1
|
Yang N, Zhou ZJ, Zhu X, Wu J, Zhang Y, Wang T, Wu XP, Tian C, Jiang X, Dai S. Sulfur Conversion to Donor-Acceptor Ladder Polymer Networks through Mechanochemical Nucleophilic Aromatic Substitution for Efficient CO 2 Photoreduction. Angew Chem Int Ed Engl 2025; 64:e202419108. [PMID: 39930785 DOI: 10.1002/anie.202419108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 05/14/2025]
Abstract
The development of synthetic methods capable of converting elemental sulfur into conjugated porous sulfur-rich polymers remains a great challenge, although direct utilization of this readily available feedstock can significantly enrich its uses and circumvent environmental problems during sulfur storage. We report herein mechanochemical (MC) nucleophilic aromatic substitution (SNAr) that enables sulfur conversion into thianthrene-bridged porous ladder polymer networks with dense donor-acceptor (D-A) molecular junctions. We demonstrate that the key lies in the generation of bent thianthrene units through a solid-state ball-milling condensation reaction between 1,2-dihaloarenes and elemental sulfur. We also show that the assembling of D-A structural motifs into porous networks affords efficient visible-light-driven photocatalytic reduction of carbon dioxide (CO2) with water (H2O) vapor, in the absence of any additional photosensitizer, sacrificial agents or cocatalysts. Exceptional photoinduced charge separation along with boosted exciton dissociation results in a high-performance of carbon monoxide (CO) production rate of 306.1 μmol g-1 h-1 with near 100 % CO selectivity, which is accompanied by H2O oxidation to O2, as confirmed by both experimental and theoretical results. We anticipate this novel MC SNAr approach will advance processing techniques for direct sulfur utilization and facilitate new possibilities for the synthesis of D-A ladder polymer networks with promising potential in photocatalysis.
Collapse
Affiliation(s)
- Na Yang
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Zi-Jian Zhou
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiang Zhu
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Jiwei Wu
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Yifan Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Tao Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xin-Ping Wu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chengcheng Tian
- School of Resources and Environment Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xia Jiang
- School of Carbon Neutrality Future Technology, Sichuan University, Chengdu, 610065, China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
2
|
Wijeyatunga SK, Sauceda-Oloño PY, Kapuge Dona NL, Guinati BGS, Derr KM, Tisdale KA, Smith AD, Tennyson AG, Smith RC. Static and Dynamic Assessments of a Sulfur-Triglyceride Composite for Antimicrobial Surface Applications. Molecules 2025; 30:1614. [PMID: 40286238 PMCID: PMC11990873 DOI: 10.3390/molecules30071614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025] Open
Abstract
Over 80 MT of elemental sulfur, a byproduct of fossil fuel desulfurization, are generated annually. This has spurred the development of high sulfur content materials (HSMs) via inverse vulcanization as a productive pathway towards sulfur utilization. In this study, we evaluate the antimicrobial performance of SunBG90, an HSM made from brown grease and sulfur, as tiles or infused into fabric squares. The static antimicrobial activity of SunBG90 tiles was assessed, revealing excellent efficacy against Gram-positive bacteria, with reductions of 96.84% for Staphylococcus aureus and 91.52% for Listeria monocytogenes. The tiles also exhibited strong antifungal activity, reducing Candida auris by 96.20% and mold (fumigatus) by 83.77%. In contrast, efficacy against Gram-negative bacteria was more variable, with moderate reductions for Escherichia coli (61.10%) and Salmonella enteritidis (62.15%), lower activity against Campylobacter jejuni and Salmonella typhi, and no effect on Clostridium perfringens. Under dynamic conditions, SunBG90-infused fabrics achieved a near-complete inhibition of L. monocytogenes (99.91%) and high reduction of E. coli (98.49%), along with a 96.24% inhibition of Candida auris. These results highlight the potential and limitations of SunBG90 for antimicrobial applications, emphasizing the need for further optimization to achieve consistent broad-spectrum activity.
Collapse
Affiliation(s)
- Shalini K. Wijeyatunga
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
| | - Perla Y. Sauceda-Oloño
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
| | - Nawoda L. Kapuge Dona
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
| | - Bárbara G. S. Guinati
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
| | - Katelyn M. Derr
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
| | - Katelyn A. Tisdale
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
| | - Ashlyn D. Smith
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
| | - Andrew G. Tennyson
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
- Department of Materials Science and Engineering, Clemson University, Clemson, SC 29634, USA
| | - Rhett C. Smith
- Department of Chemistry, Clemson University, Clemson, SC 29634, USA; (S.K.W.); (P.Y.S.-O.); (N.L.K.D.); (B.G.S.G.); (K.M.D.); (K.A.T.)
| |
Collapse
|
3
|
Huang Z, Deng Y, Qu DH. Adding Value into Elementary Sulfur for Sustainable Materials. Chemistry 2025; 31:e202500125. [PMID: 39971725 DOI: 10.1002/chem.202500125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
Sulfur-rich copolymers, characterized by high sulfur contents and dynamic disulfide bonds, show significant promise as sustainable alternatives to conventional carbon-based plastics. Since the advent of inverse vulcanization in 2013, numerous synthesis strategies have emerged - ranging from thermopolymerization and photoinduced polymerization to the use of crosslinkers such as mercaptans, episulfides, benzoxazines, and cyclic disulfides. These advancements coupled with the rising demand for degradable plastics have driven research for diverse applications, including optical windows, metal uptake, and adhesives. Due to the unique electronic properties of sulfur-rich materials, they are promising candidates for cathodes in Li-S batteries and triboelectric nanogenerators. This review highlight the latest exciting ways of synthesis strategy in which sulfur and sulfur-based reactions are bing utilized to produce sustainable materials in energy, optics, engeneering material, environemtal, and triboelectric nanogenerators. Finally, this review provides a forward-looking perspective on the opportunities and challenges shaping this rapidly evolving field.
Collapse
Affiliation(s)
- Zhengtie Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuanxin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
4
|
Olikagu C, Khoshsorour S, Dulam SD, Yu H, Graham NA, Kim K, Jeong B, Hedrick JL, Bunnag‐Stoner A, Cheng K, Batchelor BL, Cho W, Park SB, Wie JJ, Kim Y, Bog M, Krishnan NB, Yang YY, Njardarson JT, Norwood RA, Pyun J. Photopolymer Resins from Sulfenyl Chloride Commodity Chemicals for Plastic Optics, Photopatterning and 3D-Printing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418149. [PMID: 40025669 PMCID: PMC11983257 DOI: 10.1002/adma.202418149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Indexed: 03/04/2025]
Abstract
The development of a low-cost photopolymer resin to fabricate optical glass of high refractive index for plastic optics is reported. This new free radically polymerizable photopolymer resin, termed, disulfide methacrylate resin (DSMR) is synthesized by the direct addition of allyl methacrylate to a commodity sulfur petrochemical, sulfur monochloride (S2Cl2). The rapid rates of free radical photopolymerization confer significant advantages in preparing high-quality, bulk optical glass. The low-cost, optical glass produced from this photopolymer possesses a desirable combination of high refractive index (n ≈ 1.57-1.59), low birefringence (Δn < 10-4), high glass transition values (Tg ≈ 100 °C), along with optical transparency rivaling, or exceeding that of poly(methyl methacrylate) (PMMA) as indicated by very low optical absorption coefficients (α < 0.05 cm-1 at 1310 nm) measured for thick glass DSMR photopolymer samples (diameter (D) = 25 mm; thickness = 1-30 mm). The versatile manufacturability of DSMR photopolymers for both molding and diamond turn machining methods is demonstrated to prepare precision optics and nano-micropatterned arrays. Finally, large-scale 3D printing vat photopolymerization of DSMR using high-area rapid printing digital light processing additive manufacturing is demonstrated.
Collapse
Affiliation(s)
- Chisom Olikagu
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Shafagh Khoshsorour
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Satya D. Dulam
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Hyun‐Seok Yu
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Natasha A. Graham
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Kyung‐Jo Kim
- J. C. Wyant College of Optical SciencesUniversity of Arizona1630 East University Blvd.TucsonAZ85721USA
| | - Byeongjoon Jeong
- J. C. Wyant College of Optical SciencesUniversity of Arizona1630 East University Blvd.TucsonAZ85721USA
| | | | | | | | | | - Woongbi Cho
- Department of Organic and Nano EngineeringHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
| | - Seung Bin Park
- Department of Organic and Nano EngineeringHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
| | - Jeong Jae Wie
- Department of Organic and Nano EngineeringHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
- Human‐Tech Convergence ProgramHanyang University222 Wangsimmni‐ro, Seongdong‐guSeoul04763Republic of Korea
- Department of Chemical EngineeringState University of New York College of Environmental Sciences and ForestrySyracuseNY13210USA
| | - Young‐Jae Kim
- Y&DK Co.Ltd169–148 Gwahak‐ro, Yuseong‐guDaejeon34133Republic of Korea
| | - Min‐Gap Bog
- Y&DK Co.Ltd169–148 Gwahak‐ro, Yuseong‐guDaejeon34133Republic of Korea
| | - Nithiyaa Bala Krishnan
- Bioprocessing technology instituteAgency for ScienceTechnology and Research (A*StAR)20 Biopolis Way, centros#06‐ 01Singapore138668Singapore
| | - Yi Yan Yang
- Bioprocessing technology instituteAgency for ScienceTechnology and Research (A*StAR)20 Biopolis Way, centros#06‐ 01Singapore138668Singapore
| | - Jon T. Njardarson
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
| | - Robert A. Norwood
- J. C. Wyant College of Optical SciencesUniversity of Arizona1630 East University Blvd.TucsonAZ85721USA
- Department of Materials Science & EngineeringCollege of EngineeringUniversity of Arizona1235 James E. Rogers WayTucsonAZ85719USA
| | - Jeffrey Pyun
- Department of Chemistry and BiochemistryUniversity of Arizona1306 East University Blvd.TucsonAZ85721USA
- J. C. Wyant College of Optical SciencesUniversity of Arizona1630 East University Blvd.TucsonAZ85721USA
| |
Collapse
|
5
|
Pourkhalil M, Rashidi A, Mahmoudabadi ZS, Mirzaee M, Babakhani EG, Esmaeili M, Sharafinia S. Catalytic reduction of SO 2 to elemental sulfur with methane over CuO x/γ-Al 2O 3 catalysts. Sci Rep 2025; 15:5907. [PMID: 39966411 PMCID: PMC11836333 DOI: 10.1038/s41598-025-86972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025] Open
Abstract
Copper oxide catalysts (CuOx) supported on gamma alumina (γ-Al2O3) were employed for the catalytic reduction of sulfur dioxide (SO2) to elemental sulfur by methane (CH4). The catalysts were synthesized using a straightforward sol-gel method. Initially, alumina was obtained through a precipitation technique. X-ray diffraction (XRD) analysis was conducted to confirm the formation of γ-Al2O3. This study aimed to investigate the impact of reaction temperature (T = 600-800 °C) and Cu loading (0-15 wt%) on SO2 conversion and sulfur selectivity. Under the reaction conditions of 800 °C, 1 bar, SO2 = 5000 ppm, CH4 = 2500 ppm, gas hourly space velocity (GHSV) = 12,000 1/h, and 10 wt% Cu, the SO2 conversion and sulfur selectivity were determined to be 95% and 94.5%, respectively. The influence of the molar feed ratio of SO2/CH4 = R = 0.5-3 on the 10 wt% Cu catalyst was also investigated in the temperature range of 600-800 °C. The findings revealed that when R < 2, the conversion rate increased due to higher SO2 reduction with an excess of CH4, but sulfur selectivity slightly decreased as a result of the formation of unwanted byproducts such as H2S and COS. Conversely, when R > 2, SO2 conversion significantly declined, while sulfur selectivity was enhanced due to increased consumption of CH4.
