1
|
Ma MY, Wang D, Huang YT, Han D, Chen NK, Sun HB, Zhang S, Li XB. Vacancy Defects in 2D Ferroelectric In 2Se 3 and the Conductivity Modulation by Polarization-Defect Coupling. NANO LETTERS 2025. [PMID: 40017102 DOI: 10.1021/acs.nanolett.4c05165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
α-In2Se3 is a promising two-dimensional (2D) ferroelectric semiconductor with unique phase transition behaviors and intrinsic n-type conductivity. However, the origin of this conductivity and the impact of defects on the phase transition remain unclear. In this study, we employed the WLZ method to calculate vacancies' formation energy and ionization energy in monolayer α-In2Se3 and identified the defect-bound band edge states. Our results reveal a strong polarization-defect coupling effect, where the bottom-layer selenium vacancy drives intrinsic n-type conductivity in the sample with upward polarization while reversing the polarization-induced deep p-type defect. Furthermore, we demonstrate that a vacancy stabilizes the ferroelectric phase and reduces the phase transition rate to the paraelectric phase. Finally, we propose a defect-engineered ferroelectric field-effect transistor model that controls the resistance by leveraging the polarization-defect coupling effect. This work highlights the significant roles of vacancy defects in 2D α-In2Se3, offering strategies to design In2Se3 electronic devices at the nanoscale.
Collapse
Affiliation(s)
- Ming-Yu Ma
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Dan Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu-Ting Huang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Dong Han
- College of Information Science and Engineering, Northeastern University, Shenyang 110819, People's Republic of China
- State Key Laboratory of Luminescence Science and Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China
| | - Nian-Ke Chen
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Hong-Bo Sun
- State Key Laboratory of Precision Measurement Technology and Instruments, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
| | - Shengbai Zhang
- Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Xian-Bin Li
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| |
Collapse
|
2
|
Van Winkle M, Zhang K, Bediako DK. Nanoscale Structure and Interfacial Electrochemical Reactivity of Moiré-Engineered Atomic Layers. Acc Chem Res 2025; 58:415-427. [PMID: 39817845 DOI: 10.1021/acs.accounts.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ConspectusThe electronic properties of atomically thin van der Waals (vdW) materials can be precisely manipulated by vertically stacking them with a controlled offset (for example, a rotational offset─i.e., twist─between the layers, or a small difference in lattice constant) to generate moiré superlattices. In recent years, the application of this "twistronics" concept to interfacial electrochemistry has unveiled unique pathways for tailoring the electrochemical reactivity. This Account provides an overview of our work that leveraged a suite of structural characterization methods, such as interferometric four-dimensional scanning transmission electron microscopy, dark-field transmission electron microscopy, and scanning tunneling microscopy, along with nanoscale electrochemical measurement techniques, namely, scanning electrochemical cell microscopy (SECCM), to uncover and dissect the profound impact of electrode electronic structure, controlled by interlayer twist, on interfacial electron transfer kinetics. At the heart of our findings is the discovery that moiré engineering enables the isolation of thermodynamically unfavorable stacking configurations, or topological defects, that substantially increase the standard electron transfer rate constant at the solid-liquid interface beyond what has been measured on conventional, nontwisted two-dimensional (2D) materials. This enhancement in interfacial reactivity can be attributed to the localization of a high density of electronic states within these particular sites in the superlattice, a similar effect to that which occurs upon incorporation of physical defects or vacancies in an electrode material but instead using an atomically pristine surface with a highly tunable structure. Throughout our studies, understanding the nuances of the relationship between the preimposed moiré twist angle and the observed electron transfer kinetics has heavily relied on the interrogation of additional factors such as spontaneous superlattice reconstruction and three-dimensional localization of electronic states, illustrating the importance of combining electrochemical measurements with both nanoscale structural probes and theoretical modeling for designing and optimizing moiré-engineered electrodes. The insight afforded by our efforts in this space continues to deepen our understanding of the fundamental mechanisms governing electron transfer at electrochemical interfaces at large and also points to the revolutionary prospect of twistronics for advancing electrochemical technologies. While our electrochemical studies have, so far, focused largely on graphene-based moiré materials, we also offer a perspective on the promise of transition metal dichalcogenide (TMD)-based moirés as candidates for highly versatile (photo)electrode surfaces. Accordingly, we provide a discussion of our studies on the structural relaxation observed in moiré superlattices of TMDs, and we summarize our work combining SECCM with field-effect electrostatic gating of TMDs to deconvolute the influences of material conductivity and intrinsic electron transfer kinetics from the overall electrochemical response of a semiconducting 2D material. Overall, this body of work establishes a distinctive foundation for the design of a wide range of materials with tailored properties that can provide crucial insights into interfacial charge transfer chemistry─potentially serving as platforms for sensing, energy conversion, and electrocatalysis─in addition to the emergent exotic correlated electron physics that originally ignited intense interest in moiré twistronics.
