1
|
Wagalgave SM, Kongasseri AA, Singh U, Anilkumar A, Ansari SN, Pati SK, George SJ. Core-Substituted Pyromellitic Diimides: A Versatile Molecular Scaffold for Tunable Triplet Emission. J Am Chem Soc 2025; 147:15591-15601. [PMID: 40293408 DOI: 10.1021/jacs.5c02632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Arylene diimides represent a versatile class of n-type organic semiconductors, widely recognized for tunable photophysical properties, making them highly relevant across various optoelectronic applications. While their fluorescence can be finely modulated through core substitution, triplet-state emission has received comparatively little attention. This is particularly surprising given the growing field of ambient-organic triplet harvesting materials, such as thermally activated delayed fluorescence and phosphorescent systems, which would greatly benefit from structural modifications to the π-conjugated backbone and core substitution of arylene diimides to achieve the desired properties. Realizing tunable triplet states within a family of molecules is crucial for advancing organic triplet-based materials for applications in lighting, photocatalysis, and beyond. In this context, we present an unprecedented study demonstrating tunable triplet emission in pyromellitic diimides, the smallest member of the arylene diimide family, with an accessible emissive triplet state due to a narrow singlet-triplet energy gap. Herein, we report the synthesis of a series of core-substituted pyromellitic diimides (cPmDIs) using diverse synthetic strategies. Core substitution not only induces a wide spectrum of fluorescence colors but, notably, enables a wide-range phosphorescence spanning across the visible spectrum, depending on the core substituent. This article details the synthesis and photophysical and electrochemical characterization of a library of cPmDIs, supported by theory. Furthermore, we demonstrate the potential of this molecular design in achieving ambient-orange phosphorescence, as exemplified by the thiophenyl-cPmDI derivative, which exhibits triplet emission in the crystalline and film states by minimizing vibrational dissipation. In this regard, we envision that the present study represents a significant step toward the predictive structure-property design of ambient-organic phosphors and triplet harvesting materials.
Collapse
Affiliation(s)
- Sopan M Wagalgave
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Anju Ajayan Kongasseri
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Utkarsh Singh
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Ananya Anilkumar
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Shagufi Naz Ansari
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Swapan K Pati
- Theoretical Sciences Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J George
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
2
|
Jin L, Mo W, Wang Z, Hong W. Day-Long Organic Persistent Luminescence in Flexible Polymeric Materials. Angew Chem Int Ed Engl 2025:e202506261. [PMID: 40285736 DOI: 10.1002/anie.202506261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/13/2025] [Accepted: 04/16/2025] [Indexed: 04/29/2025]
Abstract
The progress in organic afterglow materials has drawn significant attention due to their extensive applications in fields such as optoelectronics, anti-counterfeiting, and bioimaging. Nonetheless, a general limitation of organic afterglow materials is their short emission lifetimes, typically spanning from milliseconds to seconds, which creates a substantial challenge in developing day-long organic afterglow (DOA). In this study, a DOA system is demonstrated through the incorporation of electron donor/acceptor exciplexes. Polyethylene naphthalate is used for both the electron acceptor and charge storage units, coupling with a spirobifluorene-carbazole derivative as the electron donor, providing effective charge separations under UV-light and sunlight excitation. The resulting DOA polymers demonstrate an exceptional bluish-green afterglow that endures for over 28 h under ambient conditions, setting a new record for the longest afterglow duration in polymeric materials. Moreover, the DOA-doped polymers, as both films and fibers, exhibit outstanding flexibility and transparency, making them highly suitable for flexible technologies and wearable devices.
Collapse
Affiliation(s)
- Longming Jin
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wanqi Mo
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ziyi Wang
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Hong
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
3
|
Yang B, Yan S, Ban S, Ma H, Zhang Y, Feng F, Huang W. Customizing circularly polarized afterglow by stepwise chiral amplification in BINAPs/BINAPOs. Chem Sci 2025:d4sc08710k. [PMID: 40308957 PMCID: PMC12038432 DOI: 10.1039/d4sc08710k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Overcoming spin-forbidden radiation in chiral phosphors has attracted enormous attention because of their capacity to exhibit circularly polarized organic ultra-long room temperature phosphorescence (CP-OURTP). However, their development has been hindered by the short lifetimes and low dissymmetry factors, which are attributed to the differing parity selection rules that govern the electric and magnetic dipole moments in chiral molecules and poor triplet populations via intersystem crossing (ISC). Considering stepwise chiral amplification at molecular and supramolecular aspects, herein, we first reported donor-decorated BINAPs/BINAPOs with tunable D-A character and triplet incubation, which could enable hybridized local and charge-transfer (HLCT) characteristics, heavy atoms, and p-π* effects. These emitters could serve as guests in the polymer matrix. The doped phosphorescent polymer exhibits unimolecular circularly polarized luminescence (C) with high quantum efficiency, impressive CP-OURTP lifetimes (up to 1.02 s), and decent dissymmetry factors (10-3 level). Comprehensive studies unveil that the impressive CP-OURTP from monomer emission is ascribed to the 1HLCT-controlled ISC, long-lived 3LE-governing triplet radiation, and superior electric-magnetic dipole moment environments. Moreover, given the high RTP activity of rigid polymerization, we demonstrate their potential application in CP-OURTP amplification. Using in situ chiral liquid crystal polymerization, RM257 liquid crystals doped with 0.1-1.0 wt% PO1 guests demonstrate a secondary helical assembly, showing an amplified g CP-RTP factor (±0.11) and a long lifetime (0.83 s) after photopolymerization. The current materials' excellent performance in CP-OURTP and structural dependence could lead to their use in afterglow patterns for multiple optical encryption.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Shirong Ban
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 P. R. China
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 P. R. China
| |
Collapse
|
4
|
Zhang K, Qi Z, Zhang N, Zhao X, Fan Y, Sun L, Zhou G, Li SL, Zhang XM. Efficient energy transfer from organic triplet states to Mn 2+ dopants for dynamic tunable multicolor afterglow in 1D hybrid cadmium chloride. Chem Sci 2025; 16:6104-6113. [PMID: 40078606 PMCID: PMC11894465 DOI: 10.1039/d4sc08718f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Metal ion-doped organic-inorganic hybrid metal halides have emerged as promising room-temperature phosphorescence (RTP) materials owing to their tunable afterglow properties and significant potential in information security applications. However, optimizing RTP performance and achieving dynamic control over afterglow colors remain challenging in 1D hybrid systems, primarily because of the inefficient energy transfer from RTP-active organic components to external emissive sites. Herein, we report a novel 1D hybrid metal halide benchmark material, [(NBP)Cd2Cl5H2O] (NBP-Cd, NBP = N-benzylpiperidone), and a series of Mn2+-doped derivatives, NBP-Cd:xMn2+ (where x represents doping levels from 1% to 50%). The undoped compound exhibits blue-white fluorescence and exceptional long-lasting yellow-green organic RTP with a duration of up to 2 s. Upon Mn2+ doping, the afterglow color transitions progressively from yellow-green (1-5%) to yellow (10%), orange (20%), and finally red (50%), accompanied by a reduction in afterglow duration. This dynamic multicolor afterglow behavior is attributed to efficient energy transfer from the stable triplet states within the organic component to the 4T1 level of the Mn2+ dopants. Remarkably, the NBP-Cd:10% Mn2+ crystal demonstrates exceptional excitation-dependent dual-mode photoluminescence properties. These distinctive features underscore the significant potential of this model system for advanced applications in anti-counterfeiting technologies and high-level information encryption systems.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Zhikai Qi
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Nan Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xingxing Zhao
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Yanli Fan
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Long Sun
- Department of Chemistry, Changzhi Universtiy Changzhi 046011 P. R. China
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Shi-Li Li
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules & Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
- College of Chemistry and Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Taiyuan University of Technology Taiyuan 030024 P. R. China
| |
Collapse
|
5
|
Gao H, Wang G, Wang T, Ye Z, Yan Q, Chong Q, Chan C, Wang B, Zhang K. Achieving High-Performance Organic Long Persistent Luminescence Materials via Manipulation of Radical Cation Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416853. [PMID: 39985245 PMCID: PMC12005741 DOI: 10.1002/advs.202416853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 01/30/2025] [Indexed: 02/24/2025]
Abstract
Organic long persistent luminescence (OLPL) materials, with their hour-long afterglow, hold great promise across numerous applications, yet their performance lags behind that of inorganic counterparts. A deeper understanding of the underlying photophysical mechanisms, particularly the effective control of radical intermediates, is essential for developing high-performance OLPL materials; while systematic studies on the intrinsic stability of radical intermediates and their impact on OLPL performance remain scarce. Here biphenyl groups is introduced into a luminophore-matrix-donor three-component OLPL system. By varying substituents at the ortho-position of the biphenyl groups, the stability of radical cations is systematically modulated, and their influence on OLPL properties is investigated. Combined experimental results and theoretical calculations reveal that increased flexibility of the biphenyl bond and adjustable conformations lead to higher stability of radical cations, thereby significantly enhancing OLPL performance. Based on this understanding, a luminophore with two biphenyl groups is designed to successfully achieve remarkable afterglow brightness close to inorganic Sr2Al14O25/Eu2+, Dy3+ materials. Furthermore, these OLPL materials exhibit time-encoded afterglow properties and promising applications in advanced anti-counterfeiting, as well as background-independent bioimaging functions. This work not only provides a novel strategy for constructing high-performance OLPL materials but also lays a foundation for their widespread application in various fields.
