Kinzhalov MA, Smirnov AS, Cheranyova AM, Ivanov DM, Kukushkin VY, Bokach NA. Polymorph-Dependent Phosphorescence of Cyclometalated Platinum(II) Complexes and Its Relation to Non-covalent Interactions. ACS OMEGA 2022; 7:34454-34462. [PMID: 36188282 PMCID: PMC9520548 DOI: 10.1021/acsomega.2c04110] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/31/2022] [Indexed: 06/16/2023]
Abstract
Cyclometalated platinum(II) complexes [Pt(ppy)Cl(CNAr)] (ppy = 2-phenylpyridinato-C2,N; Ar = C6H4-2-I 1, C6H4-4-I 2, C6H3-2-F-4-I 3, and C6H3-2,4-I2 4) bearing ancillary isocyanide ligands were obtained by the bridge-splitting reaction between the dimer [Pt(ppy)(μ-Cl)]2 and 2 equiv any one of the corresponding CNAr. Complex 2 was crystallized in two polymorphic forms, namely, 2 I and 2 II, exhibiting green (emission quantum yield of 0.5%) and orange (emission quantum yield of 12%) phosphorescence, respectively. Structure-directing non-covalent contacts in these polymorphs were verified by a combination of experimental (X-ray diffraction) and theoretical methods (NCIplot analysis, combined electron localization function (ELF), and Bader quantum theory of atoms in molecules (QTAIM analysis)). A noticeable difference in the spectrum of non-covalent interactions of 2 I and 2 II is seen in the Pt···Pt interactions in 2 II and absence of these metallophilic contacts in 2 I. The other solid luminophores, namely, 1, 3 I-II, 4, and 4·CHCl3, exhibit green luminescence; their structures include intermolecular C-I···Cl-Pt halogen bonds as the structure-directing interactions. Crystals of 1, 2 I, 3 I, 3 II, 4, and 4·CHCl3 demonstrated a reversible mechanochromic color change achieved by mechanical grinding (green to orange) and solvent adsorption (orange to green).
Collapse
Affiliation(s)
- Elina
V. Sokolova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Mikhail A. Kinzhalov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Andrey S. Smirnov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Anna M. Cheranyova
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
| | - Daniil M. Ivanov
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| | - Vadim Yu. Kukushkin
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Institute
of Chemistry and Pharmaceutical Technologies, Altai State University, Barnaul 656049, Russian Federation
| | - Nadezhda A. Bokach
- Saint
Petersburg State University, Universitetskaya Nab. 7/9, Saint Petersburg 199034, Russian Federation
- Research
School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk 634050, Russian
Federation
| |
Collapse
|
31
|
Huang R, Wang C, Tan D, Wang K, Zou B, Shao Y, Liu T, Peng H, Liu X, Fang Y. Single‐Fluorophore‐Based Organic Crystals with Distinct Conformers Enabling Wide‐Range Excitation‐Dependent Emissions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Rongrong Huang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Chao Wang
- Singapore University of Technology and Design Science, Math and Technology SINGAPORE
| | - Davin Tan
- Singapore University of Technology and Design Science, Math and Technology SINGAPORE
| | - Kai Wang
- Jilin University State Key Laboratory of Superhard Materials CHINA
| | - Bo Zou
- Jilin University State Key Laboratory of Superhard Materials CHINA
| | - Yangtao Shao
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Taihong Liu
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Haonan Peng
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| | - Xiaogang Liu
- Singapore University of Technology and Design 8 Somapah Road487372Singapore 487372 Singapore SINGAPORE
| | - Yu Fang
- Shaanxi Normal University School of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
32
|
Xue C, Jiang Y, Wang H, Du C, Xu L, Li T, Liu M. Excitation‐Dependent Circularly Polarized Luminescence from Helical Assemblies Based on Tartaric Acid‐Derived Acylhydrazones. Angew Chem Int Ed Engl 2022; 61:e202205633. [DOI: 10.1002/anie.202205633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Chenlu Xue
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nano-science and Technology No.11 ZhongGuanCun BeiYiTiao Beijing 100190 China
| | - Han‐Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Lifei Xu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
33
|
