1
|
Mkrtchyan S, Purohit VB, Jakubczyk M, Prajapati VD, Prajapati RV, Garcia MG, Karpun E, Yepishev V, Saini MK, Sarfaraz S, Ayub K, Addová G, Filo J, Iaroshenko VO. Mechanochemical Sequential Deoxygenative Cross-Coupling Reactions of Phenols Under Ruthenium-Nickel Catalysis. Molecules 2025; 30:1835. [PMID: 40333846 PMCID: PMC12029765 DOI: 10.3390/molecules30081835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/09/2025] Open
Abstract
Herein, we report the first mechanochemical strategy for the Ru-catalyzed deoxygenative borylation of free phenols via C-O bond cleavage. This Ru-catalyzed phenolic borylation approach has been successfully extended to the Suzuki-Miyaura-type cross-coupling of phenols with aryl bromides. The protocol accepts a wide scope of phenolic substrates, allowing the synthesis of aryl pinacolboranes and biphenyl structures in excellent yields and serving as a better alternative to classical cross-coupling reactions in the context of pot, atom, and step economy synthesis.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, 974 01 Banska Bystrica, Slovakia
| | - Vishal B. Purohit
- Department of Chemical Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), Changa 388421, Gujarat, India;
| | - Michał Jakubczyk
- Institute of Inorganic Chemistry, Czech Academy of Sciences, Husinec-Rez c.p. 1001, 250 68 Husinec-Rez, Czech Republic;
| | - Vaibhav D. Prajapati
- Shri Alpesh N. Patel Post Graduate Institute of Science & Research, Anand 388001, Gujarat, India;
| | - Ronak V. Prajapati
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar 388120, Gujarat, India;
| | - Michael G. Garcia
- Department of Biology/Chemistry, Center for Cellular Nanoanalytics (CellNanOs), University Osnabruck, Barbarastr. 7, D-49076 Osnabruck, Germany;
| | - Eugene Karpun
- Life Chemicals Ukraine, Winston Churchill St. 5, 02000 Kyiv, Ukraine; (E.K.); (V.Y.)
- Professional Medical and Pharmaceutical College (IAPM), Frometivska, 2, 03039 Kyiv, Ukraine
| | - Vitaliy Yepishev
- Life Chemicals Ukraine, Winston Churchill St. 5, 02000 Kyiv, Ukraine; (E.K.); (V.Y.)
| | - Manoj K. Saini
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India;
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan; (S.S.), (K.A.)
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus, Abbottabad 22060, KPK, Pakistan; (S.S.), (K.A.)
| | - Gabriela Addová
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (G.A.); (J.F.)
| | - Juraj Filo
- Department of Organic Chemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovicova 6, 842 15 Bratislava, Slovakia; (G.A.); (J.F.)
| | - Viktor O. Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University, Tajovskeho 40, 974 01 Banska Bystrica, Slovakia
- Functional Materials Group, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait 32093, Kuwait
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India
- Georgian American University, School of Medicine, 10 Merab Aleksidze Str., Tbilisi 0160, Georgia
| |
Collapse
|
2
|
Li K, Wang L, Guo Z, Wang Z, Wang Y, Zhang X, Xu J, Huang H, Li Y. A novel method for the rapid determination of phenolic compounds based on the nanozyme with laccase-like activity. ENVIRONMENTAL RESEARCH 2025; 269:120841. [PMID: 39814252 DOI: 10.1016/j.envres.2025.120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/21/2024] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
Phenolic compounds are prevalent in domestic and industrial effluents, leading a serious environmental hazard. Paper-based analysis device mediated by nanozymes has shown great potential in portable visual determination of phenolic compounds in the environment. In this work, we used nicotinic acid derivatives such as pyridine-2,3-dicarboxylic acid, 2-methylnicotinic acid and 2-aminonicotinic acid by coordinating copper (II) acetate monohydrate coordination to obtain Cu2-COOHNA, Cu2-CH3NA, Cu2-ANA nanozymes with laccase-activity. Compared with natural laccase and CuNA, Cu2-ANA exhibited higher catalytic activity with a similar Km of 0.05 mM and a higher Vmax of 6.08 μM min-1. Cu2-ANA also exhibited a remarkable level of stability and can be used under a wide range of conditions. In addition, Cu2-ANA catalyzed the oxidation of different common phenolic compounds (PCs) and mix PCs. A visually inspective portable sensor constructed by using paper test strips coated with Cu2-ANA employed the colorimetric method for evaluating the concentration of PCs. There is no need for complicated instrumentation, and the popularity and portability of smartphones make on-site testing more efficient and convenient.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Le Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Zihan Guo
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Zeyang Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Yansong Wang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Xiao Zhang
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Jiyun Xu
- Jilin Lanjing Environmental Protection Technology Co., Ltd., Jilin, 132002, PR China
| | - Hui Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130025, PR China
| | - Yongxin Li
- Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Jilin Provincial Key Laboratory of Water Resources and Water Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, PR China.
| |
Collapse
|
3
|
Viktorova VV, Obydennov DL, Mustafina AF, Ulitko MV, Kornev MY, Sosnovskikh VY. Regioselective synthesis of 5-azaindazoles based on the intramolecular amination reaction of 5-acyl-4-pyridones with hydrazines. Org Biomol Chem 2025; 23:2206-2220. [PMID: 39873668 DOI: 10.1039/d4ob01969e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The labile tautomerism of N-unsubstituted 5-acyl-4-pyridones, which exist in the form of 4-pyridone or 4-hydroxypyridine depending on the solvent, has been demonstrated. This equilibrium determines the reactivity of pyridones and their ability to undergo substitution reactions of the OH group. A regioselective and convenient method for the construction of functionalized pyrazolo[4,3-c]pyridines (30-93%) based on the intramolecular amination reaction of 4-pyridones with hydrazines has been developed. The heterocyclization of N-alkyl-4-pyridones is accompanied by a dealkylation reaction. The reaction with hydroxylamine as a nucleophile can be used for the construction of the isoxazolo[4,5-c]pyridine core. Methods have been developed for further modification of the 5-azaindazole fragment via alkylation and decarboxylation. The antiproliferative properties of the prepared 5-azaindazoles were studied in relation to cancer (Hep-2, MCF) and normal cell lines (FH and Vero), and the compounds demonstrated relevant biological activity for further design of new molecules for antitumor therapy.