Collapse
Affiliation(s)
- Mahnaz Pourkhalil
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box: 14665-137, Tehran, Iran.
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box: 14665-137, Tehran, Iran
| | - Zohal Safaei Mahmoudabadi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), P.O. Box: 14665-137, Tehran, Iran
| | - Majid Mirzaee
- Non-Metallic Materials Research Group, Niroo Research Institute, P.O. Box: 14665-517, Tehran, Iran
| | - Ensieh Ganji Babakhani
- Department of Gas Processing and Transmission Development, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Majid Esmaeili
- Chemical, Polymeric and Petrochemical Technology Development Research Division, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Soheila Sharafinia
- Department of Chemistry, Faculty of Science, Shahid Chamran University of Ahvaz, P.O. Box: 613578-3151, Ahvaz, Iran
| |
Collapse
|
6
|
Wuliu Y, Dong W, Huang G, Xie H, Yao P, Tan J, Mu K, Zhang Z, Chen Y, Wang M, Tian L, Zhu C, Xu J. Sulfur-Rich Norbornadiene-Derived Infrared Transparent Polymers by Inverse Vulcanization. Angew Chem Int Ed Engl 2025; 64:e202419446. [PMID: 39472278 DOI: 10.1002/anie.202419446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Indexed: 11/17/2024]
Abstract
Infrared (IR) transparent polymer materials prepared by inverse vulcanization, as a promising candidate to replace inorganic materials, are new materials for constructing key devices in IR optics. However, it is difficult to achieve a balance between infrared optical and thermal properties in polymers due to the intrinsic infrared absorption of organic materials. Herein, our strategy is to construct a high boiling point symmetrical molecular norbornadiene derivative cross-linking agent (DMMD) which can be inverse vulcanized with molten sulfur, and obtain Poly (S-r-DMMD) with different sulfur content by controlling the feed ratio of sulfur. With the rigid core and low IR activity in DMMD, the prepared polymers exhibit tunable thermal properties (Tg: 98.3-119.8 °C) and high IR transmittance (medium-wave infrared region (MWIR): 42.9-52.6 %; long-wave infrared region (LWIR): 1.5-5.29 %). In addition, Poly (S-r-DMMD) can be used to prepare large-size free-standing Fresnel lenses for IR imaging by simple hot-pressing, which provides flexibility in the design and production of IR fine lenses. This study provides a novel strategy for balancing the thermal and optical properties of IR transparent polymer materials, while providing relevant references for balancing the IR optical and thermal properties of polymer materials.
Collapse
Affiliation(s)
- Yishun Wuliu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Weiliang Dong
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guohua Huang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Hui Xie
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Pingping Yao
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jiji Tan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Kexin Mu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Zhili Zhang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yinan Chen
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Mingliang Wang
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Lei Tian
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Caizhen Zhu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
7
|
Fan J, Ju C, Fan S, Li X, Zhang Z, Hadjichristidis N. Inverse Vulcanization of Aziridines: Enhancing Polysulfides for Superior Mechanical Strength and Adhesive Performance. Angew Chem Int Ed Engl 2025; 64:e202418764. [PMID: 39560162 DOI: 10.1002/anie.202418764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
This study introduces a novel approach to inverse vulcanization by utilizing a commercially available triaziridine crosslinker as an alternative to conventional olefin-based crosslinkers. The model reactions reveal a self-catalyzed ring-opening of "unactivated" aziridine with elemental sulfur, forming oligosulfide-functionalized diamines. The triaziridine-derived polysulfides exhibit impressive mechanical properties, achieving a maximum stress of ~8.3 MPa and an elongation at break of ~107 %. The incorporation of silicon dioxide (20 wt %) enhances the composite's rigidity, yielding a Young's modulus of ~0.94 GPa. Furthermore, these polysulfides display excellent adhesion strength on various substrates, such as aluminum (~7.0 MPa), walnut (~9.6 MPa), and steel (~11.0 MPa), with substantial retention of adhesion strength (~3.3 MPa on steel) at -196 °C. The straightforward synthetic process, combined with the accessibility of the triaziridine crosslinker, emphasizes the potential for further innovations in sulfur polymer chemistry.
Collapse
Affiliation(s)
- Jieai Fan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Changzheng Ju
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Songjie Fan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Xia Li
- Analysis and Test Center, Guangdong University of Technology, 510006, Guangzhou, China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006, Guangzhou, China
| | - Nikos Hadjichristidis
- Polymer Synthesis Laboratory, Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955, Thuwal, Saudi Arabia
| |
Collapse
|
8
|
Mann AK, Tonkin SJ, Sharma P, Gibson CT, Chalker JM. Probe-Based Mechanical Data Storage on Polymers Made by Inverse Vulcanization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409438. [PMID: 39680686 PMCID: PMC11792057 DOI: 10.1002/advs.202409438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/30/2024] [Indexed: 12/18/2024]
Abstract
Big data and artificial intelligence are driving increasing demand for high-density data storage. Probe-based data storage, such as mechanical storage using an atomic force microscope tip, is a potential solution with storage densities exceeding hard disks. However, the storage medium must be modifiable on the nanoscale. While polymers are promising storage media, they face challenges with synthesis, erasing temperatures, and stability. Here, a low-cost and robust polymer system is reported that allows repeated writing, reading and erasing. The polymer is made by inverse vulcanization, providing a network of S─S bonds that can be broken and re-formed repeatedly. This property is leveraged in mechanical indentation to encode information, and thermal S─S metathesis and polymer re-flow to erase. Exquisite control of indentation depth is possible over 1-30 nm. This control enables data encoding not just as a function of the presence or absence of an indent, but also indentation depth. This ternary coding increases the data density four-fold over binary coding. Furthermore, the coding can be done at room temperature which is rare for mechanical information storage. The low cost, ease of synthesis, and dynamic S─S bonds in these polymers are a promising advance in polymer storage media for probe-based data storage.
Collapse
Affiliation(s)
- Abigail K. Mann
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
| | - Samuel J. Tonkin
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
| | - Pankaj Sharma
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- ARC Centre of Excellence in Future Low Energy Electronics Technologies (FLEET)UNSW SydneySydneyNSW2052Australia
| | - Christopher T. Gibson
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- Flinders Microscopy and MicroanalysisCollege of Science and EngineeringFlinders UniversityBedford ParkAdelaideSouth Australia5042Australia
- Adelaide MicroscopyThe University of AdelaideAdelaideSouth Australia5000Australia
| | - Justin M. Chalker
- Institute for Nanoscale Science and TechnologyCollege of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
- College of Science and EngineeringFlinders UniversityBedford ParkSouth Australia5042Australia
| |
Collapse
|
9
|
Diniz V, Rath S, Crick CR. Optimizing Superhydrophobic Coatings: The Role of Catalysts, Additives, and Composition on UV and Thermal Stability of Inverse Vulcanization Polymers. ACS APPLIED POLYMER MATERIALS 2025; 7:567-572. [PMID: 39882258 PMCID: PMC11773412 DOI: 10.1021/acsapm.4c02634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/31/2025]
Abstract
Inverse vulcanization (IV) enables the production of sustainable polymer from sulfur waste, offering hydrophobic, fluorine-free, and superhydrophobic coatings. However, these materials need adhesion improvements for enhanced durability. This study has developed an epoxy-, fluorine-, and metal-free superhydrophobic coating using the spray-coating of carbon nanofibers (CNFs), silica nanoparticles, and IV polymers on glass. An optimized formula of 28% sulfur, 20 mg/mL CNFs, 25 mg/mL silica, and 80 mg/mL polymer-was established. Zn(DTC)2-catalyzed coatings retained superhydrophobicity for 150 tape peeling cycles, up to 250 °C, and 6 h of UV-C exposure, demonstrating a straightforward, eco-friendly approach to durable, versatile superhydrophobic coatings.
Collapse
Affiliation(s)
- Vinicius Diniz
- School
of Engineering and Materials Sciences, Queen
Mary University of London, London, E1 4NS, U.K.
- Institute
of Chemistry, University of Campinas, 13083-970 Campinas, Brazil
| | - Susanne Rath
- Institute
of Chemistry, University of Campinas, 13083-970 Campinas, Brazil
| | - Colin R. Crick
- School
of Engineering and Materials Sciences, Queen
Mary University of London, London, E1 4NS, U.K.
| |
Collapse
|
10
|
Shi K, Dong X, Zhao Z, Su L, Ji C, Li B, Zhang J, Dong X, Qiao P, Zhang X, Yang H, Yang G, Gregoryanz E, Mao HK. Sulfur chains glass formed by fast compression. Nat Commun 2025; 16:357. [PMID: 39753526 PMCID: PMC11699039 DOI: 10.1038/s41467-024-55028-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/26/2024] [Indexed: 01/06/2025] Open
Abstract
Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-SP). This solid disordered chain state appears to be (meta)stable in the P-T region usually associated with phase I made up of S8. The elemental sulfur glass, made up from one of the simplest building blocks, offers a unique prospect to study the structure and property relationships of various other phases of sulfur and their interactions. More importantly, the fast compression technique performed at any temperature effectively like thermal quenching, opening up possibilities in high pressure synthesis by providing an effective and fast way of changing the fundamental thermodynamical parameter.