Man Z, Lv Z, Xu Z, Liu M, He J, Liao Q, Yao J, Peng Q, Fu H. Excitation-Wavelength-Dependent Organic Long-Persistent Luminescence Originating from Excited-State Long-Range Proton Transfer. J Am Chem Soc 2022; 144:12652-12660. [PMID: 35762534 DOI: 10.1021/jacs.2c01248] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Stimuli-responsive functional luminescent materials with tunable color and long-persistent emission have emerged as a powerful tool in information encryption, anticounterfeiting, and bioelectronics. Herein, we prove a novel strategy for manipulating the proton transfer pathways in the salicylaldehyde derivative EQCN solutions/powder to produce excitation wavelength-dependent (Ex-De) performances with switchable emissions (blue-sky, green, and orange). The experiments and theoretical results demonstrated that the different luminous colors are originated from enol (E) form (blue-sky), Keto-1 (K1) form (orange) through the excited-state intramolecular proton transfer (ESIPT) process, and Keto-2 (K2) form (green) through the excited-state long-range proton transfer (ESLRPT) process. We leverage synergistic effects between the dopant and matrix (dimethyl terephthalate, DTT) to manipulate the excited-state proton transfer pathway in EQCN@DTT mixture powders to generate Ex-De long-persistent luminescence (Ex-De-LPL), which can be well applied in multilevel information encryption. This strategy not only paves an intriguing way for the construction and preparation of pure organic Ex-De materials but also offers a guideline for developing LPL materials based on ESLRPT processes.
Collapse
Affiliation(s)
- Zhongwei Man
- Institute of Molecular Plus (IMP), Tianjin University, Tianjin 300072, P. R. China.,Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Zheng Lv
- Institute of Molecular Plus (IMP), Tianjin University, Tianjin 300072, P. R. China.,Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Meihui Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jingping He
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| | - Jiannian Yao
- Institute of Molecular Plus (IMP), Tianjin University, Tianjin 300072, P. R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qian Peng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongbing Fu
- Institute of Molecular Plus (IMP), Tianjin University, Tianjin 300072, P. R. China.,Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, P. R. China
| |
Collapse
|
34
|
Xue C, Jiang Y, Wang H, Du C, Xu L, Li T, Liu M. Excitation‐Dependent Circularly Polarized Luminescence from Helical Assemblies Based on Tartaric Acid‐Derived Acylhydrazones. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Chenlu Xue
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication CAS Center for Excellence in Nanoscience National Center for Nano-science and Technology No.11 ZhongGuanCun BeiYiTiao Beijing 100190 China
| | - Han‐Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Cong Du
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
| | - Lifei Xu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Tiesheng Li
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS) Key Laboratory of Colloid Interface and Chemical Thermodynamics Institute of Chemistry Chinese Academy of Sciences ZhongGuanCun North First Street 2 Beijing 100190 China
- College of Chemistry and Molecular Engineering Zhengzhou University Kexuedadao 100 Zhengzhou 450001 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Yang H, Liu H, Shen Y, Zhang ST, Zhang Q, Song Q, Lv C, Zhang C, Yang B, Ma Y, Zhang Y. Multicolour Fluorescence Based on Excitation-Dependent Electron Transfer Processes in o-Carborane Dyads. Angew Chem Int Ed Engl 2022; 61:e202115551. [PMID: 34989081 DOI: 10.1002/anie.202115551] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 11/11/2022]
Abstract
Organic materials with excitation wavelength-dependent (Ex-de) emission are highly attractive for anticounterfeiting, optoelectronics and bioassay applications; however, the realization of Ex-de fluorescence, independent of aggregation states, remains a challenge. We herein report a photoinduced electron transfer (PeT) strategy to design Ex-de fluorescence materials by manipulating the relaxation pathways of multiple excited states. As expected, the o-carborane dyad presents a clear Ex-de fluorescence colour in the aggregated states, resulting from the tunable relative intensity of the dual-fluorescence spectra. Taking TP[1]B as an example, the amorphous powders emitted bright blue-violet, white and yellow colours under 390 nm, 365 nm and 254 nm UV illumination, respectively. Importantly, multicolour, flexible and transparent films as well as an anticounterfeiting application using this o-carborane dyad are demonstrated.