Collapse
Affiliation(s)
- Viktoria V Viktorova
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Dmitrii L Obydennov
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Alsu F Mustafina
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Maria V Ulitko
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Mikhail Y Kornev
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| | - Vyacheslav Y Sosnovskikh
- Institute of Natural Sciences and Mathematics, Ural Federal University, 51 Lenina Ave., 620000 Ekaterinburg, Russian Federation.
| |
Collapse
|
4
|
Su L, Dong J, Shen Y, Xie S, Wu S, Pan N, Liu F, Shang Q, Cai F, Ren TB, Yuan L, Yin SF, Han LB, Zhou Y. General (hetero)polyaryl amine synthesis via multicomponent cycloaromatization of amines. Nat Commun 2025; 16:169. [PMID: 39746930 PMCID: PMC11696898 DOI: 10.1038/s41467-024-54190-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 11/05/2024] [Indexed: 01/04/2025] Open
Abstract
(Hetero)polyaryl amines are extensively prevalent in pharmaceuticals, fine chemicals, and materials but the intricate and varied nature of their structures severely restricts their synthesis. Here, we present a selective multicomponent cycloaromatization of structurally and functionally diverse amine substrates for the general and modular synthesis of (hetero)polyaryl amines through copper(I)-catalysis. This strategy directly constructs a remarkable range of amino group-functionalized (hetero)polyaryl frameworks (194 examples), including naphthalene, binaphthalene, phenanthren, benzothiophene, dibenzothiophene, benzofuran, dibenzofuran, quinoline, isoquinoline, quinazoline, and others, which are challenging or impossible to obtain using alternative methods. Copper(III)-acetylide species are involved in driving the exclusive 7-endo-dig cyclization, suppressing many side-reactions that are susceptible to occur. Due to the easy introduction of various functional units into heteropolyarylamines, multiple functionalized fluorescent dyes can be arbitrarily synthesized, which can serve as effective fluorescent probes for monitoring the pathological processes (e.g. chemotherapy-induced cell apoptosis) and studying the related disease mechanisms.
Collapse
Affiliation(s)
- Lebin Su
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Jianyu Dong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China.
| | - Yang Shen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shimin Xie
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
- School of Physics and Chemistry, Hunan First Normal University, Changsha, China
| | - Shaofeng Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Neng Pan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Feng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qian Shang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Fangfang Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Tian-Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, China.
| | - Li-Biao Han
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Yongbo Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
5
|
Wang Y, Chen B, Li L, Mei X, Gu Y, Wu H, He M, Han B. Thermally-Stable Single-Site Pd on CeO 2 Catalyst for Selective Amination of Phenols to Aromatic Amines without External Hydrogen. Angew Chem Int Ed Engl 2024; 63:e202412062. [PMID: 39315608 DOI: 10.1002/anie.202412062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/21/2024] [Accepted: 09/23/2024] [Indexed: 09/25/2024]
Abstract
Developing a new route to produce aromatic amines as key chemicals from renewable phenols is a benign alternative to current fossil-based routes like nitroaromatic hydrogenation, but is challenging because of the high dissociation energy of the Ar-OH bond and difficulty in controlling side reactions. Herein, an aerosolizing-pyrolysis strategy was developed to prepare high-density single-site cationic Pd species immobilized on CeO2 (Pd1/CeO2) with excellent sintering resistance. The obtained Pd1/CeO2 catalysts achieved remarkable selectivity of important aromatic amines (yield up to 76.2 %) in the phenols amination with amines without external hydrogen sources, while Pd nano-catalysts mainly afforded phenyl-ring-saturation products. The excellent catalytic properties of the Pd1/CeO2 are closely related to high-loading Pd single-site catalysts with abundant surface defect sites and suitable acid-base properties. This report provides a sustainable route for producing aromatic amines from renewable feedstocks.