Collapse
Affiliation(s)
- Hongxin Gao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric MaterialsSchool of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou University21 Gehuzhong RoadChangzhou213100P. R. China
- State Key Laboratory of Organometallic ChemistryKey Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesShanghai Institute of Organic ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
| | - Guangming Wang
- State Key Laboratory of Organometallic ChemistryKey Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesShanghai Institute of Organic ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
| | - Tengyue Wang
- State Key Laboratory of Organometallic ChemistryKey Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesShanghai Institute of Organic ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
| | - Zi Ye
- State Key Laboratory of Organometallic ChemistryKey Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesShanghai Institute of Organic ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
| | - Qianqian Yan
- State Key Laboratory of Organometallic ChemistryKey Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesShanghai Institute of Organic ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
| | - Qianhui Chong
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric MaterialsSchool of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou University21 Gehuzhong RoadChangzhou213100P. R. China
| | - Chin‐Yiu Chan
- Department of Materials Science and EngineeringCity University of Hong KongTat Chee AvenueKowloonHong Kong SAR999077China
| | - Biaobing Wang
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric MaterialsSchool of Materials Science and EngineeringJiangsu Collaborative Innovation Center of Photovoltaic Science and EngineeringChangzhou University21 Gehuzhong RoadChangzhou213100P. R. China
| | - Kaka Zhang
- State Key Laboratory of Organometallic ChemistryKey Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional MoleculesShanghai Institute of Organic ChemistryChinese Academy of SciencesUniversity of Chinese Academy of Sciences345 Lingling RoadShanghai200032P. R. China
| |
Collapse
|
6
|
Yang B, Yan S, Ban S, Huang W. Dual-Ring-Locking Strategy Enables Persistent Blue Room Temperature Phosphorescence in Benzo[ b]phospholiums. Inorg Chem 2025; 64:5801-5810. [PMID: 40101244 DOI: 10.1021/acs.inorgchem.4c05315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Commercial phosphines and phosphoniums were commonly reported to have unstable triplet dissipation because of the flexible C-P pyramidal geometry, resulting in extremely weak or no phosphorescence. To boost triplet populations and stability by restricting the molecular motion and rebuilding the electronic structures, we reported that the dual-ring-locking strategy could enable elevated intersystem crossing (ISC) and triplet radiation for the rigid benzo[b]phospholium configuration, exhibiting intense persistent room temperature phosphorescence (RTP) in poly(vinyl alcohol) (PVA). Among them, dual-ring-locked [P1]+[Cl]- showed near-ultraviolet fluorescence maximized at 400 nm in dichloromethane and blue RTP emission at 453 nm (Φphos ≈ 12.4%, τphos > 1200 ms) in the PVA matrix. In contrast, [P2]+[Cl]- possessed a single ring-locked nucleus that had red-shifted emission and weak phosphorescence (Φphos < 1.8%, τphos = 74.2 ms). Time-dependent density functional theory (TD-DFT) disclosed that the improved spin-flipping of phosphoniums benefited from the integrated π-π*/n-π* transition, rational split energy, and rigid excited states. The impressive OU-RTP duration could function as an afterglow pattern for optical encryption or as an emitting layer for light-emitting diode (LED) applications.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Shirong Ban
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| |
Collapse
|
7
|
Lin Z, Ye J, Shinohara S, Tanaka Y, Yoshioka R, Chan CY, Lee YT, Tang X, Mitrofanov K, Wang K, Ouchi H, Moshniaha L, Narayana YSLV, Ishii H, Zhang XH, Adachi C, Chen XK, Kabe R. Blue organic long-persistent luminescence via upconversion from charge-transfer to locally excited singlet state. Nat Commun 2025; 16:2686. [PMID: 40102438 PMCID: PMC11920369 DOI: 10.1038/s41467-025-58048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 03/20/2025] Open
Abstract
Long-persistent luminescence (LPL) materials have applications from safety signage to bioimaging; however, existing organic LPL (OLPL) systems do not align with human scotopic vision, which is sensitive to blue light. We present a strategy to blueshift the emissions in binary OLPL systems by upconverting the charge-transfer (CT) to a locally excited (LE) singlet state. Through rigorous steady-state and time-resolved photoluminescence spectroscopy and wavelength-resolved thermoluminescence measurements, we provide the direct experimental evidence for this upconversion in OLPL systems featuring small energy offsets between the lowest-energy CT and LE singlet states. These systems exhibited strong room temperature LPL, particularly when extrinsic electron traps are added. Importantly, the developed OLPL system achieved Class A (ISO 17398) LPL, matching well with human scotopic vision. The findings not only elucidate the role of small energy offsets in modulating LPL but also provide potential avenues for enhancing the efficiency and applicability of OLPL materials.
Collapse
Affiliation(s)
- Zesen Lin
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 1, Singapore, 117585, Singapore.
| | - Jinting Ye
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Box 33, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China
| | - Shin Shinohara
- Graduate School of Science and Engineering, Chiba University, Inage, Chiba, 263-8522, Japan
| | - Yuya Tanaka
- Graduate School of Science and Technology, Gunma University, Kiryu, Gunma, 376-8515, Japan
| | - Rengo Yoshioka
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Chin-Yiu Chan
- Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Xun Tang
- Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Kirill Mitrofanov
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Kai Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Box 33, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Hayato Ouchi
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Liliia Moshniaha
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Yemineni S L V Narayana
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Hisao Ishii
- Graduate School of Science and Engineering, Chiba University, Inage, Chiba, 263-8522, Japan
- Center for Frontier Science, Chiba University, Inage, Chiba, 263-8522, Japan
- Molecular Chirality Research Center, Chiba University, Inage, Chiba, 263-8522, Japan
| | - Xiao-Hong Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Box 33, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
- International Institute for Carbon Neutral Energy Research, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Xian-Kai Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Box 33, 199 Ren'ai Rd, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, Jiangsu, P. R. China.
| | - Ryota Kabe
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan.
| |
Collapse
|
8
|
Shi J, Zhang P, Gao H, Zhu F, Liang G. Hour-Long Afterglow in Flexible Polymeric Materials through the Introduction of Electron Donor/Acceptor Exciplexes. Angew Chem Int Ed Engl 2025; 64:e202421634. [PMID: 39714349 DOI: 10.1002/anie.202421634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
The development of organic afterglow materials has garnered significant attention due to their diverse applications in smart devices, optoelectronics, and bioimaging. However, polymeric afterglow materials often suffer from short emission lifetimes, typically ranging from milliseconds to seconds, posing a significant challenge for achieving hour-long afterglow (HLA) polymers. This study presents the successful fabrication of transparent HLA polymers by introducing electron donor/acceptor exciplexes. Employing aromatic polyesters as the polymer electron acceptor and charge reservoirs, the resulting HLA polymers exhibited a remarkable green afterglow that persisted for 12 hours under ambient conditions, representing the longest duration achieved for polymeric afterglow materials to date. Intriguingly, these HLA polymers could be activated solely by sunlight, maintaining a green afterglow for over 6 hours at room temperature in air, which outperformed all previously reported afterglow polymers. The doped polymers exhibited superior flexibility and transparency, making them ideal candidates for flexible display applications. Furthermore, successfully spinning these doped polymers into fibers while retaining their HLA properties opens up exciting possibilities for their use in wearable smart devices.
Collapse
Affiliation(s)
- Jiaju Shi
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Peng Zhang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Haiyang Gao
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Fangming Zhu
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Guodong Liang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
9
|
Guo Z, Qi F, Dong J, Xue J, Wang Y, Xu B, Liu GN, Sun Y, Li C. Breaking the Spin-Forbidden Restriction to Achieve Long Lifetime Room-Temperature Phosphorescence of Carbon Dots. NANO LETTERS 2025; 25:434-442. [PMID: 39705121 DOI: 10.1021/acs.nanolett.4c05187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Room-temperature phosphorescent (RTP) carbon dots (CDs) demonstrate significant potential applications in the field of information anticounterfeiting due to their excellent optical properties. However, RTP emission of CDs remains significantly limited due to the spin-forbidden properties of triplet exciton transitions. In this work, an in situ nitrogen doping strategy was employed to design and construct strong spin-orbit coupling nitrogen-doped CDs with mesoporous silica with alumina (N-CDs@MS@Al2O3) RTP composites. Both experimental results and theoretical calculations confirmed that the formation of 1(n, π*) following the introduction of nitrogen breaks the spin-forbidden restriction from 1(π, π*) to 3(π, π*), thereby enhancing spin-orbit coupling, which further promotes intersystem crossing and leads to the effective population of triplet excitons. The designed N-CDs@MS@Al2O3 benefiting from an impressive long lifetime of 3.18 s demonstrates potential application prospects in the field of multilevel information encryption. This work provides a new concept to boost the RTP lifetime of CDs.