Collapse
Affiliation(s)
- Madeline Van Winkle
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kaidi Zhang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - D Kwabena Bediako
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Seksaria H, Nandi P, De Sarkar A. Strain-engineered bright excitons and a nearly flat band in monolayer SnNBr for high-speed LED applications. Phys Chem Chem Phys 2025; 27:1062-1070. [PMID: 39679479 DOI: 10.1039/d4cp03829k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
With the ever-increasing volume of data, the need for systems that can handle massive datasets is becoming gradually critical. High performance visible light communication (VLC) systems offer an expedient solution, yet its widespread adoption is hindered by the limited modulation bandwidth of light emitting diodes (LEDs). Through ab initio many-body perturbation theory within the GW approximation and the Bethe-Salpeter equation (BSE) approach, this work introduces a novel approach to achieving exceptionally high modulation bandwidth by utilizing the nearly flat bands in two-dimensional semiconductors, using SnNBr monolayer as a prototype material for overcoming this bottleneck. Utilizing its unique properties of a direct bandgap and a nearly flat highest valence band, we demonstrate the achievement of exceptionally high modulation bandwidths on the order of terahertz, surpassing the capabilities of established materials such as InGaN and GaN. Interestingly, the excellent absorption and recombination features of the SnNBr monolayer can be modulated further by the application of in-plane tensile strain. The strain-induced proliferation of bright excitons in the visible region, coupled with enhanced absorption and accelerated recombination rates, provides a deeper understanding of the fundamental mechanisms at play in two-dimensional materials, laying the groundwork for future explorations in light-matter interactions at terahertz frequencies.
Collapse
Affiliation(s)
- Harshita Seksaria
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| | - Pradip Nandi
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| | - Abir De Sarkar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Manauli, Mohali, Punjab 140306, India.
| |
Collapse
|
4
|
Lee S, de Sousa DJP, Jalan B, Low T. Moiré polar vortex, flat bands, and Lieb lattice in twisted bilayer BaTiO 3. SCIENCE ADVANCES 2024; 10:eadq0293. [PMID: 39565843 PMCID: PMC11578177 DOI: 10.1126/sciadv.adq0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Through first-principles calculations based on density functional theory, we investigate the crystal and electronic structures of twisted bilayer BaTiO3. Our findings reveal that large stacking fault energy leads to a chiral in-plane vortex pattern that was recently observed in experiments. We also found nonzero out-of-plane local dipole moments, indicating that the strong interlayer interaction might offer a promising strategy to stabilize ferroelectric order in the two-dimensional limit. The vortex pattern in the twisted BaTiO3 bilayer supports localized electronic states with quasi-flat bands, associated with the interlayer hybridization of oxygen pz orbitals. We found that the associated bandwidth reaches a minimum at ∼19∘ twisting, configuring the largest magic angle in moiré systems reported so far. Further, the moiré vortex pattern bears a notable resemblance to two interpenetrating Lieb lattices and the corresponding tight-binding model provides a comprehensive description of the evolution the moiré bands with twist angle and reveals the topological nature.