Collapse
Affiliation(s)
- Yaqin Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Bingfeng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Shanghai, 201800, P. R. China
| | - Xuelei Mei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Yucheng Gu
- Syngenta Jealott's Hill International Research Centre, Bracknell, RG42 6EY, UK
| | - Haihong Wu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Mingyuan He
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| | - Buxing Han
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, P. R. China E-mail:E-mail
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- Institute of Eco-Chongming, 20 Cuiniao Road, Chenjia Town, Chongming District, Shanghai, 202162, P. R. China
| |
Collapse
|
6
|
Wright BA, Okada T, Regni A, Luchini G, Sowndarya S V S, Chaisan N, Kölbl S, Kim SF, Paton RS, Sarpong R. Molecular Complexity-Inspired Synthetic Strategies toward the Calyciphylline A-Type Daphniphyllum Alkaloids Himalensine A and Daphenylline. J Am Chem Soc 2024; 146:33130-33148. [PMID: 39565045 DOI: 10.1021/jacs.4c11252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this report, we detail two distinct synthetic approaches to calyciphylline A-type Daphniphyllum alkaloids himalensine A and daphenylline, which are inspired by our analysis of the structural complexity of these compounds. Using MolComplex, a Python-based web application that we have developed, we quantified the structural complexity of all possible precursors resulting from one-bond retrosynthetic disconnections. This led to the identification of transannular bonds as especially simplifying to the molecular graph, and, based on this analysis, we pursued a total synthesis of himalensine A from macrocyclic intermediates with planned late-stage transannular ring formations. Despite initial setbacks in accessing an originally designed macrocycle, targeting a simplified macrocycle ultimately enabled investigation of this intermediate's unique transannular reactivity. Given the lack of success to access himalensine A based solely on molecular graph analysis, we revised our approach to the related alkaloid, daphenylline. Herein, we also provide the details of the various synthetic challenges that we encountered and overcame en route to a total synthesis of daphenylline. First, optimization of a Rh-mediated intramolecular Buchner/6π-electrocyclic ring-opening sequence enabled construction of the pentacyclic core. We then describe various attempts to install a key quaternary methyl group and, ultimately, our solution to leverage a [2 + 2] photocycloaddition/bond cleavage sequence to achieve this elusive goal. Finally, a late-stage Friedel-Crafts cyclization and deoxygenation facilitated the 11-step total synthesis, which was made formally enantioselective by a Rh-mediated dihydropyridone conjugate arylation. Complexity analysis of the daphenylline synthesis highlights how complexity-building/C-C cleavage combinations can be uniquely effective in achieving synthetic outcomes.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Taku Okada
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Alessio Regni
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Guilian Luchini
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Shree Sowndarya S V
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Nattawadee Chaisan
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sebastian Kölbl
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Akana-Schneider B, Guo Y, Parnitzke B, Derosa J. Strategies for arene dissociation from transition metal η 6-arene complexes. Dalton Trans 2024. [PMID: 39431334 DOI: 10.1039/d4dt02408g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Transition metal η6-arene complexes have unique properties that facilitate a variety of arene substitution reactions, rendering π-activation a powerful approach for arene functionalization. For decades, these complexes have been studied in the context of coordination chemistry and synthetic methodology via stoichiometric reactivity; one central challenge in expanding the utility of arene functionalization via transition-metal-π-activation is the dissociation of the arene product that remains bound to the transition metal. In this perspective, we highlight representative strategies and methods for the removal and/or exchange of arenes from such complexes. Recent studies that implement these strategies toward catalytic processes are discussed, along with remaining challenges in this area.
Collapse
Affiliation(s)
| | - Yahui Guo
- Boston University, Department of Chemistry, Boston, MA 02215, USA.
| | - Bryan Parnitzke
- Boston University, Department of Chemistry, Boston, MA 02215, USA.
| | - Joseph Derosa
- Boston University, Department of Chemistry, Boston, MA 02215, USA.
| |
Collapse
|
8
|
Ádám AA, Nagy SB, Kukovecz Á, Kónya Z, Sipos P, Varga G. Nickel-based perovskite-catalysed direct phenol-to-aniline liquid-phase transformations. Chem Commun (Camb) 2024; 60:10520-10523. [PMID: 39228353 DOI: 10.1039/d4cc03638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Liquid phase direct amination of phenols to primary anilines with hydrazine was achieved using commercial NiLa-perovskite catalysts as bifunctional Lewis acid/redox-active catalysts without adding any external hydride sources. The amination strategy took place efficiently in the absence of any amount of reducing gasses (H2/NH3) and noble metals under mild conditions.
Collapse
Affiliation(s)
- Anna Adél Ádám
- Department of Molecular and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary
| | - Sándor Balázs Nagy
- Department of Molecular and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary
| | - Ákos Kukovecz
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary.
| | - Zoltán Kónya
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary.
- HUN-REN-SZTE Reaction Kinetics and Surface Chemistry Research Group, Rerrich Béla tér 1, H-6720 Szeged, Hungary
| | - Pál Sipos
- Department of Molecular and Analytical Chemistry and Materials and Solution Structure Research Group, University of Szeged, Dóm tér 7, Szeged, H-6720, Hungary
| | - Gábor Varga
- Department of Applied and Environmental Chemistry and Interdisciplinary Excellence Centre, Institute of Chemistry, University of Szeged, Rerrich Béla tér 1, Szeged, H-6720, Hungary.
| |
Collapse
|
9
|
Chen J, Lin Y, Wu WQ, Hu WQ, Xu J, Shi H. Amination of Aminopyridines via η 6-Coordination Catalysis. J Am Chem Soc 2024; 146:22906-22912. [PMID: 39120946 DOI: 10.1021/jacs.4c07306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
Pyridine, a widespread aromatic heterocycle, features a sp2-hybridized nitrogen atom that can readily coordinate to metals, leading to distinctive achievements in catalysis. In stark contrast, π-coordination of pyridine and derivatives with transition metals is notably scarce, and the involvement of such activation mode in catalysis remains to be developed. Herein, we present amination reactions of aminopyridines that leverages the reversible π coordination with a ruthenium catalyst as the arenophilic π acid, rather than relying on the conventional κ-N coordination. Specifically, a transient η6-pyridine complex functions as the electrophile in the nucleophilic aromatic substitution with amines, providing a diverse array of products via the cleavage of the pyridyl C-N bond. In addition, this method can be employed to incorporate chiral amines and 15N-labeled amines.