Collapse
Affiliation(s)
- Kaiyuan Shi
- Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Xiao Dong
- School of Physics and MOE Key Laboratory of Weak-Light Nonlinear Photonics, Nankai University, Tianjin, 300071, China
| | - Zhisheng Zhao
- Center for High Pressure Science (CHiPS), State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China
| | - Lei Su
- Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China.
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China.
- Shanghai Key Laboratory MFree, Shanghai Advanced Research in Physical Sciences, Pudong, Shanghai, 201203, China.
| | - Cheng Ji
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Bing Li
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Jiaqing Zhang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Xingbang Dong
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Pu Qiao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Xin Zhang
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China
| | - Haotian Yang
- Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoqiang Yang
- Key Laboratory of Photochemistry, Institute of Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Eugene Gregoryanz
- Shanghai Key Laboratory MFree, Shanghai Advanced Research in Physical Sciences, Pudong, Shanghai, 201203, China.
- Centre for Science at Extreme Conditions and School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK.
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, China.
| | - Ho-Kwang Mao
- Center for High Pressure Science and Technology Advanced Research, Beijing, 100093, China.
- Shanghai Key Laboratory MFree, Shanghai Advanced Research in Physical Sciences, Pudong, Shanghai, 201203, China.
| |
Collapse
|
11
|
Wu X, He J, Hu R, Tang BZ. NaOH-Assisted Multicomponent Reaction and Polymerizations of Elemental Sulfur, Diisocyanides, and Diols to Access Functional Poly(O-thiocarbamate)s. Chem Asian J 2024; 19:e202401022. [PMID: 39377739 DOI: 10.1002/asia.202401022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Sulfur-containing polymers with unique structures and fascinating properties have attracted much attention recently, the efficient and economic synthetic approaches for various sulfur-containing polymers have rapidly developed. Herein, the multicomponent reaction of elemental sulfur, isocyanide, and alcohol was designed at mild condition in the presence of NaOH, and the corresponding NaOH-assisted multicomponent polymerization of elemental sulfur, diisocyanides, and diols were developed at room temperature or 40 °C in air, to produce poly(O-thiocarbamate)s with well-defined structures, high molecular weights (Mws up to 32 500 g/mol) and high yields (up to 99 %). The facilely available monomers, mild condition, and high efficiency of this MCP enabled scale-up synthesis of poly(O-thiocarbamate)s, and 7.33 g polymer was obtained in 98 % yield. These functional poly(O-thiocarbamate)s could enrich Au3+ from aqueous solution with high enrichment capacity (983 mg⋅Au3+/g) and high efficiency (>99.77 %) in 1 min, demonstrating superior gold enrichment performance and their potential industrial and economic values.
Collapse
Affiliation(s)
- Xiuying Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Junxia He
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen City, Guangdong, 518172, China
- AIE Institute, Guangzhou, 510530, China
| |
Collapse
|
12
|
Sun Y, Sun Y, Li Z, Zheng Y, Zheng L, Hu J. Mercury adsorption study and DFT calculations of sulfur-containing biomass composites prepared by inverse vulcanization. Int J Biol Macromol 2024; 281:135868. [PMID: 39482125 DOI: 10.1016/j.ijbiomac.2024.135868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/03/2024]
Abstract
This study introduces an innovative and cost-effective biomass adsorbent, the sulfur/cardanol/potato starch composite (SCP), synthesized through inverse vulcanization for the remediation of mercury-contaminated waters. The SCP was characterized using Scanning Electron Microscopy/Energy Dispersive Spectroscopy (SEM/EDS), Fourier Transform Infrared Spectroscopy (FT-IR), Thermogravimetric Analysis (TGA) and X-ray Diffraction (XRD) to confirm its composition, morphology, and properties. The adsorption capacity of SCP for Hg(II) was 246.88 mg/g with a removal rate of 98.75 %. Adsorption kinetics followed a pseudo-second-order model, indicating chemisorption as the dominant mechanism, while adsorption isotherms were best described by the Langmuir model. Thermodynamic studies confirmed the adsorption process as spontaneous and endothermic. Density Functional Theory (DFT) calculations further elucidate the interaction mechanisms between mercury and the adsorbent, revealing that the thiyl radicals play a crucial role in the adsorption process. The SCP also exhibited a high selectivity for Hg(II) over other co-existing ions and maintains an adsorption capacity over 223.93 mg/g after five regeneration cycles, thus promising practical applications in environmental mercury management.
Collapse
Affiliation(s)
- Yu Sun
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Yuxin Sun
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Ziye Li
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Yaxuan Zheng
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Liuping Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China; College of New Energy and Materials, Ningde Normal University, Ningde, Fujian 352100, PR China.
| |
Collapse
|
13
|
Shen H, Chen J, Tan KB. Ethyl cellulose matrixed poly(sulfur-co-sorbic acid) composite films: Regulation of properties and application for food preservation. Int J Biol Macromol 2024; 279:135183. [PMID: 39214227 DOI: 10.1016/j.ijbiomac.2024.135183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Developing non-toxic and sustainable materials with versatile and diverse functions has always been a crucial issue in food preservation packaging. Recently, inverse vulcanization has emerged as a precise and eco-friendly solution, attributed to the versatility of resulting polysulfides. In this study, a polysulfide crosslinked with sorbic acid was prepared by inverse vulcanization, and further combined with bio-macromolecular ethyl cellulose to form composite films via a casting method. Thanks to the ethanol-solubility and good compatibility of ethyl cellulose towards the polysulfide, morphology of the films can be tailored by adjusting the component ratio, thereby achieving favorable water vapor permeability (2.20 × 10-12 gs-1m-1Pa-1), oxygen permeability (4.01 × 10-4 gs-1 m-2), elasticity modulus (~400 MPa), elongation at break (~16 %), etc. Some films demonstrate remarkable antibacterial activity against a broad spectrum of bacteria and fungi, demonstrating their effectiveness in food preservation. The browning and spoilage of preserved Agaricus bisporus were inhibited, with 79.2 % of the initial firmness retained and a 5.6 % weight loss recorded on the 6th day. For the 15-day preservation of grapes, minimal changes in appearance, firmness, or TSS were observed, underscoring the promising potential of this composite for food preservation applications.
Collapse
Affiliation(s)
- Hang Shen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China; Fujian Engineering and Research Center of New Chinese Lacquer Materials, Fuzhou 350108, China.
| | - Jianfu Chen
- College of Food Engineering, Zhangzhou Institute of Technology, Zhangzhou 363000, China
| | - Kok Bing Tan
- College of Chemical Engineering, Integrated Nanocatalysts Institute, Huaqiao University, Xiamen 361021, China.
| |
Collapse
|
14
|
Stühler MR, Kreische M, Fornacon-Wood C, Rupf SM, Langer R, Plajer AJ. Monomer centred selectivity guidelines for sulfurated ring-opening copolymerisations. Chem Sci 2024:d4sc05858e. [PMID: 39479163 PMCID: PMC11515943 DOI: 10.1039/d4sc05858e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024] Open
Abstract
Sulfur-containing polymers, such as thioesters and thiocarbonates, offer sustainability advantages, including enhanced degradability and chemical recyclability. However, their synthesis remains underdeveloped compared to that of their oxygen-containing counterparts. Although catalytic ring-opening copolymerization (ROCOP) can provide access to sulfur-containing polymers, these materials often exhibit uncontrolled microstructures and unpredictable properties. A comprehensive model that elucidates the factors determining selectivity in these catalytic reactions is still lacking, despite its central importance for advancing these polymerizations into widely applicable methodologies. In this study, we investigate the factors that lead to selectivity in sulfurated ROCOP across various monomer combinations, including thioanhydrides or carbon disulfide with epoxides, thiiranes, and oxetanes. We find that unwanted by-products primarily arise from backbiting reactions of catalyst-bound alkoxide chain ends, which can be mitigated by (i) selecting monomers that form primary alkoxide of thiolate chain ends, (ii) maximizing ring strain in the backbiting step, and (iii) timely termination of the polymerization. By applying these strategies, the selectivity of the catalytic ROCOP can be controlled and we successfully synthesized perfectly alternating poly(esters-alt-thioesters) from various oxetanes and the highly industrially relevant ethylene oxide. Our study thereby shifts the focus for achieving selectivity from catalyst to monomer choice providing valuable mechanistic insights for the development of future selective polymerizations, paving the way for sulfurated polymers as potential alternatives to current commodity materials.
Collapse
Affiliation(s)
- Merlin R Stühler
- Makromolekulare Chemie, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Marie Kreische
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | | | - Susanne M Rupf
- Intitut für Chemie und Biochemie, Freie Universität Berlin Fabeckstraße 34-36 14195 Berlin Germany
| | - Robert Langer
- Institute for Chemistry, Martin-Luther-University Halle-Wittenberg Kurt-Mothes-Str. 2 06120 Halle Germany
| | - Alex J Plajer
- Makromolekulare Chemie, Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
- Bayrisches Polymer Institut (BPI), Universität Bayreuth Universitätsstraße 30 95447 Bayreuth Germany
| |
Collapse
|
15
|
Sun Q, Brédas JL, Coropceanu V. Light-Induced Ring-to-Chain Transformations of Elemental Sulfur: Nonadiabatic Dynamics Simulations. J Phys Chem Lett 2024; 15:9920-9925. [PMID: 39303217 DOI: 10.1021/acs.jpclett.4c02475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The emergence of high-sulfur content polymeric materials and their diverse applications underscore the need for a comprehensive understanding of the ring-to-chain transformation of elemental sulfur. In this study, we delve into the ultrafast transformation of the elemental sulfur S8 ring upon photoexcitation employing advanced nonadiabatic dynamics simulations. Our findings reveal that the bond breaking of the S8 ring occurs within tens of femtoseconds. At the time of bond breaking, most molecules are in the lowest singlet excited state S1. S1 survives for 40-450 fs before relaxing to the quasi-degenerate manifolds formed by the T1 and S0 states of the S8 chain. This suggests that upon photoexcitation the polymerization of the S8 chains might proceed before the chains relax to their lowest energy states. The derived temporal resolution provides a detailed perspective on the dynamics of S8 rings upon photoexcitation, shedding light on the intricate processes involved in its excited-state transformations.
