1
|
Ullrich S, Panda B, Somathilake U, Lawes DJ, Nitsche C. Non-symmetric cysteine stapling in native peptides and proteins. Chem Commun (Camb) 2025; 61:933-936. [PMID: 39676702 DOI: 10.1039/d4cc04995k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Stapling rigidifies peptides through covalent linkages between amino acids. We introduce 2-chloromethyl-6-cyanopyridine for non-symmetric stapling of N-terminal and internal cysteines. This biocompatible method produces diverse peptide macrocycles with enhanced affinity, stability and inhibitory potency. It is applicable to native peptides and proteins alike, demonstrating potential for peptide drug discovery platforms.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of Chemistry, College of Science, Australian National University, Canberra 2601 ACT, Australia.
| | - Bishvanwesha Panda
- Research School of Chemistry, College of Science, Australian National University, Canberra 2601 ACT, Australia.
| | - Upamali Somathilake
- Research School of Chemistry, College of Science, Australian National University, Canberra 2601 ACT, Australia.
| | - Douglas J Lawes
- Research School of Chemistry, College of Science, Australian National University, Canberra 2601 ACT, Australia.
| | - Christoph Nitsche
- Research School of Chemistry, College of Science, Australian National University, Canberra 2601 ACT, Australia.
| |
Collapse
|
2
|
Yan K, Miskolzie M, Mejia FB, Peng C, Ekanayake AI, Atrazhev A, Cao J, Maly DJ, Derda R. Late-Stage Reshaping of Phage-Displayed Libraries to Macrocyclic and Bicyclic Landscapes using a Multipurpose Linchpin. J Am Chem Soc 2025; 147:789-800. [PMID: 39702930 PMCID: PMC11972611 DOI: 10.1021/jacs.4c13561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Genetically encoded libraries (GEL) are increasingly being used for the discovery of ligands for "undruggable" targets that cannot be addressed with small molecules. Foundational GEL platforms like phage-, yeast-, ribosome-, and mRNA-display have enabled the display of libraries composed of 20 natural amino acids (20AA). Unnatural amino acids (UAA) and chemical post-translational modification (cPTM) expanded GEL beyond the 20AA space to yield unnatural linear, cyclic, and bicyclic peptides. The standard operating procedure incorporates UAA and cPTM into a "naive" library with 108-1012 compounds and uses a chemically upgraded library in multiple rounds of selection to discover target-binding hits. However, such an approach uses zero knowledge of natural peptide-receptor interactions that might have been discovered in selections performed with 20AA libraries. There is currently no consensus regarding whether "zero-knowledge" naive libraries or libraries with pre-existing knowledge can offer a more effective path to discovery of molecular interactions. In this manuscript, we evaluated the feasibility of discovery of macrocyclic and bicyclic peptides from "nonzero-knowledge" libraries. We approach this problem by late-stage chemical reshaping of a preselected phage-displayed landscape of 20AA binders to NS3aH1 protease. The reshaping is performed using a novel multifunctional C2-symmetric linchpin, 3,5-bis(bromomethyl)benzaldehyde (termed KYL), that combines two electrophiles that react with thiols and an aldehyde group that reacts with N-terminal amine. KYL diversified phage-displayed peptides into bicyclic architectures and delineated 2 distinct sequence populations: (i) peptides with the HXDMT motif that retained binding upon bicyclization and (ii) peptides without the HXDMT motif that lost binding once chemically modified. The same HXDMT family can be found in traditional selections starting from the naive KYL-modified library. Our report provides a case study for discovering advanced, chemically upgraded macrocycles and bicycles from libraries with pre-existing knowledge. The results imply that other selection campaigns completed in 20AA space, potentially, can serve for late-stage reshaping and as a starting point for the discovery of advanced peptide-derived ligands.