Collapse
Affiliation(s)
- Zengsheng Guo
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Fangzheng Qi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Juan Dong
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jingtian Xue
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yilei Wang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Bo Xu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Guang-Ning Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yiqiang Sun
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Cuncheng Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
- Collaborative Innovation Center of Yellow River Basin Pharmaceutical Green Manufacturing and Engineering Equipment, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
10
|
Wang B, Li N, Ju Z, Liu W. Single-Component Coordination Polymers with Excitation Wavelength- and Temperature-Dependent Long Persistent Luminescence toward Multilevel Information Security. Inorg Chem 2024; 63:24896-24904. [PMID: 39689040 DOI: 10.1021/acs.inorgchem.4c04414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Metal-organic hybrid materials with long persistent luminescence (LPL) properties have attracted a lot of attention due to their enormous potential for applications in information encryption, anticounterfeiting, and other correlation fields. However, achieving multimodal luminescence in a single component remains a significant challenge. Herein, we report two two-dimensional LPL coordination polymers: {[Zn2(BA)2(BIMB)2]·2H2O}n (1) and {[Cd(BA)(BIMB)]·3H2O}n (2) (BIMB = 1,3-bis(imidazol-1-yl)benzene; BA = butanedioic acid). Their LPL colors can be adjusted by the excitation wavelength or temperature variation in a single-component coordination polymer, achieving multimode color adjustment from green to orange or blue to yellow. X-ray single-crystal diffraction analysis and theoretical calculations demonstrate that abundant intermolecular interactions, ligand-to-ligand charge transfer (LLCT) transitions, and heavy atom effects of the central metal can realize multicolor afterglow. This work provides a convenient strategy for new pattern multicolor LPL materials and may also inspire new ideas for advanced information encryption technologies.
Collapse
Affiliation(s)
- Binbin Wang
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Ningyan Li
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Zhenghua Ju
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry, Frontiers Science Center for Rare Isotope, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
11
|
Zhao JQ, Wang DY, Yan TY, Wu YF, Gong ZL, Chen ZW, Yue CY, Yan D, Lei XW. Synchronously Improved Multiple Afterglow and Phosphorescence Efficiencies in 0D Hybrid Zinc Halides With Ultrahigh Anti-Water Stabilities. Angew Chem Int Ed Engl 2024; 63:e202412350. [PMID: 39152766 DOI: 10.1002/anie.202412350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Zero-dimensional (0D) hybrid metal halides have been emerged as room-temperature phosphorescence (RTP) materials, but synchronous optimization of multiple phosphorescence performance in one structural platform remains less resolved, and stable RTP activity in aqueous medium is also unrealized due to serious instability toward water and oxygen. Herein, we demonstrated a photophysical tuning strategy in a new 0D hybrid zinc halide family of (BTPP)2ZnX4 (BTPP=benzyltriphenylphosphonium, X=Cl and Br). Infrequently, the delicate combination of organic and inorganic species enables this family to display multiple ultralong green afterglow and efficient self-trapped exciton (STE) associated cyan phosphorescence. Compared with inert luminescence of [BTPP]+ cation, incorporation of anionic [ZnX4]2- effectively enhance the spin-orbit coupling effect, which significantly boosts the photoluminescence quantum yield (PLQY) up to 30.66 % and 54.62 % for afterglow and phosphorescence, respectively. Synchronously, the corresponding luminescence lifetime extend to 143.94 ms and 0.308 μs surpassing the indiscernible phosphorescence of [BTPP]X salt. More importantly, this halide family presents robust RTP emission with nearly unattenuated PLQY in water and harsh condition (acid and basic aqueous solution) over half a year. The highly efficient integrated afterglow and STE phosphorescence as well as ultrahigh aqueous state RTP realize multiple anti-counterfeiting applications in wide chemical environments.
Collapse
Affiliation(s)
- Jian-Qiang Zhao
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Dan-Yang Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Tian-Yu Yan
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Yi-Fan Wu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Zhong-Liang Gong
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Zhi-Wei Chen
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong, 273155, P. R. China
| |
Collapse
|
12
|
Law AWK, Cheung TS, Zhang J, Leung NLC, Kwok RTK, Zhao Z, Sung HHY, Williams ID, Qiu Z, Alam P, Lam JWY, Tang BZ. Sergeant-and-Soldier Effect in an Organic Room-Temperature Phosphorescent Host-Guest System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410739. [PMID: 39417757 DOI: 10.1002/adma.202410739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Indexed: 10/19/2024]
Abstract
Host-guest systems have emerged as an efficient strategy for promoting organic room temperature phosphorescence (RTP). Despite the advantages of doping guest molecules into a host matrix, the complexity of these systems and the lack of techniques to visualize host-guest interactions at the molecular scale pose significant challenges in understanding the underlying mechanisms. Here, a novel host-guest RTP system is developed by incorporating low concentrations (1-10 mol%) of TPP-4C-BI (guest) into crystalline TPP-4C-Cz (host). Utilizing structural isomerism, the guest molecules are regularly incorporated into the host crystal lattice, resulting in phosphorescence quantum yields almost ten times higher than the pure compounds. The system enabled resolution of the molecular packing of the single crystal through X-ray diffraction, providing unprecedented visualization of host-guest interactions. A "sergeant-and-soldier" effect, where the minority dopant molecules (sergeants) significantly influence the packing arrangement of the host molecules (soldiers), enhances RTP is identified. Further analyses revealed that due to the host molecule's inefficient phosphorescence pathway, its long-lived dark triplets are channeled to the guest via triplet-triplet energy transfer (TTET), allowing the excited energy to radiatively decay more efficiently. These insights advance the understanding of RTP mechanisms and offer practical implications for designing high-efficiency phosphorescent materials.
Collapse
Affiliation(s)
- Anthony W K Law
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Tsz Shing Cheung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Nelson L C Leung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Ryan T K Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Herman H Y Sung
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Ian D Williams
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Parvej Alam
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P. R. China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
13
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
14
|
Zhang J, Wang W, Bian Y, Wang Y, Lu X, Guo Z, Sun C, Li Z, Zhang X, Yuan J, Tao Y, Huang W, Chen R. Exciton Dissociation and Recombination Afford Narrowband Organic Afterglow Through Efficient FRET. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404769. [PMID: 39135413 DOI: 10.1002/adma.202404769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/31/2024] [Indexed: 10/11/2024]
Abstract
Organic afterglow with long-persistent luminescence (LPL) after photoexcitation is highly attractive, but the realization of narrowband afterglow with small full-width at half-maximum (FWHM) is a huge challenge since it is intrinsically contradictory to the triplet- and solid-state emission nature of organic afterglow. Here, narrow-band, long-lived, and full-color organic LPL is realized by isolating multi-resonant thermally activated delayed fluorescent (MR-TADF) fluorophores in a glassy steroid-type host through a facile melt-cooling treatment. Such prepared host becomes capable of exciton dissociation and recombination (EDR) upon photoirradiation for both long-lived fluorescence and phosphorescence; and, the efficient Förster resonance energy transfer (FRET) from the host to various MR-TADF emitters leads to high-performance LPL, exhibiting small FWHM of 33 nm, long persistent time over 10 s, and facile color-tuning in a wide range from deep-blue to orange (414-600 nm). Moreover, with the extraordinary narrowband LPL and easy processability of the material, centimeter-scale flexible optical waveguide fibers and integrated FWHM/color/lifetime-resolved multilevel encryption/decryption devices have been designed and fabricated. This novel EDR and singlet/triplet-to-singlet FRET strategy to achieve excellent LPL performances illustrates a promising way for constructing flexible organic afterglow with easy preparation methods, shedding valuable scientific insights into the design of narrow-band emission in organic afterglow.
Collapse
Affiliation(s)
- Jingyu Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wuji Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yanfang Bian
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yike Wang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xinchi Lu
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhenli Guo
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chengxi Sun
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zecai Li
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xiao Zhang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Yuan
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Nanjing Vocational University of Industry Technology, 1 Yangshan North Road, Nanjing, 210023, China
| | - Ye Tao
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Huang
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Shaanxi Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Flexible Electronics, Xi'an Key Laboratory of Biomedical Materials & Engineering, Xi'an Institute of Flexible Electronics, Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, Shanxi, 710072, China
| | - Runfeng Chen
- State Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
15
|
Wang G, Chen X, Zeng Y, Li X, Wang X, Zhang K. Dual-Mechanism Design Strategy for High-Efficiency and Long-Lived Organic Afterglow Materials. J Am Chem Soc 2024; 146:24871-24883. [PMID: 39213650 DOI: 10.1021/jacs.4c05531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Organic room-temperature phosphorescence (RTP) and afterglow materials hold great potential for various applications, but there remain inherent trade-offs between the afterglow efficiency and the lifetime. Here, we propose a dual-mechanism design strategy, leveraging the RTP or thermally activated delayed fluorescence (TADF) mechanism for a high afterglow efficiency and the organic long-persistent luminescence (OLPL) mechanism for a prolonged afterglow duration. The intramolecular charge transfer (ICT)-type difluoroboron β-diketonate molecules with a large S1 dipole moment are doped as the luminescent component into the organic matrix with a large dipole moment, and a series of TADF-type afterglow materials can be achieved with an afterglow efficiency of up to 88.7% and an afterglow lifetime of 200 ms. To prolong the afterglow duration, an electron donor is introduced as the third component to generate traps and facilitate charge separation. The obtained materials exhibit a dual afterglow mechanism, first exhibiting a TADF/RTP afterglow with an afterglow efficiency of up to 50.9%, followed by an hours-long OLPL afterglow emission with an afterglow efficiency of up to 13.1%. Further investigations reveal that an appropriate heavy-atom effect can facilitate the intersystem crossing process, which can promote the charge separation process and thus improve the OLPL afterglow performance. Additionally, rare-earth upconversion materials are introduced into OLPL materials to enable their near-infrared excitation properties, showcasing their potential applications in bioimaging.