Collapse
Affiliation(s)
- Qi Sun
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| | - Jean-Luc Brédas
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona 85721-0041, United States
| |
Collapse
|
16
|
Shi CY, Zhang XP, Zhang Q, Chen M, Tian H, Qu DH. Closed-loop chemically recyclable covalent adaptive networks derived from elementary sulfur. Chem Sci 2024:d4sc05031b. [PMID: 39371464 PMCID: PMC11447730 DOI: 10.1039/d4sc05031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
The development of sulfur-rich polymers derived from elementary sulfur provides an innovative approach to industrial waste valorization. Despite significant advancements in polymerization techniques and promising applications beyond traditional polymers, polysulfide networks are still primarily stabilized by diene crosslinkers, forming robust C-S bonds that hinder the degradation of sulfur-based polymers. In this study, the anionic ring-opening copolymerization of chemically homologous S8 and cyclic disulfides was explored to yield robust sulfur-rich copolymers with high molecular weight. The incorporation of polysulfide segments not only efficiently activated the crosslinked networks for excellent reprocessability and mechanical adaptability but also endowed the resulting copolymer with high optical transparency in the near-infrared region. More importantly, the dynamic disulfide crosslinking sites promoted the chemical closed-loop recyclability of the polysulfide networks via reversible S-S cleavage. This innovative inverse vulcanization strategy utilizing dynamic disulfide crosslinkers offers a promising pathway for the advanced applications and upcycling of high-performance sulfur-rich polymers.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiao-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
17
|
Grimm AP, Plank M, Stihl A, Schmitt CW, Voll D, Schacher FH, Lahann J, Théato P. Inverse Vulcanization of Activated Norbornenyl Esters-A Versatile Platform for Functional Sulfur Polymers. Angew Chem Int Ed Engl 2024; 63:e202411010. [PMID: 38895894 DOI: 10.1002/anie.202411010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024]
Abstract
Elemental sulfur has shown to be a promising alternative feedstock for development of novel polymeric materials with high sulfur content. However, the utilization of inverse vulcanized polymers is restricted by the limitation of functional comonomers suitable for an inverse vulcanization. Control over properties and structure of inverse vulcanized polymers still poses a challenge to current research due to the dynamic nature of sulfur-sulfur bonds and high temperature of inverse vulcanization reactions. In here, we report for the first time the inverse vulcanization of norbornenyl pentafluorophenyl ester (NB-PFPE), allowing for post-modification of inverse vulcanized polymers via amidation of reactive PFP esters to yield high sulfur content polymers under mild conditions. Amidation of the precursor material with three functional primary amines (α-amino-ω-methoxy polyethylene glycol, aminopropyl trimethoxy silane, allylamine) was investigated. The resulting materials were applicable as sulfur containing poly(ethylene glycol) nanoparticles in aqueous environment. Cross-linked mercury adsorbents, sulfur surface coatings, and high-sulfur content networks with predictable thermal properties were achievable using aminopropyl trimethoxy silane and allylamine for post-polymerization modification, respectively. With the broad range of different amines available and applicable for post-polymerization modification, the versatility of poly(sulfur-random-NB-PFPE) as a platform precursor polymer for novel specialized sulfur containing materials was showcased.
Collapse
Affiliation(s)
- Alexander P Grimm
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Martina Plank
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Andreas Stihl
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
| | - Christian W Schmitt
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
| | - Dominik Voll
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena (FSU), Lessingstraße 8, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena (FSU), Philosophenweg 7, 07743, Jena, Germany
- Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Lessingstraße 12-14, 07743, Jena, Germany
| | - Jörg Lahann
- Institute of Functional Interfaces (IFG) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Biointerfaces Institute, University of Michigan, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| | - Patrick Théato
- Institute for Biological Interfaces III (IBG-3) Soft Matter Synthesis Laboratory, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344, Eggenstein-Leopoldshafen, Germany
- Institute for Technical Chemistry and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), Engesserstraße 18, 76131, Karlsruhe, Germany
| |
Collapse
|
18
|
Marshall CM, Molineux J, Kang KS, Kumirov V, Kim KJ, Norwood RA, Njardarson JT, Pyun J. Synthesis of Polycyclic Olefinic Monomers from Norbornadiene for Inverse Vulcanization: Structural and Mechanistic Consequences. J Am Chem Soc 2024; 146:24061-24074. [PMID: 39143005 DOI: 10.1021/jacs.4c08113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
The preparation of high-sulfur content organosulfur polymers has generated considerable interest as an emerging area in polymer science that has been driven by advances in the inverse vulcanization polymerization of elemental sulfur with organic comonomers. While numerous new inverse vulcanized polysulfides have been made over the past decade, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers remain limited in scope. Furthermore, the exploration of new molecular architectures for organic comonomer synthesis remains an important frontier to enhance the properties of these new polymeric materials. In the current report, the first detailed study on the synthesis and inverse vulcanization of polycyclic rigid comonomers derived from norbornadiene was conducted, affording a quantitative assessment of polymer microstructure for these organopolysulfides and insights into the inverse vulcanization polymerization mechanism for this class of monomers. In particular, a stereoselective synthesis of the endo-exo norbornadiene cyclopentadiene adduct (Stillene) was achieved, which enabled direct comparison with the known exo-exo norbornadiene dimer (NBD2) previously used for inverse vulcanization. Reductive degradation of these sulfur copolymers and detailed structural analysis of the recovered sulfurated organic fragments revealed that remarkable exo-stereospecificity was achieved in the inverse vulcanization of elemental sulfur with both these polycyclic dienyl comonomers, which correlated to the robust thermomechanical properties associated with organopolysulfides made from NBD2 previously. Melt processing and molding of these sulfur copolymers were conducted to fabricate free-standing plastic lenses for long-wave infrared thermal imaging.
Collapse
Affiliation(s)
- Christopher M Marshall
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jake Molineux
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Vlad Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Jo Kim
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Robert A Norwood
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
- Department of Materials Science & Engineering, College of Engineering, University of Arizona, Tucson, Arizona 85719, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
19
|
Xue Y, Dong Q, Chen J, Gao H, Chang H, Tian J, Gao WC. Radical Alkynylthiolation with Visible-Light-Sensitive S-Alkynylthio Sulfonates. Org Lett 2024; 26:6966-6971. [PMID: 39145601 DOI: 10.1021/acs.orglett.4c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
A novel kind of S-alkynylthio sulfonate, which can be directly activated under visible-light irradiation, has been developed for the radical addition of multiple bond systems and radical coupling with diazonium salts under photocatalyst-free conditions. This strategy features a broad substrate scope, high regioselectivity, excellent tolerance of functional groups, and the late-stage modification of drugs. Experimental and theoretical mechanistic investigations gave reasonable insight into the photolysis of S-alkynylthio sulfonates and C-S bond formation.
Collapse
Affiliation(s)
- Yaonan Xue
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Qirui Dong
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Jiarui Chen
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Hang Gao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Honghong Chang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Jun Tian
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| | - Wen-Chao Gao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
| |
Collapse
|
20
|
Li G, Liu Y, Schultz T, Exner M, Muydinov R, Wang H, Scheurell K, Huang J, Szymoniak P, Pinna N, Koch N, Adelhelm P, Bojdys MJ. One-Pot Synthesis of High-Capacity Sulfur Cathodes via In-Situ Polymerization of a Porous Imine-Based Polymer. Angew Chem Int Ed Engl 2024; 63:e202400382. [PMID: 38619863 DOI: 10.1002/anie.202400382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/15/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g-1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur's mobility leads to battery degradation-an effect known as the "sulfur-shuttle". This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g-1) to 3 C (807 mAh g-1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.
Collapse
Affiliation(s)
- Guiping Li
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ye Liu
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Thorsten Schultz
- Humboldt-Universität zu Berlin, Institut für Physik, Institut für Chemie, IRIS Adlershof, Zum Großen Windkanal 2, 12489, Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Moritz Exner
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Ruslan Muydinov
- Institute for Semiconductor- and High-Frequency-System Technologies, Technische Universität Berlin, Einsteinufer 25, 10587, Berlin, Germany
| | - Hui Wang
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Kerstin Scheurell
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Jieyang Huang
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Paulina Szymoniak
- Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany
| | - Nicola Pinna
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| | - Norbert Koch
- Humboldt-Universität zu Berlin, Institut für Physik, Institut für Chemie, IRIS Adlershof, Zum Großen Windkanal 2, 12489, Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Philipp Adelhelm
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
- Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany
| | - Michael J Bojdys
- Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany
| |
Collapse
|
21
|
Yu E, Li J, Wang Y, Chen Y, Xiao F, Deng GJ. Copper-Catalyzed Three-Component Synthesis of β-Hydroxysulfides from Styrene Oxide, Aryl Iodide, and Carbon Disulfide. J Org Chem 2024; 89:9287-9297. [PMID: 38896800 DOI: 10.1021/acs.joc.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A copper-catalyzed three-component coupling reaction of styrene oxide, aryl iodide, and carbon disulfide for the construction of β-hydroxysulfides has been developed. In this process, readily available CS2 was used as the sulfur source to construct C-S bonds for the synthesis of phenyl-β-hydroxysulfides and (benzo[d]thiazol)-β-hydroxysulfides. This process features mild reaction conditions, simple operation, and wide substrate scope (>50 examples).
Collapse
Affiliation(s)
- Enbo Yu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jun Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yue Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
22
|
Jeon Y, Ahn CS, Char K, Lim J. Size Control and Antioxidant Properties of Sulfur-Rich Polymer Colloids from Interfacial Polymerization. Macromol Rapid Commun 2024; 45:e2300747. [PMID: 38652855 DOI: 10.1002/marc.202300747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/15/2024] [Indexed: 04/25/2024]
Abstract
High sulfur content polymeric materials, known for their intriguing properties such as high refractive indices and high electrochemical capacities, have garnered significant interest in recent years for their applications in optics, antifouling surfaces, triboelectrics, and electrochemistry. Despite the high interest, most high sulfur-content polymers reported to date are either bulk materials or thin films, and there is a general lack of research into sulfur-rich polymer colloids. Water-dispersed, sulfur-rich particles are anticipated to broaden the range of applications for sulfur-containing materials. In this study, the preparation and size control parameters are presented of an aqueous dispersion of sulfur-rich polymers with the sulfur content of dispersed particles exceeding 75 wt%. Employing polymeric stabilizers with varying hydrophilic-lipophilic balance (HLB), along with changing the rank of inorganic polysulfides, allow for the control of particle size in the range of 360 nm - 1.8 µm. The sulfur-rich colloid demonstrates antioxidant properties in water, demonstrating the potential for the use of sulfur-rich polymeric materials readily removable, heterogeneous radical scavengers.