Collapse
Affiliation(s)
- Kejia Yan
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Mark Miskolzie
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Fernando Banales Mejia
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98195, USA
| | - Chuanhao Peng
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | | | - Alexey Atrazhev
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
- 48Hour Discovery, Nanotechnology Research Centre, Edmonton, AB T6G 2M9, Canada
| | - Jessica Cao
- 48Hour Discovery, Nanotechnology Research Centre, Edmonton, AB T6G 2M9, Canada
| | - Dustin J. Maly
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ratmir Derda
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| |
Collapse
|
3
|
Birkmose N, Frydendahl EU, Knudsen CR. Optimized Construction of a Yeast SICLOPPS Library for Unbiased In Vivo Selection of Cyclic Peptides. Biochemistry 2024; 63:3273-3286. [PMID: 39642937 PMCID: PMC11656719 DOI: 10.1021/acs.biochem.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 10/24/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024]
Abstract
DNA-encoded libraries hold great potential for discovering small, cyclized peptides with drug potential. Split-intein circular ligation of peptides and proteins (SICLOPPS) is a well-established method for in vivo selection of cyclic peptides targeting specific intracellular components. However, the method has mainly been used in prokaryotic cells. In contrast, selection studies performed directly in eukaryotic cells allow for the identification of cyclic peptides promoting a functional outcome, without the need to define a specific cellular target. Here, we report the construction of a Saccharomyces cerevisiae-specific SICLOPPS library of 80 million members, via careful optimization of several steps to increase the size of the library. Individual library members were shown to be correctly expressed and processed in yeast. High-throughput sequencing was conducted on the randomized primer used for library construction and the pure yeast SICLOPPS library isolated from Escherichia coli. A distinct guanine insertion bias was observed in the peptide-encoding, randomized sequence, which was primarily attributed to the degenerate primer used to introduce the randomized sequence. Moreover, high-throughput sequencing was performed on the library before and after the induction of cyclic peptide expression in yeast. Importantly, expression of the SICLOPPS library in S. cerevisiae caused only a marginal further sequence bias. Our work paves the way for selection studies using a large and diverse library to identify cyclic peptides of therapeutic interest that promote a specific phenotypic outcome in eukaryotic organisms, with yeast representing a beneficial model system due to its high transformation efficiency.
Collapse
Affiliation(s)
- Nanna Birkmose
- Department of Molecular Biology
and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C DK-8000, Denmark
| | - Emilie U. Frydendahl
- Department of Molecular Biology
and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C DK-8000, Denmark
| | - Charlotte R. Knudsen
- Department of Molecular Biology
and Genetics, Aarhus University, Universitetsbyen 81, Aarhus C DK-8000, Denmark
| |
Collapse
|
4
|
Gallent E, Alonso I, Carretero JC, Rodríguez N, Adrio J. Unnatural Cyclopeptide Synthesis via Cu-Catalyzed 1,3-Dipolar Cycloaddition of Azomethine Ylides. Org Lett 2024; 26:10394-10398. [PMID: 39560612 DOI: 10.1021/acs.orglett.4c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Cyclic peptides are valued synthetic targets in organic and medicinal chemistry. Herein, we report an efficient strategy for the synthesis of unnatural cyclic peptides via the Cu-catalyzed 1,3-dipolar cycloaddition of azomethylene ylides. Linear precursors of different lengths and bearing diverse amino acids (26 examples) are shown to be compatible with this method, affording good yields and complete endo-diastereoselectivities. Density functional theory (DFT) calculations support a stepwise mechanism in which Cu plays a key role in the preorganization of the reactants.
Collapse
Affiliation(s)
- Enrique Gallent
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
| | - Inés Alonso
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Juan C Carretero
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Nuria Rodríguez
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Javier Adrio
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad Autónoma de Madrid, Calle Francisco Tomás y Valiente 7, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem) and Center for Innovation in Advanced Chemistry (ORFEO-CINQA). Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
5
|
Iannuzzelli JA, Bonn R, Hong AS, Anitha AS, Jenkins JL, Wedekind JE, Fasan R. Cyclic peptides targeting the SARS-CoV-2 programmed ribosomal frameshifting RNA from a multiplexed phage display library. Chem Sci 2024; 15:19520-19533. [PMID: 39568906 PMCID: PMC11575553 DOI: 10.1039/d4sc04026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024] Open
Abstract
RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge. Here, we report a strategy for the discovery and selection of RNA-targeted macrocyclic peptides derived from combinatorial libraries of peptide macrocycles displayed by bacteriophages. Specifically, a platform for phage display of macrocyclic organo-peptide hybrids (MOrPH-PhD) was combined with a diverse set of non-canonical amino acid-based cyclization modules to produce large libraries of 107 structurally diverse, genetically encoded peptide macrocycles. These libraries were panned against the -1 programmed ribosomal frameshifting stimulatory sequence (FSS) RNA pseudoknot of SARS-CoV-2, which revealed specific macrocyclic peptide sequences that bind this essential motif with high affinity and selectivity. Peptide binding localizes to the FSS dimerization loop based on chemical modification analysis and binding assays and the cyclic peptides show specificity toward the target RNA over unrelated RNA pseudoknots. This work introduces a novel system for the generation and high-throughput screening of topologically diverse cyclopeptide scaffolds (multiplexed MOrPH-PhD), and it provides a blueprint for the exploration and evolution of genetically encoded macrocyclic peptides that target specific RNAs.