Collapse
Affiliation(s)
- Jiajia Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Wen-Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Wei-Qiang Hu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Jingkai Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
10
|
Mkrtchyan S, Jakubczyk M, Sarfaraz S, Ayub K, Iaroshenko VO. Ru-catalyzed activation of free phenols in a one-step Suzuki-Miyaura cross-coupling under mechanochemical conditions. Chem Sci 2024:d4sc01704h. [PMID: 39184287 PMCID: PMC11342143 DOI: 10.1039/d4sc01704h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Activation of phenols by a Ru-catalyst allows for the resulting η5-phenoxo complex to selectively react with a variety of nucleophiles under mechanochemical conditions. Conversion of phenolic hydroxy groups without derivatization is important for late-stage modifications of pharmaceuticals and in the context of lignin-material processing. We present a one-step, Ru-catalyzed cross-coupling of phenols with boronic acids, aryl trialkoxysilanes and potassium benzoyltrifluoroborates under mechano-chemical conditions. The protocol accepts a wide scope of starting materials and allows for gram-scale synthesis in excellent yields. The developed approach constitutes a very interesting and waste-limiting alternative to the known methods.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University Tajovského 40 97401 Banska Bystrica Slovakia
- University Centre for Research & Development, Chandigarh University Mohali Punjab 140413 India
| | - Michał Jakubczyk
- Institute of Inorganic Chemistry, Czech Academy of Sciences Husinec-Řež č.p. 1001 250 68 Husinec-Řež Czech Republic
- Laboratory of Molecular Assays and Imaging, Institute of Bioorganic Chemistry, Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus Abbottabad KPK 22060 Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus Abbottabad KPK 22060 Pakistan
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University Tajovského 40 97401 Banska Bystrica Slovakia
- University Centre for Research & Development, Chandigarh University Mohali Punjab 140413 India
- Department of Fiber and Polymer Technology, Division of Wood Chemistry and Pulp Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden
- Functional Materials Group, Gulf University for Science and Technology Mubarak Al-Abdullah 32093 Kuwait
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura-140401 Punjab India
| |
Collapse
|
11
|
Chen K, Shi H. Nucleophilic Aromatic Substitution of Halobenzenes and Phenols with Catalysis by Arenophilic π Acids. Acc Chem Res 2024; 57:2194-2206. [PMID: 39042917 DOI: 10.1021/acs.accounts.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
ConspectusLewis π acids, particularly high-valent transition metals with vacant orbitals, can coordinate with unsaturated compounds such as alkynes and alkenes by means of π-bonding. The coordination enhances the electrophilicity of the bound compounds, thereby facilitating reactions─such as nucleophilic addition─that take place at the ligated carbon-carbon multiple bonds. This activation phenomenon occurs at the ligand rather than at the metal atom, and it has been extensively utilized in the development of catalytic methods. In addition to alkynes and alkenes, aromatic compounds featuring a phenyl ring can be activated by an electrophilic transition-metal unit (e.g., Cr(CO)3, [Mn(CO)3]+, [CpFe]+, or [CpRu]+, where Cp = cyclopentadienyl) through π coordination. Over the past several decades, remarkable advances have been achieved in the development of reactions occurring on bound arenes, capitalizing on the highly electron-withdrawing nature of these transition-metal units and on the thermodynamic stability of η6-arene complexes. A prime example is the extension of nucleophilic aromatic substitution (SNAr) reactions to electron-neutral and -rich halobenzenes. Such arenes, which are normally inert to classical SNAr, can undergo sequences involving complex formation, substitution, and complex decomposition. Despite the successes achieved through the utilization of preformed complexes, the application of reversible arene coordination to catalytic systems has seen only limited progress. Consequently, in π-coordination activation, transition-metal units are commonly considered to be components of bound arene complexes rather than π-acid catalysts.In this Account, we summarize our recent research on catalytic SNAr reactions of halobenzenes and phenols enabled by reversible π-coordination of the arenes with electrophilic Ru or Rh catalysts, which we refer to as arenophilic π-acids. First, we developed a method for SNAr amination of fluorobenzenes with catalysis by a Ru(II) complex with a hemilabile P,O-bidentate ligand. The use of the hemilabile ligand significantly enhanced catalytic efficiency, allowing electron-rich and -neutral arenes to undergo amination without the need of excess fluorobenzenes. In a subsequent study of hydroxylation and alkoxylation reactions, we found that Rh(III) catalysts bearing a Cp-type ligand had a substantial activating effect. In addition, by isolating an η5 complex as the reaction intermediate, we obtained evidence in support of the long-standing hypothesis that SNAr of η6-arene complexes proceeds via a stepwise mechanism. Next, we extended the Rh-catalyzed SNAr to chloro- and bromobenzenes, which are abundant and readily available but are less reactive than corresponding fluorides toward SNAr. When the weakly nucleophilic alcohol hexafluoroisopropanol was used as a reaction partner, we were able to synthesize hexafluoroisopropyl aryl ethers, which are challenging to obtain by means of conventional approaches. Beyond halobenzenes, we successfully applied π-coordination strategy to achieve umpolung substitution reactions of phenols, which are typically nucleophilic. We found that an arenophilic Rh or Ru catalyst activated the phenol ring by π coordination instead of κ-O coordination, generating transient η5-phenoxo complexes that subsequently underwent carbonyl-amine condensation to produce anilines without the need for an exogenous oxidant or reductant. We anticipate that our research on catalyst development and reactions involving π-coordination activation will facilitate further advances in the application of arenophilic π acids.