Collapse
Affiliation(s)
- Yujin Jeon
- Department of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea
- Current address: Korea Testing Laboratory (KTL), 87 Digital-ro 26-gil, Guro-gu, Seoul, 08389, Republic of Korea
| | - Chi Sup Ahn
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 00826, Republic of Korea
| | - Kookheon Char
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 00826, Republic of Korea
| | - Jeewoo Lim
- Department of Chemistry, Kyung Hee University, Seoul, 02447, Republic of Korea
| |
Collapse
|
23
|
Zheng B, Zhong L, Wang X, Lin P, Yang Z, Bai T, Shen H, Zhang H. Structural evolution during inverse vulcanization. Nat Commun 2024; 15:5507. [PMID: 38951493 PMCID: PMC11217493 DOI: 10.1038/s41467-024-49374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024] Open
Abstract
Inverse vulcanization exploits S8 to synthesize polysulfides. However, evolution of products and its mechanism during inverse vulcanization remains elusive. Herein, inverse vulcanization curves are obtained to describe the inverse vulcanization process in terms of three stages: induction, curing and over-cure. The typical curves exhibit a moduli increment before declining or plateauing, reflecting the process of polysulfide network formation and loosing depending on monomers. For aromatic alkenes, in the over-cure, the crosslinked polysulfide evolves significantly into a sparse network with accelerated relaxation, due to the degradation of alkenyl moieties into thiocarbonyls. The inverse vulcanization product of olefins degrades slowly with fluctuated relaxation time and modulus because of the generation of thiophene moieties, while the inverse vulcanization curve of dicyclopentadiene has a plateau following curing stage. Confirmed by calculations, the mechanisms reveal the alkenyl groups react spontaneously into thiocarbonyls or thiophenes via similar sulfur-substituted alkenyl intermediates but with different energy barriers.
Collapse
Affiliation(s)
- Botuo Zheng
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Liling Zhong
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Xiaoxiao Wang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Peiyao Lin
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Zezhou Yang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China
| | - Tianwen Bai
- Key Laboratory of Medical Electronics and Digital Health of Zhejiang Province in Jiaxing University, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Hang Shen
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China.
| | - Huagui Zhang
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
24
|
Meng XB, Zhou T, Yang C, Cheng XY, Wu XT, Shi C, Du FS, Li ZC. Thermally Stable and Chemically Recyclable Poly(ketal-ester)s Regulated by Floor Temperature. J Am Chem Soc 2024; 146:15428-15437. [PMID: 38795044 DOI: 10.1021/jacs.4c03523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2024]
Abstract
Chemical recycling to monomers (CRM) offers a promising closed-loop approach to transition from current linear plastic economy toward a more sustainable circular paradigm. Typically, this approach has focused on modulating the ceiling temperature (Tc) of monomers. Despite considerable advancements, polymers with low Tc often face challenges such as inadequate thermal stability, exemplified by poly(γ-butyrolactone) (PGBL) with a decomposition temperature of ∼200 °C. In contrast, floor temperature (Tf)-regulated polymers, particularly those synthesized via the ring-opening polymerization (ROP) of macrolactones, inherently exhibit enhanced thermodynamic stability as the temperature increases. However, the development of those Tf regulated chemically recyclable polymers remains relatively underexplored. In this context, by judicious design and efficient synthesis of a biobased macrocyclic diester monomer (HOD), we developed a type of Tf -regulated closed-loop chemically recyclable poly(ketal-ester) (PHOD). First, the entropy-driven ROP of HOD generated high-molar mass PHOD with exceptional thermal stability with a Td,5% reaching up to 353 °C. Notably, it maintains a high Td,5% of 345 °C even without removing the polymerization catalyst. This contrasts markedly with PGBL, which spontaneously depolymerizes back to the monomer above its Tc in the presence of catalyst. Second, PHOD displays outstanding closed-loop chemical recyclability at room temperature within just 1 min with tBuOK. Finally, copolymerization of pentadecanolide (PDL) with HOD generated high-performance copolymers (PHOD-co-PPDL) with tunable mechanical properties and chemical recyclability of both components.
Collapse
Affiliation(s)
- Xian-Bin Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Tong Zhou
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Chun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiang-Yue Cheng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiao-Tong Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Changxia Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry & Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
25
|
Deng Y, Huang Z, Feringa BL, Tian H, Zhang Q, Qu DH. Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides. Nat Commun 2024; 15:3855. [PMID: 38719820 PMCID: PMC11079033 DOI: 10.1038/s41467-024-48097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhengtie Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| |
Collapse
|
26
|
Manjunatha BR, Stühler MR, Quick L, Plajer AJ. Improved access to polythioesters by heterobimetallic aluminium catalysis. Chem Commun (Camb) 2024; 60:4541-4544. [PMID: 38497828 DOI: 10.1039/d4cc00811a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Bimetallic Al(III) catalysis mediates thioanhydride/epoxide copolymerisation at greatly improved rates and monomer tolerance than analogous Cr(III) catalysis. Moving to sulfurated monomers furthermore generally improves rates and selectivites.
Collapse
Affiliation(s)
- Bhargav R Manjunatha
- Makromolekulare Chemie 1, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| | - Merlin R Stühler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany
| | - Luise Quick
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany
| | - Alex J Plajer
- Makromolekulare Chemie 1, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany.
| |
Collapse
|
27
|
Gallizioli C, Battke D, Schlaad H, Deglmann P, Plajer AJ. Ring-Opening Terpolymerisation of Elemental Sulfur Waste with Propylene Oxide and Carbon Disulfide via Lithium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202319810. [PMID: 38421100 DOI: 10.1002/anie.202319810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/02/2024]
Abstract
Elemental sulfur, a waste product of the oil refinement process, represents a promising raw material for the synthesis of degradable polymers. We show that simple lithium alkoxides facilitate the polymerisation of elemental sulfur S8 with industrially relevant propylene oxide (PO) and CS2 (a base chemical sourced from waste S8 itself) to give poly(monothiocarbonate-alt-Sx) in which x can be controlled by the amount of supplied sulfur. The in situ generation of thiolate intermediates obtained by a rearrangement, which follows CS2 and PO incorporation, allows to combine S8 and epoxides into one polymer sequence that would otherwise not be possible. Mechanistic investigations reveal that alkyl oligosulfide intermediates from S8 ring opening and sulfur chain length equilibration represent the better nucleophiles for inserting the next PO if compared to the trithiocarbonates obtained from the competing CS2 addition, which causes the sequence selectivity. The polymers can be crosslinked in situ with multifunctional thiols to yield reprocessable and degradable networks. Our report demonstrates how mechanistic understanding allows to combine intrinsically incompatible building blocks for sulfur waste utilisation.
Collapse
Affiliation(s)
- Cesare Gallizioli
- Makromolekulare Chemie I, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth
| | - David Battke
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin
| | - Helmut Schlaad
- Institute für Chemie, Universität Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam
| | - Peter Deglmann
- BASF SE, Carl-Bosch-Straße 38, 67056, Ludwigshafen am Rhein
| | - Alex J Plajer
- Makromolekulare Chemie I, Universität Bayreuth, Universitätsstraße 30, 95447, Bayreuth
| |
Collapse
|
28
|
Huang H, Zheng S, Luo J, Gao L, Fang Y, Zhang Z, Dong J, Hadjichristidis N. Step-growth Polymerization of Aziridines with Elemental Sulfur: Easy Access to Linear Polysulfides and Their Use as Recyclable Adhesives. Angew Chem Int Ed Engl 2024; 63:e202318919. [PMID: 38169090 DOI: 10.1002/anie.202318919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
The bulk radical polymerization of bis(aziridine) with molten elemental sulfur resulted in brittle, cross-linked polymers. However, when the bis(aziridine) was treated with elemental sulfur in the presence of an organobase, the ring-opening reaction of aziridine with oligosulfide anions occurred, leading to the formation of linear polymers by step-growth polymerization. These newly synthesized polymers possess repeating units containing a sulfonamide or amide functional moiety and oligosulfide bonds with an average sulfur segment of about two. A small molecular model reaction confirmed the nucleophilic addition reaction of elemental sulfur to aziridine. It was verified that S-S dynamic bond exchange takes place in the presence of an organic base within the linear chains. The mixture of the synthesized polysulfides with pyridine exhibits exceptional adhesive properties when applied to steel, and aluminum substrates. Notably, these prepared adhesives displayed good reusability due to the dynamic S-S exchange and complete recyclability due to their solution processability. This elemental sulfur-involved polymerization approach represents an innovative method for the synthesis of advanced sulfur-containing polymers, demonstrating the potential for various applications in adhesives and beyond.
Collapse
Affiliation(s)
- Huishan Huang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shuojia Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Jiye Luo
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Liang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Yanxiong Fang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Zhen Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Jinxiang Dong
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P. R. China
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China
| | - Nikos Hadjichristidis
- Physical Sciences and Engineering Division, KAUST Catalysis Center, Polymer Synthesis Laboratory, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
29
|
Bao J, Kang KS, Molineux J, Bischoff DJ, Mackay ME, Pyun J, Njardarson JT. Dithiophosphoric Acids for Polymer Functionalization. Angew Chem Int Ed Engl 2024; 63:e202315963. [PMID: 38225715 DOI: 10.1002/anie.202315963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Indexed: 01/17/2024]
Abstract
Dithiophosphoric acids (DTPAs) are an intriguing class of compounds that are sourced from elemental sulfur and white phosphorus and are prepared from the reaction of phosphorus pentasulfide with alcohols. The electrophilic addition of DTPAs to alkenes and unsaturated olefinic substrates is a known reaction, but has not been applied to polymer synthesis and polymer functionalization. We report on the synthesis and application of DTPAs for the functionalization of challenging poly-enes, namely polyisoprene (PI) and polynorbornene (pNB) prepared by ring-opening metathesis polymerization (ROMP). The high heteroatom content within DTPA moieties impart intriguing bulk properties to poly-ene materials after direct electrophilic addition reactions to the polymer backbone introducing DTPAs as side chain groups. The resulting materials possess both enhanced optical and flame retardant properties vs the poly-ene starting materials. Finally, we demonstrate the ability to prepare crosslinked polydiene films with di-functional DTPAs, where the crosslinking density and thermomechanical properties can be directly tuned by DTPA feed ratios.