Collapse
Affiliation(s)
| | - Rachel Bonn
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Andrew S Hong
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | - Abhijith Saseendran Anitha
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
- Department of Chemistry & Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
- Department of Chemistry & Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
6
|
Colas K, Bindl D, Suga H. Selection of Nucleotide-Encoded Mass Libraries of Macrocyclic Peptides for Inaccessible Drug Targets. Chem Rev 2024; 124:12213-12241. [PMID: 39451037 PMCID: PMC11565579 DOI: 10.1021/acs.chemrev.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Technological advances and breakthrough developments in the pharmaceutical field are knocking at the door of the "undruggable" fortress with increasing insistence. Notably, the 21st century has seen the emergence of macrocyclic compounds, among which cyclic peptides are of particular interest. This new class of potential drug candidates occupies the vast chemical space between classic small-molecule drugs and larger protein-based therapeutics, such as antibodies. As research advances toward clinical targets that have long been considered inaccessible, macrocyclic peptides are well-suited to tackle these challenges in a post-rule of 5 pharmaceutical landscape. Facilitating their discovery is an arsenal of high-throughput screening methods that exploit massive randomized libraries of genetically encoded compounds. These techniques benefit from the incorporation of non-natural moieties, such as non- proteinogenic amino acids or stabilizing hydrocarbon staples. Exploiting these features for the strategic architectural design of macrocyclic peptides has the potential to tackle challenging targets such as protein-protein interactions, which have long resisted research efforts. This Review summarizes the basic principles and recent developments of the main high-throughput techniques for the discovery of macrocyclic peptides and focuses on their specific deployment for targeting undruggable space. A particular focus is placed on the development of new design guidelines and principles for the cyclization and structural stabilization of cyclic peptides and the resulting success stories achieved against well-known inaccessible drug targets.
Collapse
Affiliation(s)
- Kilian Colas
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daniel Bindl
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- University of Tokyo, Department of Chemistry, Graduate School of Science 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
7
|
Brown L, Vidal AV, Dias AL, Rodrigues T, Sigurdardottir A, Journeaux T, O'Brien S, Murray TV, Ravn P, Papworth M, Bernardes GJL. Proximity-driven site-specific cyclization of phage-displayed peptides. Nat Commun 2024; 15:7308. [PMID: 39181880 PMCID: PMC11344848 DOI: 10.1038/s41467-024-51610-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Cyclization provides a general strategy for improving the proteolytic stability, cell membrane permeability and target binding affinity of peptides. Insertion of a stable, non-reducible linker into a disulphide bond is a commonly used approach for cyclizing phage-displayed peptides. However, among the vast collection of cysteine reactive linkers available, few provide the selectivity required to target specific cysteine residues within the peptide in the phage display system, whilst sparing those on the phage capsid. Here, we report the development of a cyclopropenone-based proximity-driven chemical linker that can efficiently cyclize synthetic peptides and peptides fused to a phage-coat protein, and cyclize phage-displayed peptides in a site-specific manner, with no disruption to phage infectivity. Our cyclization strategy enables the construction of stable, highly diverse phage display libraries. These libraries can be used for the selection of high-affinity cyclic peptide binders, as exemplified through model selections on streptavidin and the therapeutic target αvβ3.
Collapse
Affiliation(s)
- Libby Brown
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Aldrin V Vidal
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Ana Laura Dias
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Tiago Rodrigues
- Instituto de Investigação do Medicamento (iMed), Faculdade de Farmácia, Universidade de Lisboa, Lisboa, Portugal
| | - Anna Sigurdardottir
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Toby Journeaux
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK
| | - Siobhan O'Brien
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Thomas V Murray
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Peter Ravn
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
- Department of Biotherapeutic Discovery, H. Lundbeck A/S, Valby, Denmark
| | - Monika Papworth
- Biologics Engineering, Oncology R&D, AstraZeneca, The Discovery Centre; Cambridge Biomedical Campus, Cambridge, UK
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, UK.