Collapse
Affiliation(s)
- Guangming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xuefeng Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Ying Zeng
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xun Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Xuepu Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| | - Kaka Zhang
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People's Republic of China
| |
Collapse
|
16
|
Li H, Li X, Su H, Zhang S, Tan C, Chen C, Zhang X, Huang J, Gu J, Li H, Xie G, Dong H, Chen R, Tao Y. Highly stable color-tunable organic long-persistent luminescence from a single-component exciplex copolymer for in vitro antibacterial. Chem Sci 2024; 15:d4sc02839b. [PMID: 39184302 PMCID: PMC11342159 DOI: 10.1039/d4sc02839b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Developing exciplex-based organic long-persistent luminescence (OLPL) materials with high stability is very important but remains a formidable challenge in a single-component system. Here, we report a facile strategy to achieve highly stable OLPL in an amorphous exciplex copolymer system via through-space charge transfer (TSCT). The copolymer composed of electron donor and acceptor units can not only exhibit effective TSCT for intra/intermolecular exciplex emission but also construct a rigid environment to isolate oxygen and suppress non-radiative decay, thereby enabling stable exciplex-based OLPL emission with color-tunable feature for more than 100 h under ambient conditions. These single-component OLPL copolymers demonstrate robust antibacterial activity against Escherichia coli under visible light irradiation. These results provide a solid example to exploit highly stable exciplex-based OLPL in polymers, shedding light on how the TSCT mechanism may potentially contribute to OLPL in a single-component molecular system and broadening the scope of OLPL applications.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xiaoye Li
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University 30 Zhongyang Road Nanjing Jiangsu 210008 China
| | - Haoran Su
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Shuman Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Cheng Tan
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Cheng Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Xin Zhang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jiani Huang
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Jie Gu
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Huanhuan Li
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Gaozhan Xie
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Heng Dong
- Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University 30 Zhongyang Road Nanjing Jiangsu 210008 China
| | - Runfeng Chen
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
| | - Ye Tao
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications 9 Wenyuan Road Nanjing 210023 China
- Songshan Lake Materials Laboratory Dongguan Guangdong 523808 China
| |
Collapse
|
17
|
Zhao Z, Liu X, Dai W, Liu S, Liu M, Wu H, Huang X, Lei Y. Enhancing the Room-Temperature Phosphorescence Performance by Salinization of Guests. J Phys Chem Lett 2024:8093-8100. [PMID: 39087745 DOI: 10.1021/acs.jpclett.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Although the host-guest doped strategy effectively improves the phosphorescence performance of materials and greatly enriches the variety of materials, most of the guests are organic molecules with weak luminescence ability, which leads to the need for further improvement in the phosphorescence performance of doped materials. Herein, by salinization of organic molecules, the luminescence performance of the guests was effectively improved, thereby significantly enhancing the phosphorescence performance of the doped system. A compound 4-(naphthalen-2-yl)quinoline (QL) containing nitrogen atom was synthesized as initial guest, then QL was salted to obtain six organic salt guests containing anions BF4-, PF6-, CF3SO3-, N(CF3SO2)2-, ClO4-, and C4F9SO3-, respectively. Two doped systems were constructed using benzophenone and poly(methyl methacrylate) as the hosts. The phosphorescence quantum yield and phosphorescence lifetime of doped materials with QL as guest were only 4.1%/5.2% and 131 ms/141 ms, while those of doped materials with salinized molecules as guests were improved to 32-39% and 534-625 ms, respectively. The single-crystal structures and theoretical calculations indicated that anions can not only enhance the intermolecular interaction of guests but also increase the spin-orbit coupling constant. This work provides an effective strategy for improving the phosphorescence performance of doped materials.
Collapse
Affiliation(s)
- Zhenwei Zhao
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Wenbo Dai
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, P. R. China
| | - Shengdi Liu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Miaochang Liu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Huayue Wu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Xiaobo Huang
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, P. R. China
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou 325035, P. R. China
| |
Collapse
|
18
|
Guan Z, Tang Z, Zeng J, Zheng Y, Ding L, Chen D, Li H, Liu X. Stepwise Stiffening Chromophore Strategy Realizes a Series of Ultralong Blue Room-Temperature Phosphorescent Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402632. [PMID: 38923328 PMCID: PMC11348177 DOI: 10.1002/advs.202402632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/18/2024] [Indexed: 06/28/2024]
Abstract
Ultralong room-temperature phosphorescent (URTP) materials have attracted wide attention in anti-counterfeiting, optoelectronic display, and bio-imaging due to their special optical properties. However, room-temperature blue phosphorescent materials are very scarce during applications because of the need to simultaneously populate and stabilize high-energy excited states. In this work, a stepwise stiffening chromophore strategy is proposed to suppress non-radiative jump by continuously reducing the internal spin of the chromophore, and successfully developing a series of blue phosphorescent materials. Phosphorescence lifetimes of more than 3 s are achieved, with the longest lifetime reaching 5.44 s and lasting more than 70 s in the naked eye. As far as is know, this is the best result that has been reported. By adjusting the chromophore conjugation, multicolor phosphorescences from cyan to green have been realized. In addition, these chromophores exhibit the same excellent optical properties in urea and polyvinyl alcohmance (PVA). Finally, these materials are successfully applied to luminescent displays.
Collapse
Affiliation(s)
- Zhihao Guan
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Zhaorun Tang
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Jianwen Zeng
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Yuewei Zheng
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Lin Ding
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Dongzhi Chen
- State Key Laboratory of New Textile Materials & Advanced Processing TechnologyWuhan Textile UniversityWuhan430073P. R. China
| | - Houbin Li
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| | - Xinghai Liu
- Hubei Engineering Technology Research Center of Spectrum and Imaging InstrumentSchool of Electronic InformationWuhan UniversityWuhan430072P. R. China
| |
Collapse
|
19
|
Chen T, Yan D. Long-persistent luminescence: The role of charge trap. Sci Bull (Beijing) 2024; 69:1806-1808. [PMID: 38644129 DOI: 10.1016/j.scib.2024.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
20
|
Chen T, Yan D. Full-color, time-valve controllable and Janus-type long-persistent luminescence from all-inorganic halide perovskites. Nat Commun 2024; 15:5281. [PMID: 38902239 PMCID: PMC11190143 DOI: 10.1038/s41467-024-49654-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/11/2024] [Indexed: 06/22/2024] Open
Abstract
Long persistent luminescence (LPL) has gained considerable attention for the applications in decoration, emergency signage, information encryption and biomedicine. However, recently developed LPL materials - encompassing inorganics, organics and inorganic-organic hybrids - often display monochromatic afterglow with limited functionality. Furthermore, triplet exciton-based phosphors are prone to thermal quenching, significantly restricting their high emission efficiency. Here, we show a straightforward wet-chemistry approach for fabricating multimode LPL materials by introducing both anion (Br-) and cation (Sn2+) doping into hexagonal CsCdCl3 all-inorganic perovskites. This process involves establishing new trapping centers from [CdCl6-nBrn]4- and/or [Sn2-nCdnCl9]5- linker units, disrupting the local symmetry in the host framework. These halide perovskites demonstrate afterglow duration time ( > 2,000 s), nearly full-color coverage, high photoluminescence quantum yield ( ~ 84.47%), and the anti-thermal quenching temperature up to 377 K. Particularly, CsCdCl3:x%Br display temperature-dependent LPL and time-valve controllable time-dependent luminescence, while CsCdCl3:x%Sn exhibit forward and reverse excitation-dependent Janus-type luminescence. Combining both experimental and computational studies, this finding not only introduces a local-symmetry breaking strategy for simultaneously enhancing afterglow lifetime and efficiency, but also provides new insights into the multimode LPL materials with dynamic tunability for applications in luminescence, photonics, high-security anti-counterfeiting and information storage.
Collapse
Affiliation(s)
- Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China.
| |
Collapse
|
21
|
Man Z, Lv Z, Cao Y, Xu Z, Liao Q, Yao J, Teng F, Tang A, Fu H. Dual-Stimuli-Responsive Modulation Organic Afterglow Based on N─H Proton Migration Mechanism. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310226. [PMID: 38308112 DOI: 10.1002/smll.202310226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Indexed: 02/04/2024]
Abstract
Organic afterglow materials have significant applications in information security and flexible electronic devices with unique optical properties. It is vital but challenging to develop organic afterglow materials possessing controlled output with multi-stimuli-responsive capacity. Herein, dimethyl terephthalate (DTT) is introduced as a strong proton acceptor. The migration direction of N─H protons on two compounds Hs can be regulated by altering the excitation wavelength (Ex) or amine stimulation, thereby achieving dual-stimuli-responsive afterglow emission. When the Ex is below 300 nm, protons migrate to S1-2 DTT, where strong interactions induce phosphorescent emission of Hs, resulting in afterglow behavior. Conversely, when the Ex is above 300 nm, protons interact with the S0 DTT weakly and the afterglow disappears. In view of amine-based compounds with higher proton accepting capabilities, it can snatch proton from S1-2 DTT and redirect the proton flow toward amine, effectively suppressing the afterglow but obtaining a new redshifted fluorescence emission with Δλ over 200 nm due to the high polarity of amine. Moreover, it is successfully demonstrated that the applications of dual-stimuli-responsive organic afterglow materials in information encryption based on the systematic excitation-wavelength-dependent (Ex-De) behavior and amine selectivity detection.