Collapse
Affiliation(s)
- Seungjun Lee
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - D. J. P. de Sousa
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bharat Jalan
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tony Low
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Physics, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Hassan Y, Singh B, Joe M, Son BM, Ngo TD, Jang Y, Sett S, Singha A, Biswas R, Bhakar M, Watanabe K, Taniguchi T, Raghunathan V, Sheet G, Lee Z, Yoo WJ, Srivastava PK, Lee C. Twist-Controlled Ferroelectricity and Emergent Multiferroicity in WSe 2 Bilayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406290. [PMID: 39318077 DOI: 10.1002/adma.202406290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/27/2024] [Indexed: 09/26/2024]
Abstract
Recently, researchers have been investigating artificial ferroelectricity, which arises when inversion symmetry is broken in certain R-stacked, i.e., zero-degree twisted, van der Waals (vdW) bilayers. Here, the study reports the twist-controlled ferroelectricity in tungsten diselenide (WSe2) bilayers. The findings show noticeable room temperature ferroelectricity that decreases with twist angle within the range 0° < θ < 3°, and disappears completely for θ ≥ 4°. This variation aligns with moiré length scale-controlled ferroelectric dynamics (0° < θ < 3°), while loss beyond 4° may relate to twist-controlled commensurate to non-commensurate transitions. This twist-controlled ferroelectricity serves as a spectroscopic tool for detecting transitions between commensurate and incommensurate moiré patterns. At 5.5 K, 3° twisted WSe2 exhibits ferroelectric and correlation-driven ferromagnetic ordering, indicating twist-controlled multiferroic behavior. The study offers insights into twist-controlled coexisting ferro-ordering and serves as valuable spectroscopic tools.
Collapse
Affiliation(s)
- Yasir Hassan
- Department of Materials Science and Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Budhi Singh
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Minwoong Joe
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Byoung-Min Son
- Department of Semiconductor Convergence Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Tien Dat Ngo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | - Younggeun Jang
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Shaili Sett
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Arup Singha
- Department of Physics, Indian Institute of Science, Bangalore, 560012, India
| | - Rabindra Biswas
- Department of Electrical and Communication Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Monika Bhakar
- Department of Physics, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - Kenji Watanabe
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takashi Taniguchi
- National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Varun Raghunathan
- Department of Electrical and Communication Engineering, Indian Institute of Science, Bangalore, 560012, India
| | - Goutam Sheet
- Department of Physics, Indian Institute of Science Education and Research Mohali, Punjab, 140306, India
| | - Zonghoon Lee
- Center for Multidimensional Carbon Materials, Institute for Basic Science (IBS), Ulsan, 44919, South Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Won Jong Yoo
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| | | | - Changgu Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, 16419, South Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, 16419, South Korea
| |
Collapse
|
6
|
Zhou J, Huang H, Zhao Z, Dou Z, Zhou L, Zhang T, Huang Z, Feng Y, Shi D, Liu N, Yang J, Nie JC, Wang Q, Dong J, Liu Y, Dou R, Xue Q. Homo-Site Nucleation Growth of Twisted Bilayer MoS 2 with Commensurate Angles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408227. [PMID: 39072861 DOI: 10.1002/adma.202408227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Indexed: 07/30/2024]
Abstract
Moiré superlattices, composed of two layers of transition metal dichalcogenides with a relative twist angle, provide a novel platform for exploring the correlated electronic phases and excitonic physics. Here, a gas-flow perturbation chemical vapor deposition (CVD) approach is demonstrated to directly grow MoS2 bilayer with versatile twist angles. It is found that the formation of twisted bilayer MoS2 homostructures sensitively depends on the gas-flow perturbation modes, correspondingly featuring the nucleation sites of the second layer at the same (homo-site) as or at the different (hetero-site) from that of the first layer. The commensurate twist angle of ≈22° in homo-site nucleation strategy accounts for ≈16% among the broad range of twist angles due to its low formation energy, which is in consistence with the theoretical calculation. More importantly, moiré interlayer excitons with the enhanced photoluminescence (PL) intensity and the prolonged lifetime are evidenced in the twisted bilayer MoS2 with a commensurate angle of 22°, which is owing to the reason that the strong moiré potential facilitates the interlayer excitons to be trapped in the moiré superlattices. The work provides a feasible route to controllably built twisted MoS2 homostructures with strong moiré potential to investigate the correlated physics in twistronics systems.