Collapse
Affiliation(s)
- Jianhua Bao
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Jake Molineux
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Derek J Bischoff
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Michael E Mackay
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
30
|
Ghumman AS, Shamsuddin R, Alothman ZA, Waheed A, Aljuwayid AM, Sabir R, Abbasi A, Sami A. Amine-Decorated Methacrylic Acid-based Inverse Vulcanized Polysulfide for Effective Mercury Removal from Wastewater. ACS OMEGA 2024; 9:4831-4840. [PMID: 38313525 PMCID: PMC10832004 DOI: 10.1021/acsomega.3c08361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/15/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024]
Abstract
Mercury [Hg(II)] contamination is an indefatigable global hazard that causes severe permanent damage to human health. Extensive research has been carried out to produce mercury adsorbents; however, they still face certain challenges, limiting their upscaling. Herein, we report the synthesis of a novel amine-impregnated inverse vulcanized copolymer for effective mercury removal. Poly(S-MA) was prepared using sulfur and methacrylic acid employing the inverse vulcanization method, followed by functionalization. The polyethylenimine (PEI) was impregnated on poly(S-MA) to increase the adsorption active sites. The adsorbent was then characterized byusing Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM). FTIR spectroscopy confirmed the formation of the copolymer, and successful impregnation of PEI and SEM revealed the composite porous morphology of the copolymer. Amine-impregnated copolymer [amine@poly(S-MA)] outperformed poly(S-MA) in mercury as it showed 20% superior performance with 44.7 mg/g of mercury adsorption capacity. The adsorption data best fit the pseudo-second-order, indicating that chemisorption is the most effective mechanism, in this case, indicating the involvement of NH2 in mercury removal. The adsorption is mainly a monolayer on a homogeneous surface as indicated by the 0.76 value of Redlich-Peterson exponent (g), which describes the adsorption nature advent from the R2 value of 0.99.
Collapse
Affiliation(s)
- Ali Shaan
Manzoor Ghumman
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- HICoE,
Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable
Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Rashid Shamsuddin
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
- HICoE,
Centre for Biofuel and Biochemical Research (CBBR), Institute of Self-Sustainable
Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Zeid A. Alothman
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Ammara Waheed
- Department
of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Punjab, Pakistan
| | - Ahmed M. Aljuwayid
- Department
of Chemistry, College of Science, King Saud
University, Riyadh 11451, Saudi Arabia
| | - Rabia Sabir
- Department
of Chemical Engineering, Wah Engineering College, University of Wah, Wah Cantt 47040, Punjab, Pakistan
| | - Amin Abbasi
- Technology
University of the Shannon (TUS), County
Westmeath, Athlone N37 HD68, Ireland
| | - Abdul Sami
- Chemical
Engineering Department, Universiti Teknologi
PETRONAS, Bandar
Seri Iskandar 32610, Perak Darul Ridzuan, Malaysia
| |
Collapse
|
31
|
Lauer MK, Godman NP, Iacono ST. The Role of Dithiocarbamate Catalysts in the Diversification of Sulfur Speciation Towards Anionic Sulfur. ACS Macro Lett 2024; 13:40-46. [PMID: 38112189 DOI: 10.1021/acsmacrolett.3c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Recently, there has been growing interest in the implementation of various "catalysts" to further diversify the substrate scope for inverse vulcanization reactions. While there have been several proposals on the mechanism of how these catalysts work, the speciation of sulfur in these mixtures has remained elusive. As a key component to understanding when and if these catalysts are appropriate, we sought to elucidate the role of dithiocarbamate species in inverse vulcanization reactions by attempting to characterize the speciation of sulfur. The reaction efficacy for various substrates containing different functional groups with sulfur, either with or without a metal dithiocarbamate, potassium diethyldithiocarbamate (K-DTC), suggests the formation of a rapidly fluctuating sulfur speciation and, most importantly, the presence of anionic sulfur. The work concludes with some suggestions on best practices for the utilization of dithiocarbamate catalysts based on our results.
Collapse
Affiliation(s)
- Moira K Lauer
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
- Department of Chemistry and Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
- Azimuth Corporation, Fairborn, Ohio 45324, United States
| | - Nicholas P Godman
- Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Scott T Iacono
- Department of Chemistry and Chemistry Research Center, Laboratories for Advanced Materials, United States Air Force Academy, Colorado Springs, Colorado 80840, United States
| |
Collapse
|
32
|
Peng J, Tian T, Xu S, Hu R, Tang BZ. Base-Assisted Polymerizations of Elemental Sulfur and Alkynones for Temperature-Controlled Synthesis of Polythiophenes or Poly(1,4-dithiin)s. J Am Chem Soc 2023; 145:28204-28215. [PMID: 38099712 DOI: 10.1021/jacs.3c10954] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
With the increasing demand for functional polythiophenes in extensive applications such as organic solar cells, electronic skins, thermoelectric materials, and field effect transistors, efficient and economic synthetic approaches for polythiophenes are urgently required. In this work, KOH-assisted polymerizations of elemental sulfur and alkynones were developed to directly afford polythiophenes with various backbones, regioselective structures, and high molecular weights (Mns up to 20700 g/mol) in high yields (up to 97%) at 80 °C in 30 min. When the same polymerization was conducted at room temperature, stable and unique poly(1,4-dithiin)s (Mns up to 21800 g/mol) could be rapidly obtained in high yields (up to 87%) in 10 min. The temperature-controlled KOH-assisted polymerizations of sulfur and alkynones possessed high efficiency, mild conditions, and simple operation, which had provided an economic, efficient, and convenient approach for the direct conversion from elemental sulfur to functional polythiophenes and poly(1,4-dithiin)s with the in situ constructed aromatic or nonaromatic heterocycles embedded in the polymer backbones, demonstrating great synthetic simplicity, high efficiency, good selectivity, and robustness. It is anticipated to accelerate the development of semiconducting polymer materials and their applications.
Collapse
Affiliation(s)
- Jianwen Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Tian Tian
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Shuangshuang Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Rongrong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou 510530, China
| |
Collapse
|
33
|
Du T, Shen B, Dai J, Zhang M, Chen X, Yu P, Liu Y. Controlled and Regioselective Ring-Opening Polymerization for Poly(disulfide)s by Anion-Binding Catalysis. J Am Chem Soc 2023; 145:27788-27799. [PMID: 37987648 DOI: 10.1021/jacs.3c10708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poly(disulfide)s are an emerging class of sulfur-containing polymers with applications in medicine, energy, and functional materials. However, the constituent dynamic covalent S-S bond is highly reactive in the presence of the sulfide (RS-) anion, imposing a persistent challenge to control the polymerization. Here, we report an anion-binding approach to arrest the high reactivity of the RS- chain end to control the synthesis of linear poly(disulfide)s, realizing a rapid, living ring-opening polymerization of 1,2-dithiolanes with narrow dispersity and high regioselectivity (Mw/Mn ∼ 1.1, Ps ∼ 0.85). Mechanistic studies support the formation of a thiourea-base-sulfide ternary complex as the catalytically active species during the chain propagation. Theoretical analyses reveal a synergistic catalytic model where the catalyst preorganizes the protonated base and anionic chain end to establish spatial confinement over the bound monomer, effecting the observed regioselectivity. The catalytic system is amenable to monomers with various functional groups, and semicrystalline polymers are also obtained from lipoic acid derivatives by enhancing the regioselectivity.
Collapse
Affiliation(s)
- Tianyi Du
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jieyu Dai
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Miaomiao Zhang
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xingjian Chen
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yun Liu
- Beijing National Laboratory for Molecular Sciences, Center for Soft Matter Science and Engineering, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
34
|
Qureshi MH, Bao J, Kleine TS, Kim KJ, Carothers KJ, Molineux J, Cho E, Kang KS, Godman NP, Coropceanu V, Bredas JL, Norwood RA, Njardarson JT, Pyun J. Synthesis of Deuterated and Sulfurated Polymers by Inverse Vulcanization: Engineering Infrared Transparency via Deuteration. J Am Chem Soc 2023; 145:27821-27829. [PMID: 38060430 DOI: 10.1021/jacs.3c10985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The synthesis of deuterated, sulfurated, proton-free, glassy polymers offers a route to optical polymers for infrared (IR) optics, specifically for midwave IR (MWIR) photonic devices. Deuterated polymers have been utilized to enhance neutron cross-sectional contrast with proteo polymers for morphological neutron scattering measurements but have found limited utility for other applications. We report the synthesis of perdeuterated d14-(1,3-diisopropenylbenzene) with over 99% levels of deuteration and the preparation of proton-free, perdeuterated poly(sulfur-random-d14-(1,3-diisopropenylbenzene)) (poly(S-r-d14-DIB)) via inverse vulcanization with elemental sulfur. Detailed structural analysis and quantum computational calculations of these reactions demonstrate significant kinetic isotope effects, which alter mechanistic pathways to form different copolymer microstructures for deutero vs proteo poly(S-r-DIB). This design also allows for molecular engineering of MWIR transparency by shifting C-H bond vibrations around 3.3 μm/3000 cm-1 observed in proteo poly(S-r-DIB) to 4.2 μm/2200 cm-1. Furthermore, the fabrication of thin-film MWIR optical gratings made from molding of deuterated-sulfurated, proton-free poly(S-r-d14-DIB) is demonstrated; operation of these gratings at 3.39 μm is achieved successfully, while the proteo poly(S-r-DIB) gratings are opaque at these wavelengths, highlighting the promise of MWIR sensors and compact spectrometers from these materials.