Collapse
Affiliation(s)
- Zhongwei Man
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Zheng Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, P. R. China
| | - Yangyang Cao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing, 100048, P. R. China
| | - Zhenzhen Xu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing, 100048, P. R. China
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing, 100048, P. R. China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Feng Teng
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, 100044, P. R. China
| | - Hongbing Fu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Capital Normal University, Beijing, 100048, P. R. China
| |
Collapse
|
22
|
Pan Z, Song J, Zhang S, Zeng P, Mei J, Qu DH. Tailoring raloxifene into single-component molecular crystals possessing multilevel stimuli-responsive room-temperature phosphorescence. Sci Bull (Beijing) 2024; 69:1237-1248. [PMID: 38458915 DOI: 10.1016/j.scib.2024.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
Simultaneously achieving room-temperature phosphorescence (RTP) and multiple-stimuli responsiveness in a single-component system is of significance but remains challenging. Crystallization has been recognized to be a workable strategy to fulfill the above task. However, how the molecular packing mode affects the intersystem crossing and RTP lifetime concurrently remains unclear so far. Herein, four economic small-molecular compounds, analogues of the famous drug raloxifene (RALO), are facilely synthesized and further explored as neat single-component and stimuli-responsive RTP emitters via crystallization engineering. Thanks to their simple structures and high ease to crystallize, these raloxifene analogues function as models to clarify the important role of molecular packing in the RTP and stimuli-responsiveness properties. Thorough combination of the single-crystal structure analysis and theoretical calculations clearly manifests that the tight antiparallel molecular packing mode is the key point to their RTP behaviors. Interestingly, harnessing the controllable and reversible phase transitions of the two polymorphs of RALO-OAc driven by mechanical force, solvent vapor, and heat, a single-component multilevel stimuli-responsive platform with tunable emission color is established and further exploited for optical information encryption. This work would shed light on the rational design of multi-stimuli responsive RTP systems based on single-component organics.
Collapse
Affiliation(s)
- Zhichao Pan
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Jinming Song
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shasha Zhang
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ping Zeng
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Ju Mei
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
23
|
Ma G, Dirak M, Liu Z, Jiang D, Wang Y, Xiang C, Zhang Y, Luo Y, Gong P, Cai L, Kolemen S, Zhang P. Rechargeable Afterglow Nanotorches for In Vivo Tracing of Cell-Based Microrobots. Angew Chem Int Ed Engl 2024; 63:e202400658. [PMID: 38446006 DOI: 10.1002/anie.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
As one of the self-luminescence imaging approaches that require pre-illumination instead of real-time light excitation, afterglow luminescence imaging has attracted increasing enthusiasm to circumvent tissue autofluorescence. In this work, we developed organic afterglow luminescent nanoprobe (nanotorch), which could emit persistent luminescence more than 10 days upon single light excitation. More importantly, the nanotorch could be remote charged by 660 nm light in a non-invasive manner, which showed great potential for real-time tracing the location of macrophage cell-based microrobots.
Collapse
Affiliation(s)
- Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Musa Dirak
- Department of Chemistry, Koç University, 34450, Istanbul, Turkey
| | - Zhongke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Postdoctoral lnnovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yue Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yuding Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450, Istanbul, Turkey
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
24
|
Zhou Y, Zhang P, Liu Z, Yan W, Gao H, Liang G, Qin W. Sunlight-Activated Hour-Long Afterglow from Transparent and Flexible Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312439. [PMID: 38281100 DOI: 10.1002/adma.202312439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Afterglow materials featuring long emission durations ranging from milliseconds to hours have garnered increasing interest owing to their potential applications in sensing, bioimaging, and anti-counterfeiting. Unfortunately, polymeric materials rarely exhibit afterglow properties under ambient conditions because of the rapid nonradiative decay rate of triplet excitons. In this study, hour-long afterglow (HLA) polymer films are fabricated using a facile molecular doping strategy. Flexible and transparent polymer films emitted a bright afterglow lasting over 11 h at room temperature in air, which is one of the best performances among the organic afterglow materials reported to date. Intriguingly, HLA polymer films can be activated by sunlight, and their cyan afterglow in air can be readily observed by the naked eye. Moreover, the HLA color of the polymer films could be tuned from cyan to red through the Förster resonance energy transfer mechanism. Their application in flexible displays and information storage has also been demonstrated. With remarkable advantages, including an hour-long and bright afterglow, tunable afterglow colors, superior flexibility and transparency, and ease of fabrication, the HLA polymer paves the way for the practical application of afterglow materials in the engineering sector.
Collapse
Affiliation(s)
- Yusheng Zhou
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peng Zhang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhen Liu
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenqing Yan
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Haiyang Gao
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guodong Liang
- PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Qin
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| |
Collapse
|
25
|
Li Z, Yang J, Sun F, Low KH, Tian W, Jin S, Kim JT, Che CM, Wan Q. Printable Block Molecular Assemblies with Controlled Exciton Dynamics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2402725. [PMID: 38551094 DOI: 10.1002/adma.202402725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/25/2024] [Indexed: 04/11/2024]
Abstract
Creating hierarchical molecular block heterostructures, with the control over size, shape, optical, and electronic properties of each nanostructured building block can help develop functional applications, such as information storage, nanowire spectrometry, and photonic computing. However, achieving precise control over the position of molecular assemblies, and the dynamics of excitons in each block, remains a challenge. In the present work, the first fabrication of molecular heterostructures with the control of exciton dynamics in each block, is demonstrated. Additionally, these heterostructures are printable and can be precisely positioned using Direct Ink Writing-based (DIW) 3D printing technique, resulting in programable patterns. Singlet excitons with emission lifetimes on nanosecond or microsecond timescales and triplet excitons with emission lifetimes on millisecond timescales appear simultaneously in different building blocks, with an efficient energy transfer process in the heterojunction. These organic materials also exhibit stimuli-responsive emission by changing the power or wavelength of the excitation laser. Potential applications of these organic heterostructures in integrated photonics, where the versatility of fluorescence, phosphorescence, efficient energy transfer, printability, and stimulus sensitivity co-exist in a single nanowire, are foreseen.
Collapse
Affiliation(s)
- Zongshang Li
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Jihyuk Yang
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Fengke Sun
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kam-Hung Low
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wenming Tian
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Shengye Jin
- State Key Laboratory of Molecular Reaction Dynamics and Dynamics Research Center for Energy and Environmental Materials, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- HKU Shenzhen Institute of Research & Innovation, Shenzhen, 518057, China
- Hong Kong Quantum AI Lab Limited Units 909-915, Building 17W, 17 Science Park West Avenue, Pak Shek Kok, Hong Kong, China
| | - Qingyun Wan
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
26
|
Yang B, Yan S, Zhang Y, Ban S, Ma H, Feng F, Huang W. Double-Model Decay Strategy Integrating Persistent Photogenic Radicaloids with Dynamic Circularly Polarized Doublet Radiance and Triplet Afterglow. J Am Chem Soc 2024; 146:7668-7678. [PMID: 38451846 DOI: 10.1021/jacs.3c14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Organic phosphors integrating circularly polarized persistent luminescence (CPPL) across the visible range are widespread for applications in optical information encryption, bioimaging, and 3D display, but the pursuit of color-tunable CPPL in single-component organics remains a formidable task. Herein, via in situ photoimplanting radical ion pairing into axial chiral crystals, we present and elucidate an unprecedented double-module decay strategy to achieve a colorful CPPL through a combination of stable triplet emission from neutral diphosphine and doublet radiance from photogenic radicals in an exclusive crystalline framework. Owing to the photoactivation-dependent doublet radiance component and an inherent triplet phosphorescence in the asymmetric environment, the CPL vision can be regulated by altering the photoactivation and observation time window, allowing colorful glow tuning from blue and orange to delayed green emission. Mechanism studies clearly reveal that this asymmetric electron migration environment and hybrid n-π* and π-π* instincts are responsible for the afterglow and radical radiance at ambient conditions. Moreover, we demonstrate the applications of colorful CPPL for displays and encryption via manipulation of both excitation and observation times.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Suqiong Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Shirong Ban
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Hui Ma
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Fanda Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Wei Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Shenzhen Research Institute of Nanjing University, Shenzhen 518057, P. R. China
| |
Collapse
|
27
|
Xiao G, Ma YJ, Qi Z, Fang X, Chen T, Yan D. A flexible ligand and halogen engineering enable one phosphor-based full-color persistent luminescence in hybrid perovskitoids. Chem Sci 2024; 15:3625-3632. [PMID: 38455006 PMCID: PMC10915845 DOI: 10.1039/d3sc06845e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/09/2024] Open
Abstract
Color-tunable room temperature phosphorescent (RTP) materials have raised wide interest due to their potential application in the fields of encryption and anti-counterfeiting. Herein, a series of CdX2-organic hybrid perovskitoids, (H-apim)CdX3 and (apim)CdX2 (denoted as CdX-apim1 and CdX-apim2, apim = 1-(3-aminopropyl)imidazole, X = Cl, Br), were synthesized using apim with both rigid and flexible groups as ligands, which exhibit naked-eye detectable RTP with different durations and colors (from cyan to red) by virtue of different halogen atoms, coordination modes and the coplanar configuration of flexible groups. Interestingly, CdCl-apim1 and CdX-apim2 both exhibit excitation wavelength-dependent RTP properties, which can be attributed to the multiple excitation of imidazole/apim, the diverse interactions with halogen atoms, and aggregated state of imidazoles. Structural analysis and theoretical calculations confirm that the aminopropyl groups in CdCl-apim1 do not participate in luminescence, while those in CdCl-apim2 are involved in luminescence including both metal/halogen to ligand charge transfer and twisted intramolecular charge transfer. Furthermore, we demonstrate that these perovskitoids can be applied in multi-step anti-counterfeiting, information encryption and smart ink fields. This work not only develops a new type of perovskitoid with full-color persistent luminescence, but also provides new insight into the effect of flexible ligands and halogen engineering on the wide-range modulation of RTP properties.