Collapse
Affiliation(s)
- Jun Zhou
- School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Zihan Zhao
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhenglong Dou
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Li Zhou
- Key Laboratory of Artificial Micro- and Nano-Structures of the Ministry of Education, Hubei Nuclear Solid Physics Key Laboratory, School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Tiantian Zhang
- School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yibiao Feng
- School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Nan Liu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, P. R. China
| | - Jian Yang
- School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - J C Nie
- School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Ququan Wang
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ruifen Dou
- School of Physics and Astronomy, Beijing Normal University, Beijing, 100875, P. R. China
| | - Qikun Xue
- Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
7
|
Liu Y, Dai F, Bai H, Fan X, Wang R, Zheng X, Xiong Z, Sun H, Liang Z, Kang Z, Zhang Y. Exciton Localization Modulated by Ultradeep Moiré Potential in Twisted Bilayer γ-Graphdiyne. J Am Chem Soc 2024; 146:14593-14599. [PMID: 38718194 DOI: 10.1021/jacs.4c01359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Twisted moiré superlattice is featured with its moiré potential energy, the depth of which renders an effective approach to strengthening the exciton-exciton interaction and exciton localization toward high-performance quantum photonic devices. However, it remains as a long-standing challenge to further push the limit of moiré potential depth. Herein, owing to the pz orbital induced band edge states enabled by the unique sp-C in bilayer γ-graphdiyne (GDY), an ultradeep moiré potential of ∼289 meV is yielded. After being twisted into the hole-to-hole layer stacking configuration, the interlayer coupling is substantially intensified to augment the lattice potential of bilayer GDY up to 475%. The presence of lateral constrained moiré potential shifts the spatial distribution of electrons and holes in excitons from the regular alternating mode to their respective separated and localized mode. According to the well-established wave function distribution of electrons contained in excitons, the AA-stacked site is identified to serve for exciton localization. This work extends the materials systems available for moiré superlattice design further to serial carbon allotropes featured with benzene ring-alkyne chain coupling, unlocking tremendous potential for twistronic-based quantum device applications.
Collapse
Affiliation(s)
- Yingcong Liu
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Fulong Dai
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Haokun Bai
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xiayue Fan
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Ruiqi Wang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Xuzhi Zheng
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Zhaozhao Xiong
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Haochun Sun
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Zhuojian Liang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Zhuo Kang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Beijing Key Laboratory for Advanced Energy Materials and Technologies, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, University of Science and Technology Beijing, Beijing 100083, People's Republic of China
| |
Collapse
|
8
|
Gao Y, Weston A, Enaldiev V, Li X, Wang W, Nunn JE, Soltero I, Castanon EG, Carl A, De Latour H, Summerfield A, Hamer M, Howarth J, Clark N, Wilson NR, Kretinin AV, Fal'ko VI, Gorbachev R. Tunnel junctions based on interfacial two dimensional ferroelectrics. Nat Commun 2024; 15:4449. [PMID: 38789446 PMCID: PMC11126694 DOI: 10.1038/s41467-024-48634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Van der Waals heterostructures have opened new opportunities to develop atomically thin (opto)electronic devices with a wide range of functionalities. The recent focus on manipulating the interlayer twist angle has led to the observation of out-of-plane room temperature ferroelectricity in twisted rhombohedral bilayers of transition metal dichalcogenides. Here we explore the switching behaviour of sliding ferroelectricity using scanning probe microscopy domain mapping and tunnelling transport measurements. We observe well-pronounced ambipolar switching behaviour in ferroelectric tunnelling junctions with composite ferroelectric/non-polar insulator barriers and support our experimental results with complementary theoretical modelling. Furthermore, we show that the switching behaviour is strongly influenced by the underlying domain structure, allowing the fabrication of diverse ferroelectric tunnelling junction devices with various functionalities. We show that to observe the polarisation reversal, at least one partial dislocation must be present in the device area. This behaviour is drastically different from that of conventional ferroelectric materials, and its understanding is an important milestone for the future development of optoelectronic devices based on sliding ferroelectricity.