Collapse
Affiliation(s)
- Munaum H Qureshi
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Jianhua Bao
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Tristan S Kleine
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Kyung-Jo Kim
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyle J Carothers
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- Azimuth Corporation, 2970 Presidential Drive, Suite 200, Beavercreek, Ohio 45324, United States
| | - Jake Molineux
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Eunkyung Cho
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
- Division of Energy Technology, DIGST, Daegu 42988, Republic of Korea
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Nicholas P Godman
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States
- Azimuth Corporation, 2970 Presidential Drive, Suite 200, Beavercreek, Ohio 45324, United States
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Robert A Norwood
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, 1306 E. University Blvd., Tucson, Arizona 85721, United States
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
35
|
Mahawar MK, Bharimalla AK, Arputharaj A, Palkar J, Dhakane-Lad J, Jalgaonkar K, Vigneshwaran N. Response surface optimization of process parameters for preparation of cellulose nanocrystal stabilized nanosulphur suspension. Sci Rep 2023; 13:20678. [PMID: 38001094 PMCID: PMC10673880 DOI: 10.1038/s41598-023-47164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
This study employed response surface methodology (RSM) to optimize various parameters involved in the synthesis of nanosulphur (NS) stabilized by cellulose nanocrystals (CNCs). The elemental sulphur (ES) mixed with CNCs was processed in a high-pressure homogenizer to make a stable formulation of CNC-stabilized NS (CNC-NS). RSM was adopted to formulate the experiments using Box-Behnken design (BBD) by considering three independent variables i.e., ES (5, 10, 15 g), CNCs (25, 50, 75 ml), and the number of passes (NP) in the high-pressure homogenizer (1, 2, 3). For the prepared suspensions (CNC-NS), the range of the responses viz. settling time (0.84-20.60 min), particle size (500.41-1432.62 nm), viscosity (29.20-420.60 cP), and surface tension (60.35-73.61 N/m) were observed. The numerical optimization technique was followed by keeping the independent and dependent factors in the range yielded in the optimized solution viz. 46 ml (CNCs), 8 g (ES), and 2 (NP). It was interpreted from the findings that the stability of the suspension had a positive correlation with the amount of CNC while the increasing proportion of ES resulted in reduced stability. The quadratic model was fitted adequately to all the responses as justified with the higher coefficient of determination (R2 ≥ 0.88). The characterization performed by X-ray diffraction (XRD), zeta potential, Raman spectroscopy, and Fourier transform infrared spectroscopy (FTIR) revealed better-stabilizing properties of the optimized CNCs-ES suspension. The study confirmed that CNCs have the potential to be utilized as a stabilizing agent in synthesizing stable nanosulphur formulation by high-pressure homogenization.
Collapse
Affiliation(s)
- Manoj Kumar Mahawar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India.
| | | | - A Arputharaj
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Jagdish Palkar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Jyoti Dhakane-Lad
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - Kirti Jalgaonkar
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| | - N Vigneshwaran
- ICAR-Central Institute for Research on Cotton Technology, Mumbai, 400019, India
| |
Collapse
|
36
|
Bischoff DJ, Lee T, Kang KS, Molineux J, O'Neil Parker W, Pyun J, Mackay ME. Unraveling the rheology of inverse vulcanized polymers. Nat Commun 2023; 14:7553. [PMID: 37985754 PMCID: PMC10662295 DOI: 10.1038/s41467-023-43117-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Multiple relaxation times are used to capture the numerous stress relaxation modes found in bulk polymer melts. Herein, inverse vulcanization is used to synthesize high sulfur content (≥50 wt%) polymers that only need a single relaxation time to describe their stress relaxation. The S-S bonds in these organopolysulfides undergo dissociative bond exchange when exposed to elevated temperatures, making the bond exchange dominate the stress relaxation. Through the introduction of a dimeric norbornadiene crosslinker that improves thermomechanical properties, we show that it is possible for the Maxwell model of viscoelasticity to describe both dissociative covalent adaptable networks and living polymers, which is one of the few experimental realizations of a Maxwellian material. Rheological master curves utilizing time-temperature superposition were constructed using relaxation times as nonarbitrary horizontal shift factors. Despite advances in inverse vulcanization, this is the first complete characterization of the rheological properties of this class of unique polymeric material.
Collapse
Affiliation(s)
- Derek J Bischoff
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Taeheon Lee
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Jake Molineux
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Jeffrey Pyun
- Department of Chemistry and Biochemistry & Wyant College of Optical Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| | - Michael E Mackay
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, 19716, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA.
| |
Collapse
|
37
|
Liu J, Li X, Chen K, Li Y, Feng S, Su P, Zou Y, Li Y, Wang W. Super Adhesive Fluorescent Materials for Encrypted Messages, Underwater Leak Repair, and Their Potential Application in Fluorescent Tattoos. Macromol Rapid Commun 2023; 44:e2300282. [PMID: 37461805 DOI: 10.1002/marc.202300282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Indexed: 07/25/2023]
Abstract
Achieving high-performance luminescence for underwater bonding remains a significant challenge in materials science. This study addresses this issue by synthesizing a luminescent material based on an aggregation-induced emission (AIE) monomer and copolymerizing it with lipoic acid (LA) to create an AIE supramolecular polymer. The resulting copolymer exhibits strong fluorescence under ultraviolet (UV) irradiation at 365 nm due to the AIE of TPEE and enables underwater adhesion. The P(LA-TPEE) polymer demonstrates potential for digital encryption and decryption of quick response (QR) codes underwater. Furthermore, it can dissolve well in anhydrous ethanol, producing an environment-friendly and super waterproof adhesive. Most notably, the P(LA-TPEE) solution can be sprayed on human skin, creating an invisible tattoo that only became visible under UV light due to the hydrogen bond (H-bond) and π-π structures. This smart tattoo can be quickly wiped away with alcohol, avoiding the painful and harmful process of tattoo removal. It can also be repeatedly applied to draw the preferred tattoo pattern. This AIE supramolecular polymer shows great potential in underwater adhesion and repair, underwater message encryption, and non-toxic and painless invisible tattooing. Overall, this study provides a valuable approach for material design in the future.
Collapse
Affiliation(s)
- Jianhua Liu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolin Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Kangbo Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - ShuaiShuai Feng
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peipei Su
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Zou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yi Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
38
|
Fornacon-Wood C, Stühler MR, Gallizioli C, Manjunatha BR, Wachtendorf V, Schartel B, Plajer AJ. Precise construction of weather-sensitive poly(ester- alt-thioesters) from phthalic thioanhydride and oxetane. Chem Commun (Camb) 2023; 59:11353-11356. [PMID: 37655470 DOI: 10.1039/d3cc03315e] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
We report the selective ring opening copolymerisation (ROCOP) of oxetane and phthalic thioanhydride by a heterobimetallic Cr(III)K catalyst precisely yielding semi-crystalline alternating poly(ester-alt-thioesters) which show improved degradability due to the thioester links in the polymer backbone.
Collapse
Affiliation(s)
- Christoph Fornacon-Wood
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| | - Merlin R Stühler
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| | - Cesare Gallizioli
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| | - Bhargav R Manjunatha
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| | - Volker Wachtendorf
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Bernhard Schartel
- Bundesanstalt für Materialforschung und -Prüfung (BAM), Unter den Eichen 87, Berlin 12205, Germany
| | - Alex J Plajer
- Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 34-36, Berlin 14195, Germany.
| |
Collapse
|
39
|
Fornacon-Wood C, Manjunatha BR, Stühler MR, Gallizioli C, Müller C, Pröhm P, Plajer AJ. Precise cooperative sulfur placement leads to semi-crystallinity and selective depolymerisability in CS 2/oxetane copolymers. Nat Commun 2023; 14:4525. [PMID: 37500621 PMCID: PMC10374558 DOI: 10.1038/s41467-023-39951-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/05/2023] [Indexed: 07/29/2023] Open
Abstract
CS2 promises easy access to degradable sulfur-rich polymers and insights into how main-group derivatisation affects polymer formation and properties, though its ring-opening copolymerisation is plagued by low linkage selectivity and small-molecule by-products. We demonstrate that a cooperative Cr(III)/K catalyst selectively delivers poly(dithiocarbonates) from CS2 and oxetanes while state-of-the-art strategies produce linkage scrambled polymers and heterocyclic by-products. The formal introduction of sulfur centres into the parent polycarbonates results in a net shift of the polymerisation equilibrium towards, and therefore facilitating, depolymerisation. During copolymerisation however, the catalyst enables near quantitative generation of the metastable polymers in high sequence selectivity by limiting the lifetime of alkoxide intermediates. Furthermore, linkage selectivity is key to obtain semi-crystalline materials that can be moulded into self-standing objects as well as to enable chemoselective depolymerisation into cyclic dithiocarbonates which can themselves serve as monomers in ring-opening polymerisation. Our report demonstrates the potential of cooperative catalysis to produce previously inaccessible main-group rich materials with beneficial chemical and physical properties.
Collapse
Affiliation(s)
- Christoph Fornacon-Wood
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Bhargav R Manjunatha
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Merlin R Stühler
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Cesare Gallizioli
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Carsten Müller
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Patrick Pröhm
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany
| | - Alex J Plajer
- Intitut für Chemie und Biochemie., Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany.
| |
Collapse
|
40
|
Kariyawasam LS, Highmoore JF, Yang Y. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization. Angew Chem Int Ed Engl 2023; 62:e202303039. [PMID: 36988027 DOI: 10.1002/anie.202303039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 03/30/2023]
Abstract
In a sustainable circular economy, polymers capable of chemical recycling to monomers are highly desirable. We report an efficient monomer-polymer recycling of polydithioacetal (PDTA). Pristine PDTAs were readily synthesized from 3,4,5-trimethoxybenzaldehyde and alkyl dithiols. They then exhibited depolymerizability via ring-closing depolymerization into macrocycles, followed by entropy-driven ring-opening polymerization (ED-ROP) to reform the virgin polymers. High conversions were obtained for both the forward and reverse reactions. Once crosslinked, the network exhibited thermal reprocessability enabled by acid-catalyzed dithioacetal exchange. The network retained the recyclability into macrocyclic monomers in solvent which can repolymerize to regenerate the crosslinked network. These results demonstrated PDTA as a new molecular platform for the design of recyclable polymers and the advantages of ED-ROP for which polymerization is favored at higher temperatures.