Collapse
Affiliation(s)
- Heyi Yang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China.,College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yunxia Shen
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Shi-Tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Qing Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| | - Qingbao Song
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| | - Cheng Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Chaowang Road. NO. 18, Hangzhou, 310014, P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, 130012, P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, Guangdong, P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry, Huzhou University, East 2nd Ring Road. No. 759, Huzhou, 313000, P. R. China
| |
Collapse
|
36
|
Xiong D, Li Y, Shi Z, Qin T, Li D, Fu P, Yang Q, Zhu Y, Dong X. Syntheses, structures, and properties of three new complexes (Co(II), Cd(II), Zn(II)) assembled with 3-(2,4-di-carboxyphenoxy)phthalic acid. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132343] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Tao Y, Liu C, Xiang Y, Wang Z, Xue X, Li P, Li H, Xie G, Huang W, Chen R. Resonance-Induced Stimuli-Responsive Capacity Modulation of Organic Ultralong Room Temperature Phosphorescence. J Am Chem Soc 2022; 144:6946-6953. [PMID: 35316606 DOI: 10.1021/jacs.2c01669] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Organic ultralong room temperature phosphorescence (OURTP) materials having stimuli-responsive attributes have attracted great attention due to their great potential in a wide variety of advanced applications. It is of fundamental importance but challengeable to develop stimuli-responsive OURTP materials, especially such materials with modulated optoelectronic properties in a controlled manner probably due to the lack of an authentic construction approach. Here, we propose an effective strategy for OURTP materials with controllably regulated stimuli-responsive properties by engineering the resonance linkage between flexible chain and phosphor units. A quantitative parameter to demonstrate the stimuli-responsive capacity is also established by the responsivity rate constant. The designed OURTP materials demonstrate efficient photoactivated OURTP with lifetimes up to 724 ms and tunable responsivity rate constants ranging from 0.132 to 0.308 min-1 upon continuous UV irradiation. Moreover, the applications of stimuli-responsive resonance OURTP materials have been illustrated by the rewritable paper for snapshot and Morse code for multiple information encryption. Our works, which enable the accomplishment of OURTP materials capable of on-demand manipulated optical properties, demonstrate a viable design to explore smart OURTP materials, giving deep insights into the dynamically stimuli-responsive process.
Collapse
Affiliation(s)
- Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Chang Liu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yuan Xiang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zijie Wang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xudong Xue
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ping Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an 710072, Shanxi, China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
38
|
Malakhova YA, Sukhikh TS, Rakhmanova MI, Vinogradova KA. EFFECT OF POLYMORPHISM ON THE LUMINESCENT PROPERTIES ON SILVER(I) NITRATE COMPLEXES WITH 2-AMINO-5-PHENYLPYRAZINE. J STRUCT CHEM+ 2022. [DOI: 10.1134/s0022476622030155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Yang H, Liu H, Shen Y, Zhang S, Zhang Q, Song Q, Lv C, Zhang C, Yang B, Ma Y, Zhang Y. Multicolour Fluorescence Based on Excitation‐Dependent Electron Transfer Processes in
o
‐Carborane Dyads. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Heyi Yang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Haichao Liu
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Yunxia Shen
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Shi‐tong Zhang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Qing Zhang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| | - Qingbao Song
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Chunyan Lv
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| | - Cheng Zhang
- College of Chemical Engineering Zhejiang University of Technology Chaowang Road. NO. 18 Hangzhou 310014 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials Jilin University Changchun 130012 P. R. China
| | - Yuguang Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou Guangdong P. R. China
| | - Yujian Zhang
- Department of Materials Chemistry Huzhou University East 2nd Ring Road. No. 759 Huzhou 313000 P. R. China
| |
Collapse
|