Collapse
Affiliation(s)
- Yunze Gao
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Astrid Weston
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Vladimir Enaldiev
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Xiao Li
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Wendong Wang
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - James E Nunn
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Isaac Soltero
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Eli G Castanon
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Amy Carl
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Hugo De Latour
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alex Summerfield
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Matthew Hamer
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - James Howarth
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Nicholas Clark
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Neil R Wilson
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Andrey V Kretinin
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Department of Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Vladimir I Fal'ko
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute for Advanced Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Roman Gorbachev
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- National Graphene Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
- Henry Royce Institute for Advanced Materials, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
9
|
Que ZX, Li SZ, Huang B, Yang ZX, Zhang WB. Ultra-flat bands at large twist angles in group-V twisted bilayer materials. J Chem Phys 2024; 160:194710. [PMID: 38767261 DOI: 10.1063/5.0197757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/01/2024] [Indexed: 05/22/2024] Open
Abstract
Flat bands in 2D twisted materials are key to the realization of correlation-related exotic phenomena. However, a flat band often was achieved in the large system with a very small twist angle, which enormously increases the computational and experimental complexity. In this work, we proposed group-V twisted bilayer materials, including P, As, and Sb in the β phase with large twist angles. The band structure of twisted bilayer materials up to 2524 atoms has been investigated by a deep learning method DeepH, which significantly reduces the computational time. Our results show that the bandgap and the flat bandwidth of twisted bilayer β-P, β-As, and β-Sb reduce gradually with the decreasing of twist angle, and the ultra-flat band with bandwidth approaching 0 eV is achieved. Interestingly, we found that a twist angle of 9.43° is sufficient to achieve the band flatness for β-As comparable to that of twist bilayer graphene at the magic angle of 1.08°. Moreover, we also find that the bandgap reduces with decreasing interlayer distance while the flat band is still preserved, which suggests interlayer distance as an effective routine to tune the bandgap of flat band systems. Our research provides a feasible platform for exploring physical phenomena related to flat bands in twisted layered 2D materials.
Collapse
Affiliation(s)
- Zhi-Xiong Que
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
| | - Shu-Zong Li
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
| | - Bo Huang
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Xiong Yang
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Bing Zhang
- Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China
| |
Collapse
|
10
|
Xu K, Zou Z, Li W, Zhang L, Ge M, Wang T, Du W. Strong Linearly Polarized Light Emission by Coupling Out-of-Plane Exciton to Anisotropic Gap Plasmon Nanocavity. NANO LETTERS 2024; 24:3647-3653. [PMID: 38488282 DOI: 10.1021/acs.nanolett.3c04899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
With exceptional quantum confinement, 2D monolayer semiconductors support a strong excitonic effect, making them an ideal platform for exploring light-matter interactions and as building blocks for novel optoelectronic devices. Different from the well-known in-plane excitons in transition metal dichalcogenides (TMD), the out-of-plane excitons in indium selenide (InSe) usually show weak emission, which limits their applications as light sources. Here, by embedding InSe in an anisotropic gap plasmon nanocavity, we have realized plasmon-enhanced linearly polarized photoluminescence with an anisotropic ratio up to ∼140, corresponding to degree of polarization (DoP) of ∼98.6%. Such polarization selectivity, originating from the polarization-dependent plasmonic enhancement supported by the "nanowire-on-mirror" nanocavity, can be well tuned by the InSe thickness. Moreover, we have also realized an InSe-based light-emitting diode with polarized electroluminescence. Our research highlights the role of excitonic dipole orientation in designing nanophotonic devices and paves the way for developing InSe-based optoelectronic devices with polarization control.
Collapse
Affiliation(s)
- Kai Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Zhen Zou
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wenfei Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Maowen Ge
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, Jiangsu, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
11
|
Tian H, Tu T, Jin X, Li C, Lin T, Dong Q, Jing X, Liu B, Liu R, Li D, Liu Z, Li Q, Peng H, Liu B. Tuning the Flat Band in Bi 2O 2Se by Pressure to Induce Superconductivity. J Am Chem Soc 2024; 146:7324-7331. [PMID: 38445458 DOI: 10.1021/jacs.3c11984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The discovery of superconductivity in twisted bilayer graphene has reignited enthusiasm in the field of flat-band superconductivity. However, important challenges remain, such as constructing a flat-band structure and inducing a superconducting state in materials. Here, we successfully achieved superconductivity in Bi2O2Se by pressure-tuning the flat-band electronic structure. Experimental measurements combined with theoretical calculations reveal that the occurrence of pressure-induced superconductivity at 30 GPa is associated with a flat-band electronic structure near the Fermi level. Moreover, in Bi2O2Se, a van Hove singularity is observed at the Fermi level alongside pronounced Fermi surface nesting. These remarkable features play a crucial role in promoting strong electron-phonon interactions, thus potentially enhancing the superconducting properties of the material. These findings demonstrate that pressure offers a potential experimental strategy for precisely tuning the flat band and achieving superconductivity.