Collapse
Affiliation(s)
- Guowei Xiao
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yu-Juan Ma
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zhenhong Qi
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Xiaoyu Fang
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Tianhong Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| |
Collapse
|
28
|
Lin Z, Li M, Yoshioka R, Oyama R, Kabe R. Oxygen-Tolerant Near-Infrared Organic Long-Persistent Luminescent Copolymers. Angew Chem Int Ed Engl 2024; 63:e202314500. [PMID: 38155606 DOI: 10.1002/anie.202314500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Organic materials exhibiting long-lasting emission in the near infrared are expected to have applications in bio-imaging and other areas. Although room temperature phosphorescence and thermally activated delayed fluorescence display long-lived emission of approximately one minute, organic long-persistent luminescence (OLPL) systems with a similar emission mechanism to inorganic persistent emitters can emit for several hours at room temperature. In particular OLPL with a hole-diffusion mechanism can function even in the presence of oxygen. However, ionic materials lack long-term stability in neutral organic host owing to aggregation and phase separation. In this study, we synthesized polymers with stable near-infrared persistent luminescence at room temperature via the copolymerization of electron donors and acceptors. The copolymers exhibit long-persistent luminescence (LPL) at temperatures below the glass transition temperature and can be excited by approximately the entire range of visible light. LPL properties and spectra can be controlled by the dopant.
Collapse
Affiliation(s)
- Zesen Lin
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022, P. R. China
| | - Rengo Yoshioka
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Ryoko Oyama
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| | - Ryota Kabe
- Organic Optoelectronics Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
29
|
Guo X, Sun X, Zhang J, Huang Y, Liu X, Liu X, Xu W, Chen D. Luminescent Mechanism and Anti-Counterfeiting Application of Hydrophilic, Undoped Room-Temperature Phosphorescent Silicon Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303464. [PMID: 37670207 DOI: 10.1002/smll.202303464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/23/2023] [Indexed: 09/07/2023]
Abstract
Silicon nanocrystals (SiNCs) have attracted extensive attention in many advanced applications due to silicon's high natural abundance, low toxicity, and impressive optical properties. However, these applications are mainly focused on fluorescent SiNCs, little attention is paid to SiNCs with room-temperature phosphorescence (RTP) and their relative applications, especially water-dispersed ones. Herein, this work presents water-dispersible RTP SiNCs (UA-SiNCs) and their optical applications. The UA-SiNCs with a uniform particle size of 2.8 nm are prepared by thermal hydrosilylation between hydrogen-terminated SiNCs (H-SiNCs) and 10-undecenoic acid (UA). Interestingly, the resultant UA-SiNCs can exhibit tunable long-lived RTP with an average lifetime of 0.85 s. The RTP feature of the UA-SiNCs is confirmed to the n-π* transitions of their surface C═O groups. Subsequently, new dual-modal emissive UA-SiNCs-based ink is fabricated by blending with sodium alginate (SA) as the binder. The customized anticounterfeiting labels are also prepared on cellulosic substrates by screen-printing technique. As expected, UA-SiNCs/SA ink exhibits excellent practicability in anticounterfeiting applications. These findings will trigger the rapid development of RTP SiNCs, envisioning enormous potential in future advanced applications such as high-level anti-counterfeiting, information encryption, and so forth.
Collapse
Affiliation(s)
- Xin Guo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Xuening Sun
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Jinfeng Zhang
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Yuanfen Huang
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xiaohong Liu
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Xin Liu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
| | - Dongzhi Chen
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, Wuhan Textile University, Wuhan, 430073, P. R. China
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, P. R. China
| |
Collapse
|
30
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
31
|
Lin Y, Liu S, Yan D. Flexible Crystal Heterojunctions of Low-Dimensional Organic Metal Halides Enabling Color-Tunable Space-Resolved Optical Waveguides. RESEARCH (WASHINGTON, D.C.) 2023; 6:0259. [PMID: 37915767 PMCID: PMC10616971 DOI: 10.34133/research.0259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 11/03/2023]
Abstract
Molecular luminescent materials with optical waveguide have wide application prospects in light-emitting diodes, sensors, and logic gates. However, the majority of traditional optical waveguide systems are based on brittle molecular crystals, which limited the fabrication, transportation, storage, and adaptation of flexible devices under diverse application situations. To date, the design and synthesis of photofunctional materials with high flexibility, novel optical waveguide, and multi-port color-tunable emission in the same solid-state system remain an open challenge. Here, we have constructed new types of zero-dimensional organic metal halides (Au-4-dimethylaminopyridine [DMAP] and In-DMAP) with a rarely high elasticity and rather low loss coefficients for optical waveguide. Theoretical calculations on the intermolecular interactions showed that the high elasticity of 2 molecular crystalline materials was original from their herringbone structure and slip plane. Based on one-dimensional flexible microrods of 2 crystals and the 2-dimensional microplate of the Mn-DMAP, heterojunctions with multi-color and space-resolved optical waveguides have been fabricated. The formation mechanism of heterojunctions is based on the surface selective growth on account of the low lattice mismatch ratio between contacting crystal planes. Therefore, this work describes the first attempt to the design of metal-halide-based crystal heterojunctions with high flexibility and optical waveguide, expanding the prospects of traditional luminescent materials for smart optical devices, such as logic gates and multiplexers.
Collapse
Affiliation(s)
| | | | - Dongpeng Yan
- Beijing Key Laboratory of Energy Conversion and Storage Materials, and Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry,
Beijing Normal University, Beijing 100875, China
| |
Collapse
|
32
|
Zhang ZY, Deng CY, Shen CC, Xu RY, Wang XZ, Wang YH, Ding B, Li B, Li J, Li C. Phosphorescence enhancement of pyridinium macrocycles by poly(vinylalcohol). Chem Commun (Camb) 2023; 59:11248-11251. [PMID: 37661728 DOI: 10.1039/d3cc03225f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
A phosphorescence enhancement of pyridinium macrocycle/monomer phosphors is realized with up to 14.7-fold prolonging of the phosphorescence lifetimes and visible afterglow by doping into a poly(vinylalcohol) (PVA) matrix. The abundant hydrogen-bonding interactions and electrostatic interactions between the phosphors and the PVA suppressed the nonradiative decay processes, slowed down the radiative decay and nonradiative decay of triplet states, and therefore promoted the long-lived RTP.
Collapse
Affiliation(s)
- Zhi-Yuan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chun-Yun Deng
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Chen-Chen Shen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Rong-Yao Xu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Xi-Zhen Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Yan-Hao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Bo Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Bin Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| | - Jian Li
- School of Chemistry and Chemical Engineering, Henan Normal University, P. R. China
| | - Chunju Li
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China.
| |
Collapse
|
33
|
Partanen I, Al-Saedy O, Eskelinen T, Karttunen AJ, Saarinen JJ, Mrózek O, Steffen A, Belyaev A, Chou PT, Koshevoy IO. Fast and Tunable Phosphorescence from Organic Ionic Crystals. Angew Chem Int Ed Engl 2023; 62:e202305108. [PMID: 37227225 DOI: 10.1002/anie.202305108] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 05/26/2023]
Abstract
Crystalline diphosphonium iodides [MeR2 P-spacer-R2 Me]I with phenylene (1, 2), naphthalene (3, 4), biphenyl (5) and anthracene (6) as aromatic spacers, are photoemissive under ambient conditions. The emission colors (λem values from 550 to 880 nm) and intensities (Φem reaching 0.75) are defined by the composition and substitution geometry of the central conjugated chromophore motif, and the anion-π interactions. Time-resolved and variable-temperature luminescence studies suggest phosphorescence for all the titled compounds, which demonstrate observed lifetimes of 0.46-92.23 μs at 297 K. Radiative rate constants kr as high as 2.8×105 s-1 deduced for salts 1-3 were assigned to strong spin-orbit coupling enhanced by an external heavy atom effect arising from the anion-π charge-transfer character of the triplet excited state. These rates of anomalously fast metal-free phosphorescence are comparable to those of transition metal complexes and organic luminophores that utilize triplet excitons via a thermally activated delayed fluorescence mechanism, making such ionic luminophores a new paradigm for the design of photofunctional and responsive molecular materials.