Collapse
Affiliation(s)
| | | | - Ying Yang
- Department of Chemistry, University of Nevada, Reno, Reno, NV 89557, USA
| |
Collapse
|
41
|
Bao J, Martin KP, Cho E, Kang KS, Glass RS, Coropceanu V, Bredas JL, Parker WO, Njardarson JT, Pyun J. On the Mechanism of the Inverse Vulcanization of Elemental Sulfur: Structural Characterization of Poly(sulfur- random-(1,3-diisopropenylbenzene)). J Am Chem Soc 2023. [PMID: 37224413 DOI: 10.1021/jacs.3c03604] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Organosulfur polymers, such as those derived from elemental sulfur, are an important new class of macromolecules that have recently emerged via the inverse vulcanization process. Since the launching of this new field in 2013, the development of new monomers and organopolysulfide materials based on the inverse vulcanization process is now an active area in polymer chemistry. While numerous advances have been made over the last decade concerning this polymerization process, insights into the mechanism of inverse vulcanization and structural characterization of the high-sulfur-content copolymers that are produced remain challenging due to the increasing insolubility of the materials with a higher sulfur content. Furthermore, the high temperatures used in this process can result in side reactions and complex microstructures of the copolymer backbone, complicating detailed characterization. The most widely studied case of inverse vulcanization to date remains the reaction between S8 and 1,3-diisopropenylbenzene (DIB) to form poly(sulfur-random-1,3-diisopropenylbenzene)(poly(S-r-DIB)). Here, to determine the correct microstructure of poly(S-r-DIB), we performed comprehensive structural characterizations of poly(S-r-DIB) using nuclear magnetic resonance spectroscopy (solid state and solution) and analysis of sulfurated DIB units using designer S-S cleavage polymer degradation approaches, along with complementary de novo synthesis of the sulfurated DIB fragments. These studies reveal that the previously proposed repeating units for poly(S-r-DIB) were incorrect and that the polymerization mechanism of this process is significantly more complex than initially proposed. Density functional theory calculations were also conducted to provide mechanistic insights into the formation of the derived nonintuitive microstructure of poly(S-r-DIB).
Collapse
Affiliation(s)
- Jianhua Bao
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kaitlyn P Martin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Eunkyung Cho
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Seok Kang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Richard S Glass
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Veaceslav Coropceanu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jean-Luc Bredas
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Wallace O'Neil Parker
- Physical Chemistry Department, Eni, Research & Technical Innovation, ENI S.p.A., Via Maritano 26, 20097 San Donato Milanese, Italy
| | - Jon T Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
42
|
Pople JMM, Nicholls TP, Pham LN, Bloch WM, Lisboa LS, Perkins MV, Gibson CT, Coote ML, Jia Z, Chalker JM. Electrochemical Synthesis of Poly(trisulfides). J Am Chem Soc 2023; 145:11798-11810. [PMID: 37196214 DOI: 10.1021/jacs.3c03239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
With increasing interest in high sulfur content polymers, there is a need to develop new methods for their synthesis that feature improved safety and control of structure. In this report, electrochemically initiated ring-opening polymerization of norbornene-based cyclic trisulfide monomers delivered well-defined, linear poly(trisulfides), which were solution processable. Electrochemistry provided a controlled initiation step that obviates the need for hazardous chemical initiators. The high temperatures required for inverse vulcanization are also avoided resulting in an improved safety profile. Density functional theory calculations revealed a reversible "self-correcting" mechanism that ensures trisulfide linkages between monomer units. This control over sulfur rank is a new benchmark for high sulfur content polymers and creates opportunities to better understand the effects of sulfur rank on polymer properties. Thermogravimetric analysis coupled with mass spectrometry revealed the ability to recycle the polymer to the cyclic trisulfide monomer by thermal depolymerization. The featured poly(trisulfide) is an effective gold sorbent, with potential applications in mining and electronic waste recycling. A water-soluble poly(trisulfide) containing a carboxylic acid group was also produced and found to be effective in the binding and recovery of copper from aqueous media.
Collapse
Affiliation(s)
- Jasmine M M Pople
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Thomas P Nicholls
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Le Nhan Pham
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Witold M Bloch
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Lynn S Lisboa
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Michael V Perkins
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Christopher T Gibson
- Flinders Microscopy and Microanalysis, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia 5042, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Zhongfan Jia
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| | - Justin M Chalker
- Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
43
|
Tang H, Zhang M, Zhang Y, Luo P, Ravelli D, Wu J. Direct Synthesis of Thioesters from Feedstock Chemicals and Elemental Sulfur. J Am Chem Soc 2023; 145:5846-5854. [PMID: 36854068 DOI: 10.1021/jacs.2c13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
The development of a mild, atom- and step-economical catalytic strategy that effectively generates value-added molecules directly from readily available commodity chemicals is a central goal of organic synthesis. In this context, the thiol-ene click chemistry for carbon-sulfur (C-S) bond construction has found widespread applications in the synthesis of pharmaceuticals and functional materials. In contrast, the selective carbonyl thiyl radical addition to carbon-carbon multiple bonds remains underdeveloped. Herein, we report a carbonyl thiyl radical-based thioester synthesis through three-component coupling from feedstock aldehydes, alkenes, or alkynes and elemental sulfur by direct photocatalyzed hydrogen atom transfer. This method represents an orthogonal strategy to the conventional thiol-based nucleophilic substitution and exhibits a remarkably broad substrate scope ranging from simple commodity chemicals such as ethylene and acetylene to complex pharmaceutical molecules. This protocol can be easily extended to the synthesis of thiolactones, oligomer/polymers, and thioacids. Its synthetic utility has been demonstrated by a two-step synthesis of the drug esonarimod. Mechanistic studies indicate that the use of elemental sulfur to trap acyl radicals is both thermodynamically and kinetically favored, illustrating its great potential for the synthesis of sulfur-containing molecules.
Collapse
Affiliation(s)
- Haidi Tang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| | - Muliang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Yuchao Zhang
- Institute of Basic Medicine and Cancer (IBMC) Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, 27100 Pavia, Italy
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou 215123, China
| |
Collapse
|
44
|
Zheng N, Gao H, Jiang Z, Song W. Multicomponent polymerization of sulfur, chloroform and diamine toward polythiourea. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1483-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
45
|
Szabó Á, Szarka G, Trif L, Gyarmati B, Bereczki L, Iván B, Kovács E. Poly(dithiophosphate)s, a New Class of Phosphorus- and Sulfur-Containing Functional Polymers by a Catalyst-Free Facile Reaction between Diols and Phosphorus Pentasulfide. Int J Mol Sci 2022; 23:ijms232415963. [PMID: 36555604 PMCID: PMC9787700 DOI: 10.3390/ijms232415963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Novel poly(dithiophosphate)s (PDTPs) were successfully synthesized under mild conditions without any additive in the presence of THF or toluene diluents at 60 °C by a direct, catalyst-free reaction between the abundant phosphorus pentasulfide (P4S10) and glycols such as ethylene glycol (EG), 1,6-hexanediol (HD) and poly(ethylene glycol) (PEG). GPC, FTIR, 1H and 31P NMR analyses proved the formation of macromolecules with dithiophosphate coupling groups having P=S and P-SH pendant functionalities. Surprisingly, the ring-opening of THF by the P-SH group and its pendant incorporation as a branching point occur during polymerization. This process is absent with toluene, providing conditions to obtain linear chains. 31P NMR measurements indicate long-time partial hydrolysis and esterification, resulting in the formation of a thiophosphoric acid moiety and branching points. Copolymerization, i.e., using mixtures of EG or HD with PEG, results in polymers with broadly varying viscoelastic properties. TGA shows the lower thermal stability of PDTPs than that of PEG due to the relatively low thermal stability of the P-O-C moieties. The low Tgs of these polymers, from -4 to -50 °C, and a lack of PEG crystallites were found by DSC. This polymerization process and the resulting novel PDTPs enable various new routes for polymer synthesis and application possibilities.
Collapse
Affiliation(s)
- Ákos Szabó
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Correspondence: (Á.S.); (B.I.)
| | - Györgyi Szarka
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - László Trif
- Functional Nanoparticles Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Benjámin Gyarmati
- Soft Matters Group, Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Laura Bereczki
- Plasma Chemistry Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Chemical Crystallography Research Laboratory, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| | - Béla Iván
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
- Correspondence: (Á.S.); (B.I.)
| | - Ervin Kovács
- Polymer Chemistry and Physics Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Magyar tudósok krt. 2, H-1117 Budapest, Hungary
| |
Collapse
|
46
|
Kang KS, Olikagu C, Lee T, Bao J, Molineux J, Holmen LN, Martin KP, Kim KJ, Kim KH, Bang J, Kumirov VK, Glass RS, Norwood RA, Njardarson JT, Pyun J. Sulfenyl Chlorides: An Alternative Monomer Feedstock from Elemental Sulfur for Polymer Synthesis. J Am Chem Soc 2022; 144:23044-23052. [DOI: 10.1021/jacs.2c10317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Kyung-Seok Kang
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Chisom Olikagu
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Taeheon Lee
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jianhua Bao
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jake Molineux
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Lindsey N. Holmen
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kaitlyn P. Martin
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Kyung-Jo Kim
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Ki Hyun Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Joona Bang
- Department of Chemical & Biological Engineering, Korea University, Seoul 136-713, Republic of Korea
| | - Vlad K. Kumirov
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Richard S. Glass
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Robert A. Norwood
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Jon T. Njardarson
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
| | - Jeffrey Pyun
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona 85721, United States
- James C. Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
47
|
Wang D, Tang Z, Huang R, Li H, Zhang C, Guo B. Inverse Vulcanization of Vinyltriethoxysilane: A Novel Interfacial Coupling Agent for Silica-Filled Rubber Composites. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Wang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Zhenghai Tang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Ruoyan Huang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Haoming Li
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Chengfeng Zhang
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| | - Baochun Guo
- Department of Polymer Materials and Engineering, South China University of Technology, Guangzhou510640, P. R. China
| |
Collapse
|
48
|
Chen W, Lu X, Zhou H. Base‐catalyzed Sulfurative Condensation of 2‐Oxoindoles to Isoindigos Using Elemental Sulfur. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Xiao‐Bing Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| |
Collapse
|
49
|
Li G, Zhao J, Zhang Z, Zhao X, Cheng L, Liu Y, Guo Z, Yu W, Yan X. Robust and Dynamic Polymer Networks Enabled by Woven Crosslinks. Angew Chem Int Ed Engl 2022; 61:e202210078. [DOI: 10.1002/anie.202210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guangfeng Li
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311200 P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xinyang Zhao
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yuhang Liu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhewen Guo
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
50
|
Li G, Zhao J, Zhang Z, Zhao X, Cheng L, Liu Y, Guo Z, Yu W, Yan X. Robust and Dynamic Polymer Networks Enabled by Woven Crosslinks. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Guangfeng Li
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Jun Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhaoming Zhang
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xinyang Zhao
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Lin Cheng
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Yuhang Liu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Zhewen Guo
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Wei Yu
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering CHINA
| | - Xuzhou Yan
- Shanghai Jiao Tong University School of Chemistry and Chemical Engineering 800 Dongchuan Road 200240 Shanghai CHINA
| |
Collapse
|