Collapse
Affiliation(s)
- Hui Tian
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
- School of Science, Shenyang Ligong University, Shenyang 110158, China
| | - Teng Tu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xilian Jin
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Chenyi Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Tao Lin
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Qing Dong
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Xiaoling Jing
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Bo Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Ran Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Da Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Zhongkai Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Quanjun Li
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingbing Liu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| |
Collapse
|
12
|
Gui Z, Li W, Huang L. Emergence of Improper Electronic Ferroelectricity and Flat Band in Twisted Bilayer Tl 2S. NANO LETTERS 2024; 24:3231-3236. [PMID: 38415606 DOI: 10.1021/acs.nanolett.4c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Two-dimensional (2D) ferroelectrics possessing out-of-plane (OP) polarization are highly desirable for applications and fundamental physics. Here, by first-principles calculations, we reveal that large-angle interlayer twisting can efficiently stabilize an unexpected ordering of sizable electric dipoles, producing OP polarization out of the centrosymmetric ground-state structure of Tl2S, in great contrast to the recently proposed interlayer-sliding ferroelectricity. The ferroelectricity originates from a nonlinear coupling between a polar order dominantly contributed by electrons and an unstable phonon mode associated with a commensurate k point (1/3, 1/3, 0) in the two constituent monolayers, therefore indicating an improper and electronic ferroelectric nature. More interestingly, a flat band and a van Hove singularity occur in its electronic structures just below the Fermi level in the large-angle twisted bilayer Tl2S. The unusual coexistence of improper electronic ferroelectricity, a flat band, and a van Hove singularity in one 2D material offers exceptional opportunities for exploring novel physics and applications.
Collapse
Affiliation(s)
- Zhigang Gui
- Department of Physics & Academy for Advanced Interdisciplinary Studies, Southern University of Science & Technology, Shenzhen, Guangdong 518055, China
| | - Wei Li
- Computer, Computational, and Statistical Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Li Huang
- Department of Physics & Academy for Advanced Interdisciplinary Studies, Southern University of Science & Technology, Shenzhen, Guangdong 518055, China
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
| |
Collapse
|
13
|
Shayeganfar F, Ramazani A, Habibiyan H, Rafiee Diznab M. Terahertz linear/non-linear anomalous Hall conductivity of moiré TMD hetero-nanoribbons as topological valleytronics materials. Sci Rep 2024; 14:1581. [PMID: 38238394 PMCID: PMC10796390 DOI: 10.1038/s41598-024-51721-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
Twisted moiré van der Waals heterostructures hold promise to provide a robust quantum simulation platform for strongly correlated materials and realize elusive states of matter such as topological states in the laboratory. We demonstrated that the moiré bands of twisted transition metal dichalcogenide (TMD) hetero-nanoribbons exhibit non-trivial topological order due to the tendency of valence and conduction band states in K valleys to form giant band gaps when spin-orbit coupling (SOC) is taken into account. Among the features of twisted WS[Formula: see text]/MoS[Formula: see text] and WSe[Formula: see text]/MoSe[Formula: see text], we found that the heavy fermions associated with the topological flat bands and the presence of strongly correlated states, enhance anomalous Hall conductivity (AHC) away from the magic angle. By band analysis, we showed that the topmost conduction bands from the ± K-valleys are perfectly flat and carry a spin/valley Chern number. Moreover, we showed that the non-linear anomalous Hall effect in moiré TMD hetero-nanoribbons can be used to manipulate terahertz (THz) radiation. Our findings establish twisted heterostructures of group-VI TMD nanoribbons as a tunable platform for engineering topological valley quantum phases and THz non-linear Hall conductivity.
Collapse
Affiliation(s)
- Farzaneh Shayeganfar
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran.
| | - Ali Ramazani
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hamidreza Habibiyan
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Rafiee Diznab
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| |
Collapse
|
14
|
Xu M, Ji H, Zheng L, Li W, Wang J, Wang H, Luo L, Lu Q, Gan X, Liu Z, Wang X, Huang W. Reconfiguring nucleation for CVD growth of twisted bilayer MoS 2 with a wide range of twist angles. Nat Commun 2024; 15:562. [PMID: 38233382 PMCID: PMC10794196 DOI: 10.1038/s41467-023-44598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024] Open
Abstract
Twisted bilayer (TB) transition metal dichalcogenides (TMDCs) beyond TB-graphene are considered an ideal platform for investigating condensed matter physics, due to the moiré superlattices-related peculiar band structures and distinct electronic properties. The growth of large-area and high-quality TB-TMDCs with wide twist angles would be significant for exploring twist angle-dependent physics and applications, but remains challenging to implement. Here, we propose a reconfiguring nucleation chemical vapor deposition (CVD) strategy for directly synthesizing TB-MoS2 with twist angles from 0° to 120°. The twist angles-dependent Moiré periodicity can be clearly observed, and the interlayer coupling shows a strong relationship to the twist angles. Moreover, the yield of TB-MoS2 in bilayer MoS2 and density of TB-MoS2 are significantly improved to 17.2% and 28.9 pieces/mm2 by tailoring gas flow rate and molar ratio of NaCl to MoO3. The proposed reconfiguring nucleation approach opens an avenue for the precise growth of TB-TMDCs for both fundamental research and practical applications.