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
8
|
Xiang H, Bai L, Zhang X, Dan T, Cheng P, Yang X, Ai H, Li K, Lei X. A facile strategy for the construction of a phage display cyclic peptide library for the selection of functional macrocycles. Chem Sci 2024; 15:11847-11855. [PMID: 39092106 PMCID: PMC11290325 DOI: 10.1039/d4sc03207a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/16/2024] [Indexed: 08/04/2024] Open
Abstract
Cyclic peptides represent invaluable scaffolds in biological affinity, providing diverse collections for discovering functional molecules targeting challenging biological entities and protein-protein interactions. The field increasingly focuses on developing cyclization strategies and chemically modified combinatorial libraries in conjunction with M13 phage display, to identify macrocyclic peptide inhibitors for traditionally challenging targets. Here, we introduce a cyclization strategy utilizing ortho-phthalaldehyde (OPA) for the discovery of active macrocycles characterized by asymmetric scaffolds with side-chain cyclization. Through this approach, aldehyde groups attached to free molecules sequentially attack the ε-amine of lysine and the thiol of cysteine, facilitating the rapid cyclization of genetically encoded linear precursor libraries displayed on phage particles. The construction of a 109-member library and subsequent screening successfully identified cyclic peptide binders targeting three therapeutically relevant proteins: PTP1B, NEK7, and hKeap1. The results confirm the efficacy in rapidly obtaining active ligands with micromolar potency. This work provides a fast and efficient operable high-throughput platform for screening functional peptide macrocycles, which hold promise for broad application in therapeutics, chemically biological probes, and disease diagnosis.
Collapse
Affiliation(s)
- Hua Xiang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Liwen Bai
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xindan Zhang
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Ting Dan
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Peng Cheng
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xiaoqin Yang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| | - Honglian Ai
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
| | - Kai Li
- College of Life Sciences, South-Central Minzu University Wuhan 430074 China
| | - Xinxiang Lei
- School of Pharmaceutical Sciences, South-Central Minzu University Wuhan 430074 China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou Magnetic Resonance Center, College of Chemistry and Chemical Engineering, Lanzhou University Lanzhou 730000 China
| |
Collapse
|
9
|
Das BK, Chowdhury A, Chatterjee S, Tripathi NM, Pati B, Dutta S, Bandyopadhyay A. Harnessing a bis-electrophilic boronic acid lynchpin for azaborolo thiazolidine (ABT) grafting in cyclic peptides. Chem Sci 2024:d4sc04348k. [PMID: 39144456 PMCID: PMC11320178 DOI: 10.1039/d4sc04348k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Chemical modifications of native peptides have significantly advanced modern drug discovery in recent decades. On this front, the installation of multitasking molecular grafts onto macrocyclic peptides offers numerous opportunities in biomedical applications. Here, we showcase a new class of borono-cyclic peptides featuring an azaborolo thiazolidine (ABT) graft, which can be readily assembled utilizing a bis-electrophilic boronic acid lynchpin while harnessing the inherent reactivity difference (>103 M-1 s-1) between the N-terminal cysteine and backbone cysteine for rapid and highly regioselective macrocyclization (∼1 h) under physiological conditions. The ABT-crosslinked peptides are fairly stable in endogenous environments, but can provide the linear diazaborine peptides via treatment with α-nucleophiles. This efficient peptide crosslinking protocol was further extended for regioselective bicyclizations and engineering of α-helical structures. Finally, ABT-grafted peptides were exploited in biorthogonal conjugation, leading to highly effective intracellular delivery of an apoptotic peptide (KLA) in cancer cells. The mechanism of action by which ABT-grafted KLA peptide induces apoptosis was also explored.