Collapse
Affiliation(s)
- Iida Partanen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - Omar Al-Saedy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - Toni Eskelinen
- Department of Chemistry and Materials Science, Aalto University, 00076, Aalto, Finland
| | - Antti J Karttunen
- Department of Chemistry and Materials Science, Aalto University, 00076, Aalto, Finland
| | - Jarkko J Saarinen
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| | - Ondrej Mrózek
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andreas Steffen
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Andrey Belyaev
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
- Department of Chemistry/Nanoscience Center, University of Jyväskylä, Survontie 9C, 40014, Jyväskylä, Finland
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan, 10617 (ROC)
| | - Igor O Koshevoy
- Department of Chemistry, University of Eastern Finland, Yliopistokatu 7, 80101, Joensuu, Finland
| |
Collapse
|
34
|
Wei J, Zhu M, Du T, Li J, Dai P, Liu C, Duan J, Liu S, Zhou X, Zhang S, Guo L, Wang H, Ma Y, Huang W, Zhao Q. Full-color persistent room temperature phosphorescent elastomers with robust optical properties. Nat Commun 2023; 14:4839. [PMID: 37563116 PMCID: PMC10415293 DOI: 10.1038/s41467-023-40193-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/18/2023] [Indexed: 08/12/2023] Open
Abstract
Persistent room temperature phosphorescent materials with unique mechanical properties and robust optical properties have great potential in flexible electronics and photonics. However, developing such materials remains a formidable challenge. Here, we present highly stretchable, lightweight, and multicolored persistent luminescence elastomers, produced by incorporating ionic room temperature phosphorescent polymers and polyvinyl alcohol into a polydimethylsiloxane matrix. These prepared elastomers exhibit high optical transparency in daylight and emit bright persistent luminescence after the removal of 365 nm excitation. The homogeneous distribution of polymers within the matrix has been confirmed by confocal fluorescence microscopy, scanning electron microscopy, and atomic force microscopy. Mechanical property investigations revealed that the prepared persistent luminescence elastomers possess satisfactory stretchability. Impressively, these elastomers maintain robust optical properties even under extensive and repeated mechanical deformations, a characteristic previously unprecedented. These fantastic features make these persistent luminescence elastomers ideal candidates for potential applications in wearable devices, flexible displays, and anti-counterfeiting.
Collapse
Affiliation(s)
- Juan Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Mingye Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Tingchen Du
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Jangang Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Peiling Dai
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Chenyuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Jiayu Duan
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Shujuan Liu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Xingcheng Zhou
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Sudi Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Luo Guo
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Hao Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China
| | - Yun Ma
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
| | - Wei Huang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLFE), Northwestern Polytechnical University, Xi'an, 710072, P.R. China.
| | - Qiang Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications (NUPT), Nanjing, 210023, P. R. China.
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Jiangsu Province Engineering Research Center for Fabrication and Application of Special Optical Fiber Materials and Devices, Nanjing University of Posts and Telecommunications (NUPT), 9 Wenyuan Road, Nanjing, 210023, P.R. China.
| |
Collapse
|
35
|
Feng H, Zhao Y, Li Y, Qi X, Shen S, Zhou S. Multi-Armed Anti-CD40-Mediated Dual Drug Delivery System Based on Mesoporous Silica/Au Nanorod Nanocomposites for Multimodality Imaging and Combination Therapy. ACS APPLIED NANO MATERIALS 2023; 6:13001-13012. [DOI: 10.1021/acsanm.3c01722] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Affiliation(s)
- Honghong Feng
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yangjing Zhao
- Department of Immunology, Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yeping Li
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xueyong Qi
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Song Shen
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Shengwang Zhou
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| |
Collapse
|
36
|
Xu C, Shen H, Liu TM, Kwok RT, Lam JW, Tang BZ. Restriction of molecular motion to a higher level: Towards bright AIE dots for biomedical applications. iScience 2023; 26:106568. [PMID: 37128609 PMCID: PMC10148129 DOI: 10.1016/j.isci.2023.106568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023] Open
Abstract
In the late 19th century, scientists began to study the photophysical differences between chromophores in the solution and aggregate states, which breed the recognition of the prototypical processes of aggregation-caused quenching and aggregation-induced emission (AIE). In particular, the conceptual discovery of the AIE phenomenon has spawned the innovation of luminogenic materials with high emission in the aggregate state based on their unique working principle termed the restriction of intramolecular motion. As AIE luminogens have been practically fabricated into AIE dots for bioimaging, further improvement of their brightness is needed although this is technically challenging. In this review, we surveyed the recent advances in strategic molecular engineering of highly emissive AIE dots, including nanoscale crystallization and matrix-assisted rigidification. We hope that this timely summary can deepen the understanding about the root cause of the high emission of AIE dots and provide inspiration to the rational design of functional aggregates.
Collapse
Affiliation(s)
- Changhuo Xu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Tzu-Ming Liu
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macao, China
| | - Ryan T.K. Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Jacky W.Y. Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
37
|
Chu K, Adsetts JR, Whitworth Z, Kumar S, Zysman-Colman E, Ding Z. Elucidation of an Aggregate Excited State in the Electrochemiluminescence and Chemiluminescence of a Thermally Activated Delayed Fluorescence (TADF) Emitter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2829-2837. [PMID: 36763045 PMCID: PMC9948541 DOI: 10.1021/acs.langmuir.2c03391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/27/2023] [Indexed: 06/01/2023]
Abstract
The electrochemistry, electrochemiluminescence (ECL), and chemiluminescence (CL) properties of a thermally activated delayed fluorescence (TADF) emitter 4,4'-(1,2-dihydroacenaphthylene-5,6-diyl)bis(N,N-diphenylaniline) (TPA-ace-TRZ) and three of its analogues were investigated. TPA-ace-TRZ exhibits both (a) delayed onset of ECL and (b) long-persistent luminescence, which we have attributed to the formation of an aggregate excited state in excimer or exciplex form. The evidence of this aggregate excited state was consistent across ECL annihilation and coreactant pathways as well as in CL. The absolute ECL efficiency of TPA-ace-TRZ using benzoyl peroxide (BPO) as a coreactant was found to be 0.028%, which was 9-fold stronger than the [Ru(bpy)3]2+/BPO reference coereactant system. Furthermore, the absolute CL quantum efficiency of TPA-ace-TRZ was determined to be 0.92%. The performance and flexibility of the TADF emitter TPA-ace-TRZ under these various emissive pathways are highly desirable toward applications in sensing, imaging, and light-emitting devices.
Collapse
Affiliation(s)
- Kenneth Chu
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| | | | - Zackry Whitworth
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| | - Shiv Kumar
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, U.K.
| | - Zhifeng Ding
- Department
of Chemistry, Western University, London, ON N6A 5B7, Canada
| |
Collapse
|
38
|
Bianconi T, Cesaretti A, Mancini P, Montegiove N, Calzoni E, Ekbote A, Misra R, Carlotti B. Room-Temperature Phosphorescence and Cellular Phototoxicity Activated by Triplet Dynamics in Aggregates of Push-Pull Phenothiazine-Based Isomers. J Phys Chem B 2023; 127:1385-1398. [PMID: 36735941 PMCID: PMC9940226 DOI: 10.1021/acs.jpcb.2c07717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this study, we report a comprehensive time-resolved spectroscopic investigation of the excited-state deactivation mechanism in three push-pull isomers characterized by a phenothiazine electron donor, a benzothiazole electron acceptor, and a phenyl π-bridge where the connection is realized at the relative ortho, meta, and para positions. Spin-orbit charge-transfer-induced intersystem crossing takes place with high yield in these all-organic donor-acceptor compounds, leading also to efficient production of singlet oxygen. Our spectroscopic results give clear evidence of room-temperature phosphorescence not only in solid-state host-guest matrices but also in highly biocompatible aggregates of these isomers produced in water dispersions, as rarely reported in the literature. Moreover, aggregates of the isomers could be internalized by lung cancer and melanoma cells and display bright luminescence without any dark cytotoxic effect. On the other hand, the isomers showed significant cellular phototoxicity against the tumor cells due to light-induced reactive oxygen species generation. Our findings strongly suggest that nanoaggregates of the investigated isomers are promising candidates for imaging-guided photodynamic therapy.
Collapse
Affiliation(s)
- Tommaso Bianconi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Alessio Cesaretti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Pietro Mancini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Nicolò Montegiove
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | - Anupama Ekbote
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Rajneesh Misra
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, India
| | - Benedetta Carlotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| |
Collapse
|
39
|
Conformation-dependent dynamic organic phosphorescence through thermal energy driven molecular rotations. Nat Commun 2023; 14:627. [PMID: 36746937 PMCID: PMC9902600 DOI: 10.1038/s41467-023-35930-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 01/09/2023] [Indexed: 02/08/2023] Open
Abstract
Organic room-temperature phosphorescent (RTP) materials exhibiting reversible changes in optical properties upon exposure to external stimuli have shown great potential in diverse optoelectronic fields. Particularly, dynamic manipulation of response behaviors for such materials is of fundamental significance, but it remains a formidable challenge. Herein, a series of RTP polymers were prepared by incorporating phosphorescent rotors into polymer backbone, and these materials show color-tunable persistent luminescence upon excitation at different wavelengths. Experimental results and theoretical calculations revealed that the various molecular conformations of monomers are responsible for the excitation wavelength-dependent (Ex-De) RTP behavior. Impressively, after gaining insights into the underlying mechanism, dynamic control of Ex-De RTP behavior was achieved through thermal energy driven molecular rotations of monomers. Eventually, we demonstrate the practical applications of these amorphous polymers in anti-counterfeiting areas. These findings open new opportunities for the control of response behaviors of smart-responsive RTP materials through external stimuli rather than conventional covalent modification method.