Collapse
Affiliation(s)
- Manzhang Xu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongjia Ji
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jing Wang
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Hanxin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lei Luo
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Qianbo Lu
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xuetao Gan
- Key Laboratory of Light Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, 710129, P. R. China
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- CINTRA CNRS/NTU/THALES, UMI 3288, Research Techno Plaza, 50 Nanyang Drive, Border X Block, Level 6, Singapore, 637553, Singapore
- School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) & Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, 210023, P. R. China.
- Key Laboratory of Flexible Electronics (KLoFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, P. R. China.
| |
Collapse
|
15
|
Liu HY, Wu JY. Feature-Rich Electronic Properties of Sliding Bilayer Germanene. ACS OMEGA 2022; 7:42304-42312. [PMID: 36440158 PMCID: PMC9686190 DOI: 10.1021/acsomega.2c05219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
This study employs first-principles calculations to elucidate the properties of sliding bilayer germanene (BLGe). The buckled structure of germanene can afford a greater number of metastable stacking configurations than planar graphene and enrich the electronic properties. Herein, a detailed analysis of the structural variety, shift-dependent energy bands, and spatial charge densities of BLGe is presented. The projected density of states (PDOS) reveals diverse structures such as plateaus, dips, symmetric/asymmetric peaks, and shoulders. The low-lying ones of the prominent structures could correspond to single or multiorbital hybridization, depending on the stacking configuration.
Collapse
Affiliation(s)
- Hsin-Yi Liu
- Department
of Physics/QTC/Hi-GEM, National Cheng Kung
University, Tainan 70148, Taiwan
| | - Jhao-Ying Wu
- Center
of General Studies, National Kaohsiung University
of Science and Technology, Kaohsiung 811213, Taiwan
- Department
of Energy and Refrigerating Air-Conditioning Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 811213, Taiwan
| |
Collapse
|
16
|
Liu J, Lu N, Guan J, Hu Y. Laser Shock-Induced Nano-Twist of Transition Metal Dichalcogenides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37213-37221. [PMID: 35925793 DOI: 10.1021/acsami.2c10661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Mechanical strain, such as stretching, compression, bending, and rotation, significantly alters the photonic and electronic properties of 2D materials. The laser shock process, which allows 2D materials to deform at an ultrahigh strain rate, is a promising technology for alleviating the low strain transfer efficiency caused by the low interfacial bonding strength of the layered 2D materials. However, the mechanical strain introduced by shock waves is currently limited to uniaxial compression or bending deformation, and the monotonic strain patterns constrain the strain diversity and performance expansion space of 2D materials. This work proposed a novel strategy for nano-twist manufacturing using laser shock processing, based on partial interfacial decoupling behavior. Apart from the conventional uniaxial strain, we demonstrated experimentally and theoretically that the manufacturing of nano-twist allows the introduction of interlayer tensile and rotational strains in TMDCs. The microstructure and properties of the strained 2D materials were investigated. Furthermore, the dynamic deformation response of WSe2 during the shock process was studied using molecular dynamics simulations. The correlation between the laser shock-induced dynamic loading process, interfacial behavior, and deformation behavior of 2D materials was comprehensively explored. The primary contribution of this study lies in the introduction of diversified strain modes through nano-twist manufacturing by the laser shock process, which is expected to provide a convenient nano-twist fabrication process for the strain engineering and twistronics fields.
Collapse
Affiliation(s)
- Jian Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
| | - Nan Lu
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jie Guan
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yaowu Hu
- The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
- School of Power and Mechanical Engineering, Wuhan University, 430072 Wuhan, China
| |
Collapse
|