Collapse
Affiliation(s)
- Kai Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
12
|
Inkoua S, Li C, Rashid M, Naeem MM, Zhang S, Gao W, Gholizadeh M, Hu X. Unveiling drastic influence of cross-interactions in hydrothermal carbonization of spirulina with cellulose, lignin or poplar on nature of hydrochar and activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121713. [PMID: 38986368 DOI: 10.1016/j.jenvman.2024.121713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/11/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Spirulina platensis contains abundant nitrogen-containing organics, which might react with derivatives of cellulose/lignin during hydrothermal carbonization (HTC), probably affecting yield, property of hydrochar, and pore development in activation of hydrochar. This was investigated herein by conducting co-HTC of spirulina platensis with cellulose, lignin, and sawdust at 260 °C and subsequent activation of the resulting hydrochars with K2C2O4 at 800 °C. The results showed that cross-condensation of spirulina platensis-derived proteins with cellulose/lignin-derived ketones and phenolics did take place in the co-HTC, forming more π-conjugated heavier organics, retaining more nitrogen species in hydrochar, reducing yields of hydrochar, making the hydrochar more aromatic and increasing the thermal stability and resistivity towards activation. This enhanced the yield of activated carbon (AC) by 7 %-20 % and significantly increased specific surface area of the AC from activation of hydrochar of spirulina platensis + lignin to 2074.5 m2/g (859.3 m2/g from spirulina platensis only and 1170.1 m2/g from lignin only). Furthermore, more mesopores from activation of hydrochar of spirulina platensis + cellulose (47 %) and more micropores from activation of hydrochar of spirulina + sawdust (93 %) was generated. The AC from spirulina platensis + lignin with the developed pore structures generated sufficient sites for adsorption of tetracycline from aqueous phase and minimized steric hindrance for mass transfer with the abundant mesopores (43 %).
Collapse
Affiliation(s)
- Stelgen Inkoua
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Chao Li
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Muhammad Rashid
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Muhammad Mahboob Naeem
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Shu Zhang
- International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| | - Wenran Gao
- International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, PR China.
| | | | - Xun Hu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
13
|
Chen K, Ma Y, Lin Y, Li JY, Shi H. Ruthenium/η 5-Phenoxo-Catalyzed Amination of Phenols with Amines. J Am Chem Soc 2024; 146:15833-15842. [PMID: 38819396 DOI: 10.1021/jacs.4c02089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Ruthenium(II) complexes are known to form η6-arene complexes with benzene-containing compounds through π-coordination, a property extensively utilized to initiate reactions not typically observed with free arenes. A prime example is nucleophilic aromatic substitution, where ruthenium-complexed aryl halides undergo nucleophilic attack, allowing the direct synthesis of diverse aromatic compounds by displacing halides with nucleophiles. However, this activation relies on the electron-withdrawing effect of the Ru(II) species, as well as is hindered by the resistance of η6-arenes to arene exchange. In the previous pursuit of catalysis, the emphasis of ligand design has centered on promoting arene exchange. In this study, we extended the ruthenium activation strategy to umpolung substitution reactions of phenols. The amination proceeds through a direct condensation between phenols and amines, with a key intermediate identified as [bis(η5-phenoxo)Ru], which is in situ generated from a commercially available ruthenium catalyst. In comparison with the well-studied cyclopentadienyl (Cp) type ligands, we demonstrated that an η5-phenoxo motif, as a superior alternative to Cp, contributes to the amination of phenols in two crucial ways: its less electron-donating nature enhances the withdrawing effect of the ruthenium unit, facilitating substitution on the phenol complex; its distinctive behavior in arene exchange allows for conducting the amination with a catalytic amount of metal. Additionally, hydrogen bonding, wherein the phenoxo serves as the acceptor, was found to be important for the substitution. The versatility of this ruthenium-catalyzed amination was validated by performing reactions with a diverse array of phenols exhibiting various electronic properties, in combination with a wide range of primary amines. This work exemplifies the expansion of the scope of π-coordination activation in catalysis through innovative ligand development.
Collapse
Affiliation(s)
- Kai Chen
- Department of Chemistry, Zhejiang University, Hangzhou ,Zhejiang Province 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yixuan Ma
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Yunzhi Lin
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Jia-Yue Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou, Zhejiang Province 310030, China
- Institute of Natural Sciences,Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou ,Zhejiang Province 310024, China
| |
Collapse
|
14
|
Schulte T, Wang Z, Li CC, Hamad A, Waldbach F, Pampel J, Petzold R, Leutzsch M, Bahns F, Ritter T. Ruthenium Phenoxo Complexes: An Isolobal Ligand to Cp with Improved Properties. J Am Chem Soc 2024; 146:15825-15832. [PMID: 38819390 PMCID: PMC11177254 DOI: 10.1021/jacs.4c02088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Catalytic π-arene activation is based on catalysts that allow for arene exchange. To date, cyclopentadiene (Cp)-derived catalysts are the most commonly used in π-arene activation despite their low arene exchange rates. Herein, we report the synthesis, analysis, and catalytic application of Ru(II) complexes supported by phenoxo ligands, which are isolobal alternatives to Cp. The phenoxo complexes exhibit arene exchange rates significantly faster than those of the corresponding Cp complexes. The rate can be further increased through the choice of appropriate counterions. The mechanism of the arene exchange process is elucidated by kinetic and computational analyses. We demonstrate the utility of the new catalysts through an SNAr reaction between fluorobenzene and alcohols, including secondary alcohols that could not be used previously in related reactions. Moreover, the catalytic thermal decarboxylation of phenylacetic acids is presented.