Collapse
|
40
|
Xu X, Yan B. Recent advances in room temperature phosphorescence materials: design strategies, internal mechanisms and intelligent optical applications. Phys Chem Chem Phys 2023; 25:1457-1475. [PMID: 36597905 DOI: 10.1039/d2cp05063c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Room temperature phosphorescence (RTP) materials comprising organic-inorganic hybrid, pure organic, and polymer RTP materials have been a research focus due to their tunable molecular structures, long emission lifetimes and extensive optical applications. Many design methods including halogen bonding interactions, heavy atom effect, metal-organic frameworks, polymerization, host-guest doping, and H-aggregation have been developed by RTP researchers. Narrowing the energy gap between the S1 and lowest Tn states, enhancing the intersystem crossing (ISC) rate, increasing the spin-orbit coupling (SOC) value and stabilizing triplet emission states are the core factors to promoting RTP performance. In this review, lots of cases of organic-inorganic hybrid, pure organic, and polymer RTP materials with advanced design strategies, excellent RTP properties and intelligent applications have been classified and sorted. Their molecule structural designability and stimulus responsiveness endow them with RTP adjustability, which makes them excellent phosphors for modern optical applications. This review provides a systematic case elaboration of typical RTP systems in recent years and identifies the future challenges to improving RTP performance and finding novel applications.
Collapse
Affiliation(s)
- Xin Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| | - Bing Yan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.
| |
Collapse
|
41
|
Wang T, Gupta AK, Wu S, Slawin AMZ, Zysman-Colman E. Conjugation-Modulated Excitonic Coupling Brightens Multiple Triplet Excited States. J Am Chem Soc 2023; 145:1945-1954. [PMID: 36638828 PMCID: PMC9880999 DOI: 10.1021/jacs.2c12320] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The design and regulation of multiple room-temperature phosphorescence (RTP) processes are formidably challenging due to the restrictions imposed by Kasha's rule. Here, we report a general design principle for materials that show multiple RTP processes, which is informed by our study of four compounds where there is modulation of the linker hybridization between donor (D) and acceptor (A) groups. Theoretical modeling and photophysical experiments demonstrate that multiple RTP processes can be achieved in sp3 C-linked D-A compounds due to the arrest of intramolecular electronic communication between two triplet states (T1H and T1L) localized on the donor and acceptor or between two triplet states, one localized on the donor and one delocalized across aggregated acceptors. However, for the sp2 C-linked D-A counterparts, RTP from one locally excited T1 state is observed because of enhanced excitonic coupling between the two triplet states of molecular subunits. Single-crystal and reduced density gradient analyses reveal the influence of molecular packing on the coincident phosphorescence processes and the origin of the observed aggregate phosphorescence. These findings provide insights into higher-lying triplet excited-state dynamics and into a fundamental design principle for designing compounds that show multiple RTP.
Collapse
|
42
|
Zhao J, Yan G, Wang W, Shao S, Yuan B, Li YJ, Zhang X, Huang CZ, Gao PF. Molecular Thermal Motion Modulated Room-Temperature Phosphorescence for Multilevel Encryption. Research (Wash D C) 2022; 2022:9782713. [PMID: 35966757 PMCID: PMC9351586 DOI: 10.34133/2022/9782713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/29/2022] [Indexed: 11/06/2022] Open
Abstract
The stimulus-responsive room-temperature phosphorescence (RTP) materials have become an increasingly significant topic in the fields of bioimaging, sensing, and anticounterfeiting. However, this kind of materials is scarce to date, especially for the ones with delicate stimulus-responsive behavior. Herein, a universal strategy for multilevel thermal erasure of RTP via chromatographic separation of host-guest doping RTP systems is proposed. The tunable host-guest systems, matrix materials, heating temperature, and time are demonstrated to allow precise six-level data encryption, QR code encryption, and thermochromic phosphorescence encryption. Mechanistic study reveals that the thermal-responsive property might be attributed to molecular thermal motion and the separation effect of the silica gel, which provides expanded applications of host-guest RTP materials such as cold chain break detection. This work offers a simple yet universal way to construct advanced responsive RTP materials.
Collapse
Affiliation(s)
- Jiaqiang Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Guojuan Yan
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Wei Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shishi Shao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Binfang Yuan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, China
| | - Yan Jie Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xuepeng Zhang
- Hefei National Laboratory for Physical Science at the Microscale, University of Science and Technology of China, 96 Jinzhai Rd, Hefei, Anhui 230026, China
| | - Cheng Zhi Huang
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Peng Fei Gao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
43
|
Li J, Wang G, Chen X, Li X, Wu M, Yuan S, Zou Y, Wang X, Zhang K. Manipulation of Triplet Excited States in Two‐Component Systems for High‐Performance Organic Afterglow Materials. Chemistry 2022; 28:e202200852. [DOI: 10.1002/chem.202200852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jiuyang Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guangming Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xuefeng Chen
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xun Li
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Minjian Wu
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Shou Yuan
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Yunlong Zou
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xuepu Wang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Kaka Zhang
- Key Laboratory of Synthetic and Self-Assembly Chemistry for Organic Functional Molecules Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
44
|
Li X, Zheng L, Tang W, Ye S, Ma J, Jiang H. Synthesis and Excited State Modulation of Organic Blue light Emitters Based on 2,4,6-Triphenyl-1,3,5-triazine and Carbazole Derivatives through ortho-Positioned Linking Models. NEW J CHEM 2022. [DOI: 10.1039/d2nj02440c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, 9-(2-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-9H-carbazole (OSTrPhCz) is used as a model emitter, and carbazole or 2-bromized carbazole are introduced into the ortho- positions of 2,4,6-triphenyl-1,3,5-triazine framework to generate two emitters, namely OTrPhCz and...
Collapse
|
45
|
Garain S, Ansari SN, Kongasseri AA, Chandra Garain B, Pati SK, George SJ. Room temperature charge-transfer phosphorescence from organic donor–acceptor Co-crystals. Chem Sci 2022; 13:10011-10019. [PMID: 36128227 PMCID: PMC9430718 DOI: 10.1039/d2sc03343g] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Engineering the electronic excited state manifolds of organic molecules can give rise to various functional outcomes, including ambient triplet harvesting, that has received prodigious attention in the recent past. Herein, we introduce a modular, non-covalent approach to bias the entire excited state landscape of an organic molecule using tunable ‘through-space charge-transfer’ interactions with appropriate donors. Although charge-transfer (CT) donor–acceptor complexes have been extensively explored as functional and supramolecular motifs in the realm of soft organic materials, they could not imprint their potentiality in the field of luminescent materials, and it still remains as a challenge. Thus, in the present study, we investigate the modulation of the excited state emission characteristics of a simple pyromellitic diimide derivative on complexation with appropriate donor molecules of varying electronic characteristics to demonstrate the selective harvesting of emission from its locally excited (LE) and CT singlet and triplet states. Remarkably, co-crystallization of the pyromellitic diimide with heavy-atom substituted and electron-rich aromatic donors leads to an unprecedented ambient CT phosphorescence with impressive efficiency and notable lifetime. Further, gradual minimizing of the electron-donating strength of the donors from 1,4-diiodo-2,3,5,6-tetramethylbenzene (or 1,2-diiodo-3,4,5,6-tetramethylbenzene) to 1,2-diiodo-4,5-dimethylbenzene and 1-bromo-4-iodobenzene modulates the source of ambient phosphorescence emission from the 3CT excited state to 3LE excited state. Through comprehensive spectroscopic, theoretical studies, and single-crystal analyses, we elucidate the unparalleled role of intermolecular donor–acceptor interactions to toggle between the emissive excited states and stabilize the triplet excitons. We envisage that the present study will be able to provide new and innovative dimensions to the existing molecular designs employed for triplet harvesting. A modular, non-covalent donor–acceptor strategy is proposed to bias the excited-state manifold of organic systems and to realize unprecedented charge-transfer phosphorescence.![]()
Collapse
Affiliation(s)
- Swadhin Garain
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Shagufi Naz Ansari
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Anju Ajayan Kongasseri
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Bidhan Chandra Garain
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Swapan K. Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| | - Subi J. George
- New Chemistry Unit and School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur, Bangalore 560064, India
| |
Collapse
|
46
|
Zhao Y, Ding B, Huang Z, Ma X. Highly efficient organic long persistent luminescence based on host–guest doping systems. Chem Sci 2022; 13:8412-8416. [PMID: 35919719 PMCID: PMC9297467 DOI: 10.1039/d2sc01622b] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/29/2022] [Indexed: 11/21/2022] Open
Abstract
Recently, organic long persistent luminescence (OLPL) has attracted widespread attention as a new luminescence pathway initiated by the exciplex. However, the low quantum yield, few alternative molecules and high fabrication cost seriously slow down the development of OLPL materials. Herein, a series of simple multi-guest/host OLPL materials with a high quantum yield are reported by doping four phenothiazine derivative guest molecules into 9H-xanthen-9-one host matrices. The F-substituted phenothiazine derivative doping system displays highly efficient emission with 46.3% quantum yield in air. Meanwhile, these OLPL materials provide broad opportunities for further application in the field of heat resistance due to their highly efficient luminescence at high temperatures. A series of high quantum yield organic long persistent luminescence (OLPL) materials were obtained by doping four phenothiazine derivatives into a host molecule (9H-xanthen-9-one). Power-law decay is exhibited by OLPL systems.![]()
Collapse
Affiliation(s)
- Yunhan Zhao
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Bingbing Ding
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Zizhao Huang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| | - Xiang Ma
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, P. R. China
| |
Collapse
|