Collapse
Affiliation(s)
- Tim Schulte
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Zikuan Wang
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Chen-Chen Li
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Aboubakr Hamad
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Felix Waldbach
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Julius Pampel
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Roland Petzold
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Markus Leutzsch
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Fritz Bahns
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
- Institute
of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Tobias Ritter
- Max-Planck-Institut
für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| |
Collapse
|
15
|
Liu DH, Ma J. Recent Advances in Dearomative Partial Reduction of Benzenoid Arenes. Angew Chem Int Ed Engl 2024; 63:e202402819. [PMID: 38480464 DOI: 10.1002/anie.202402819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Indexed: 04/11/2024]
Abstract
Dearomative partial reduction is an extraordinary approach for transforming benzenoid arenes and has been well-known for many decades, as exemplified by the dehydrogenation of Birch reduction and the hydroarylation of Crich addition. Despite its remarkable importance in synthesis, this field has experienced slow progress over the last half-century. However, a revival has been observed with the recent introduction of electrochemical and photochemical methods. In this Minireview, we summarize the recent advancements in dearomative partial reduction of benzenoid arenes, including dihydrogenation, hydroalkylation, arylation, alkenylation, amination, borylation and others. Further, the intriguing utilization of dearomative partial reduction in the synthesis of natural products is also emphasized. It is anticipated that this Minireview will stimulate further progress in arene dearomative transformations.
Collapse
Affiliation(s)
- De-Hai Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jiajia Ma
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering and Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
16
|
Zhao BY, Jia Q, Wang YQ. Synthesis of meta-carbonyl phenols and anilines. Nat Commun 2024; 15:2415. [PMID: 38499520 PMCID: PMC10948751 DOI: 10.1038/s41467-024-46576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 03/01/2024] [Indexed: 03/20/2024] Open
Abstract
Phenols and anilines are of extreme importance for medicinal chemistry and material science. The development of efficient approaches to prepare both compounds has thus long been a vital research topic. The utility of phenols and anilines directly reflects the identity and pattern of substituents on the benzenoid ring. Electrophilic substitutions remain among the most powerful synthetic methods to substituted phenols and anilines, yet in principle achieving ortho- and para-substituted products. Therefore, the selective preparation of meta-substituted phenols and anilines is the most significant challenge. We herein report an efficient copper-catalyzed dehydrogenation strategy to exclusively synthesize meta-carbonyl phenols and anilines from carbonyl substituted cyclohexanes. Mechanistic studies indicate that this transformation undergoes a copper-catalyzed dehydrogenation/allylic hydroxylation or amination/oxidative dehydrogenation/aromatization cascade process.
Collapse
Affiliation(s)
- Bao-Yin Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, School of Foreign Languages, Northwest University, Xi'an, 710069, China
| | - Qiong Jia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, School of Foreign Languages, Northwest University, Xi'an, 710069, China
| | - Yong-Qiang Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, School of Foreign Languages, Northwest University, Xi'an, 710069, China.
| |
Collapse
|
17
|
Fier PS, Kim S. Transition-Metal-Free C-N Cross-Coupling Enabled by a Multifunctional Reagent. J Am Chem Soc 2024; 146:6476-6480. [PMID: 38437454 DOI: 10.1021/jacs.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
We report the design and development of a transition-metal-free cross-coupling reaction of phenols and primary amines using a simple and readily available multifunctional reagent. The reactions work by induced proximity and electronic activation of both the nucleophile and the electrophile for net dehydrative C-N coupling reactions. Notably, the reactions do not involve the use of a transition metal for C-N bond formation, preactivation of the phenol electrophile, or exclusion of air or moisture. The mild conditions tolerate a broad range of functional groups and allow for this to be applied to the late-stage functionalization of complex substrates with a wide scope of coupling partners.
Collapse
Affiliation(s)
- Patrick S Fier
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Suhong Kim
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
18
|
Levin N, Goclik L, Walschus H, Antil N, Bordet A, Leitner W. Decarboxylation and Tandem Reduction/Decarboxylation Pathways to Substituted Phenols from Aromatic Carboxylic Acids Using Bimetallic Nanoparticles on Supported Ionic Liquid Phases as Multifunctional Catalysts. J Am Chem Soc 2023; 145:22845-22854. [PMID: 37815193 PMCID: PMC10591467 DOI: 10.1021/jacs.3c09290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Indexed: 10/11/2023]
Abstract
Valuable substituted phenols are accessible via the selective decarboxylation of hydroxybenzoic acid derivatives using multifunctional catalysts composed of bimetallic iron-ruthenium nanoparticles immobilized on an amine-functionalized supported ionic liquid phase (Fe25Ru75@SILP+IL-NEt2). The individual components of the catalytic system are assembled using a molecular approach to bring metal and amine sites into close contact on the support material, providing high stability and high decarboxylation activity. Operating under a hydrogen atmosphere was found to be essential to achieve high selectivity and yields. As the catalyst materials enable also the selective hydrogenation and hydrodeoxygenation of various additional functional groups (i.e., formyl, acyl, and nitro substituents), direct access to the corresponding phenols can be achieved via integrated tandem reactions. The approach opens versatile synthetic pathways for the production of valuable phenols from a wide range of readily available substrates, including compounds derived from lignocellulosic biomass.
Collapse
Affiliation(s)
- Natalia Levin
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Lisa Goclik
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Henrik Walschus
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Neha Antil
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Alexis Bordet
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Walter Leitner
- Max
Planck Institute for Chemical Energy Conversion, Stiftstr. 34-36, 45470 Mülheim an der Ruhr, Germany
- Institut
für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
19
|
Lin Y, Shi H. Rhodium-Catalyzed Addition of (Trialkylsilyl)arenes to Electrophiles via π-Coordination-Driven C-Si Bond Activation. J Am Chem Soc 2023; 145:22753-22761. [PMID: 37787751 DOI: 10.1021/jacs.3c08603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Aromatic organosilicon compounds serve as valuable synthons due to their diverse reactivities, excellent compatibility with various functional groups, and ready availability. However, (trialkylsilyl)arenes, despite their potential utility, are generally considered unsuitable substrates for transition-metal-catalyzed cross-coupling due to the low polarity of their covalent C(aryl)-Si bonds and the significant steric hindrance imposed by alkyl substituents. These factors render them inert toward reactions with transition metals, such as transmetalation and oxidative addition. In this study, we present a method for the rhodium-catalyzed addition of (trialkylsilyl)arenes to electrophiles via π-coordination-driven desilylation. We propose that a dicationic rhodium species activates the unbiased C(aryl)-Si bond, increasing its polarity by forming an η6-arene complex, thereby facilitating heterolysis. The resulting phenyl anion complex readily engages in addition reactions with external electrophiles, effectively forming C-C bonds. Through comprehensive computational studies, we have unraveled an unexpected stepwise pathway for desilylation with fluoride. This pathway involves the addition of fluoride to the aromatic ring, followed by a 1,2-migration of fluoride, ultimately culminating in the departure of fluorotrimethylsilane.
Collapse
Affiliation(s)
- Yunzhi Lin
- Department of Chemistry, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
20
|
Li H, Yatabe T, Takayama S, Yamaguchi K. Heterogeneously Catalyzed Selective Acceptorless Dehydrogenative Aromatization to Primary Anilines from Ammonia via Concerted Catalysis and Adsorption Control. JACS AU 2023; 3:1376-1384. [PMID: 37234130 PMCID: PMC10207093 DOI: 10.1021/jacsau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Although catalytic dehydrogenative aromatization from cyclohexanones and NH3 is an attractive synthetic method for primary anilines, using a hydrogen acceptor was indispensable to achieve satisfactory levels of selectivity in liquid-phase organic synthetic systems without photoirradiation. In this study, we developed a highly selective synthesis of primary anilines from cyclohexanones and NH3 via efficient acceptorless dehydrogenative aromatization heterogeneously catalyzed by an Mg(OH)2-supported Pd nanoparticle catalyst in which Mg(OH)2 species are also deposited on the Pd surface. The basic sites of the Mg(OH)2 support effectively accelerate the acceptorless dehydrogenative aromatization via concerted catalysis, suppressing the formation of secondary amine byproducts. In addition, the deposition of Mg(OH)2 species inhibits the adsorption of cyclohexanones on the Pd nanoparticles to suppress phenol formation, achieving the desired primary anilines with high selectivity.
Collapse
Affiliation(s)
- Hui Li
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takafumi Yatabe
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Precursory
Research for Embryonic Science and Technology (PRESTO), Japan Science
and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Satoshi Takayama
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kazuya Yamaguchi
- Department
of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
21
|
Hu Y, Jia Y, Tuo Z, Zhou W. Rhodium(III)-Catalyzed Intramolecular Annulation and Aromatization for the Synthesis of Pyrrolo[1,2- a]quinolines. Org Lett 2023; 25:1845-1849. [PMID: 36897039 DOI: 10.1021/acs.orglett.3c00321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
A rhodium(III)-catalyzed protocol for the synthesis of pyrrolo[1,2-a]quinolines through intramolecular annulation of o-alkynyl amino aromatic ketones and subsequent aromatization is reported. This transformation builds the pyrrole and quinoline moieties of the pyrrolo[1,2-a]quinoline in one pot and achieves a flexible introduction of different substituent groups at 4- and 5-positions on products that were difficult to prepare by other means. The reaction proceeds smoothly on a gram scale, and the products are amenable to downstream synthetic manipulations.
Collapse
Affiliation(s)
- Yongchun Hu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Education of China, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Yuanyuan Jia
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| | - Zekun Tuo
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Education of China, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
| | - Wang Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine, Ministry of Education of China, and Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha 410081, China
- College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
22
|
Juma JO, Adongo JO, Kibet JK. Ferricyanide-catalyzed amination of phenol: a near-infrared spectroscopic and kinetic study. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
23
|
A Second-Generation Palladacycle Architecture Bearing a N-Heterocyclic Carbene and Its Catalytic Behavior in Buchwald–Hartwig Amination Catalysis. Catalysts 2023. [DOI: 10.3390/catal13030559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023] Open
Abstract
Palladacyclic architectures have been shown as versatile motifs in cross-coupling reactions. NHC-ligated palladacycles possessing unique electronic and steric properties have helped to stabilize the catalytically active species and provide additional control over reaction selectivity. Here, we report on a synthetic protocol leading to palladacycle complexes using a mild base and an environmentally desirable solvent, with a focus on complexes bearing backbone-substituted N-heterocyclic carbene ligands. The readily accessible complexes exhibit high catalytic activity in the Buchwald–Hartwig amination. This is achieved using low catalyst loading and mild reaction conditions in a green solvent.
Collapse
|
24
|
Sun R, Ma SS, Zhang ZH, Zhang YQ, Xu BH. Ruthenium-catalyzed reductive amination of ketones with nitroarenes and nitriles. Org Biomol Chem 2023; 21:1450-1456. [PMID: 36651476 DOI: 10.1039/d2ob02312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Ru(dppbsa)-catalyzed reductive amination of ketones with nitroarenes and nitriles using H2 as the environmentally benign hydrogen surrogate is developed in this study. Cross-experiments demonstrated that both reactions are initiated by the reduction of nitroarenes or nitriles to the corresponding amines, followed by condensation with ketones to give imines and thereafter hydrogenation. However, the route to the formation of an amino-ligated Ru complex during the reduction of nitroarenes or nitriles, followed by in situ nucleophilic C-N coupling, cannot be completely excluded. This newly developed versatile method features good functional group tolerance, which provides a novel design platform for homogeneous catalysts in constructing motifs of secondary amines.
Collapse
Affiliation(s)
- Rui Sun
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shuang-Shuang Ma
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zi-Heng Zhang
- College of Materials Science & Engineering, Huaqiao University, Xiamen 361021, China.,Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yan-Qiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Bao-Hua Xu
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, State Key Laboratory of Biochemical Engineering, Institution of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.,College of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China. .,Beijing Key Laboratory for Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
25
|
Ghosh MK, Sharma KS, Pandey G. Regioselective C(sp 2)-H imidation of arenes by redox neutral visible-light photocatalysis. Org Biomol Chem 2023; 21:538-550. [PMID: 36537241 DOI: 10.1039/d2ob02040h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report herein a redox neutral visible light-induced regioselective C(sp2)-H imidation of electron-rich arenes and heteroarenes using conceptually designed redox-active 1 as a source of the N-centered imidyl radical. Structurally diverse aromatic imides were obtained in moderate to good yields. This methodology has been successfully employed for the late stage imidation of complex molecules and has also been applied towards the formal total synthesis of the marine natural products carpatamides A, B and D. It has further been shown that the generated imides can easily be converted to the corresponding anilines in situ directly.
Collapse
Affiliation(s)
- Manoj Kumar Ghosh
- Department of Chemistry, Institute of Science, Banaras Hindu University (B. H. U.), Varanasi-221005, U.P., India.
| | - Kumari Swati Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University (B. H. U.), Varanasi-221005, U.P., India.
| | - Ganesh Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University (B. H. U.), Varanasi-221005, U.P., India.
| |
Collapse
|
26
|
Kharitonov VB, Muratov DV, Loginov DA. Cyclopentadienyl complexes of group 9 metals in the total synthesis of natural products. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
CuO/CaO as a solid reducing reagent for nitroarenes: combined effect of oxygen vacancies and surface basicity. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00095-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
28
|
Kitano J, Nishii Y, Miura M. Selective Synthesis of C4-Functionalized Benzofurans by Rhodium-Catalyzed Vinylene Transfer: Computational Study on the Cyclopentadienyl Ligand. Org Lett 2022; 24:5679-5683. [PMID: 35900136 DOI: 10.1021/acs.orglett.2c02030] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Benzofuran is a privileged structure in many bioactive compounds; however, the controlled synthesis of C2,C3-nonsubstituted benzofurans has been scarce. In particular, cumbersome multistep processes are inevitable for the most inaccessible C4-substituted isomers. Herein, we report a Rh-catalyzed direct vinylene annulation of readily available m-salicylic acid derivatives with vinylene carbonate to achieve selective construction of C4-substituted benzofurans. The Weinreb amide directing group facilitated the following product derivatization. The reaction mechanism was investigated by DFT calculations.
Collapse
Affiliation(s)
- Junya Kitano
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Wang Q, Wang X, Wei H. Spinel-Oxide-Based Laccase Mimics for the Identification and Differentiation of Phenolic Pollutants. Anal Chem 2022; 94:10198-10205. [PMID: 35786854 DOI: 10.1021/acs.analchem.2c01695] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenol and its derivatives, known as persistent organic pollutants, have long threatened human health and environmental safety. There is an urgent need to develop convenient, low-cost, and multiplex analytical methods. Since phenols are substrates of laccase, they can be detected via laccase-catalyzed colorimetric assays. Nevertheless, the laccase-based assays cannot distinguish different phenols. Moreover, natural laccases suffer from high cost and low stability issues. To meet these needs, here we developed a laccase-like nanozyme sensor array for phenol detection and differentiation, which takes advantage of both nanozymes and cross-reactive sensor arrays. First, we examined a series of spinel-type transition metal oxides and found that manganese on octahedral sites profoundly affects the laccase-like activity of the materials. Based on the developed manganese-based spinel oxides (i.e., Mn3O4, Zn0.4Li0.6Mn2O4, and LiMn2O4), a colorimetric sensor array was constructed. The sensor array could effectively identify and discriminate phenol and its derivatives and showed good performance in the identification and differentiation of phenols in tap water samples. This work provides an important guidance for the development of laccase-like nanozymes and a promising methodology for pollutant monitoring.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
30
|
Afanasenko A, Kavun A, Thomas D, Li CJ. A One-Pot Approach for Bio-Based Arylamines via a Combined Photooxidative Dearomatization-Rearomatization Strategy. Chemistry 2022; 28:e202200309. [PMID: 35393648 DOI: 10.1002/chem.202200309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Indexed: 01/22/2023]
Abstract
The synthesis of arylamines from renewable resources under mild reaction conditions is highly desired for the sustainability of the chemical industry, where the production of hazardous waste is a prime concern. However, to date, there are very few tools in chemists' toolboxes that are able to produce arylamines in a sustainable manner. Herein, a robust one-pot approach for constructing bio-based arylamines via a combined photooxidative dearomatization-rearomatization strategy is presented. The developed methodology enables the synthesis of structurally complex amines in moderate-to-good isolated yields using biomass-derived phenols, natural α-amino acids, and naphthols under remarkably mild reaction conditions. For the photooxygenation of phenols, a novel chrysazine-based catalyst system was introduced, demonstrating its efficiency for the synthesis of natural products - hallerone, rengyolone, and the pharmaceutically relevant prodrug DHED.
Collapse
Affiliation(s)
- Anastasiia Afanasenko
- Department of Chemistry and, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| | - Aleksei Kavun
- Department of Chemistry and, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| | - Dylan Thomas
- Department of Chemistry and, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry and, FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
31
|
Xu T, Zhou X, Han Y, Zhang L, Liu L, Huang T, Li C, Tang Z, Wan S, Chen T. Palladium-catalyzed stereo-selective three-component cis-1,2-arylalkynylation of bicyclic alkenes with aryltriflates and terminal alkynes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|