Collapse
Affiliation(s)
- Basab Kanti Das
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Arnab Chowdhury
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Saurav Chatterjee
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Nitesh Mani Tripathi
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Bibekananda Pati
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Soumit Dutta
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| | - Anupam Bandyopadhyay
- Biomimetic Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Rupnagar Punjab 140001 India
| |
Collapse
|
10
|
Zhang YN, Wan XC, Tang Y, Chen Y, Zheng FH, Cui ZH, Zhang H, Zhou Z, Fang GM. Employing unnatural promiscuity of sortase to construct peptide macrocycle libraries for ligand discovery. Chem Sci 2024; 15:9649-9656. [PMID: 38939140 PMCID: PMC11206207 DOI: 10.1039/d4sc01992j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/11/2024] [Indexed: 06/29/2024] Open
Abstract
With the increasing attention paid to macrocyclic scaffolds in peptide drug development, genetically encoded peptide macrocycle libraries have become invaluable sources for the discovery of high-affinity peptide ligands targeting disease-associated proteins. The traditional phage display technique of constructing disulfide-tethered macrocycles by cysteine oxidation has the inherent drawback of reduction instability of the disulfide bond. Chemical macrocyclization solves the problem of disulfide bond instability, but the involved highly electrophilic reagents are usually toxic to phages and may bring undesirable side reactions. Here, we report a unique Sortase-mediated Peptide Ligation and One-pot Cyclization strategy (SPLOC) to generate peptide macrocycle libraries, avoiding the undesired reactions of electrophiles with phages. The key to this platform is to mine the unnatural promiscuity of sortase on the X residue of the pentapeptide recognition sequence (LPXTG). Low reactive electrophiles are incorporated into the X-residue side chain, enabling intramolecular cyclization with the cysteine residue of the phage-displayed peptide library. Utilizing the genetically encoded peptide macrocycle library constructed by the SPLOC platform, we found a high-affinity bicyclic peptide binding TEAD4 with a nanomolar KD value (63.9 nM). Importantly, the binding affinity of the bicyclic peptide ligand is 102-fold lower than that of the acyclic analogue. To our knowledge, this is the first time to mine the unnatural promiscuity of ligases to generate peptide macrocycles, providing a new avenue for the construction of genetically encoded cyclic peptide libraries.
Collapse
Affiliation(s)
- Yan-Ni Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Xiao-Cui Wan
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Yang Tang
- Department of Medical Ultrasound, Department of Stomatology, Shanghai Tenth People's Hospital, Tongji University Cancer Center, Tongji University School of Medicine Shanghai 200072 P. R. China
| | - Ying Chen
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Feng-Hao Zheng
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhi-Hui Cui
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Hua Zhang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University Shanghai 200438 P. R. China
| | - Ge-Min Fang
- School of Life Sciences, Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 P. R. China
| |
Collapse
|
11
|
Hampton JT, Liu WR. Diversification of Phage-Displayed Peptide Libraries with Noncanonical Amino Acid Mutagenesis and Chemical Modification. Chem Rev 2024; 124:6051-6077. [PMID: 38686960 PMCID: PMC11082904 DOI: 10.1021/acs.chemrev.4c00004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
Sitting on the interface between biologics and small molecules, peptides represent an emerging class of therapeutics. Numerous techniques have been developed in the past 30 years to take advantage of biological methods to generate and screen peptide libraries for the identification of therapeutic compounds, with phage display being one of the most accessible techniques. Although traditional phage display can generate billions of peptides simultaneously, it is limited to expression of canonical amino acids. Recently, several groups have successfully undergone efforts to apply genetic code expansion to introduce noncanonical amino acids (ncAAs) with novel reactivities and chemistries into phage-displayed peptide libraries. In addition to biological methods, several different chemical approaches have also been used to install noncanonical motifs into phage libraries. This review focuses on these recent advances that have taken advantage of both biological and chemical means for diversification of phage libraries with ncAAs.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
| | - Wenshe Ray Liu
- Texas
A&M Drug Discovery Center and Department of Chemistry, College
of Arts and Sciences, Texas A&M University, College Station, Texas 77843, United States
- Institute
of Biosciences and Technology and Department of Translational Medical
Sciences, College of Medicine, Texas A&M
University, Houston, Texas 77030, United States
- Department
of Biochemistry and Biophysics, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas 77843, United States
- Department
of Cell Biology and Genetics, College of Medicine, Texas A&M University, College
Station, Texas 77843, United States
- Department
of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
12
|
Chen FJ, Lin W, Chen FE. Non-symmetric stapling of native peptides. Nat Rev Chem 2024; 8:304-318. [PMID: 38575678 DOI: 10.1038/s41570-024-00591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
Stapling has emerged as a powerful technique in peptide chemistry. It enables precise control over peptide conformation leading to enhanced properties such as improved stability and enhanced binding affinity. Although symmetric stapling methods have been extensively explored, the field of non-symmetric stapling of native peptides has received less attention, largely as a result of the formidable challenges it poses - in particular the complexities involved in achieving the high chemo-selectivity and site-selectivity required to simultaneously modify distinct proteinogenic residues. Over the past 5 years, there have been significant breakthroughs in addressing these challenges. In this Review, we describe the latest strategies for non-symmetric stapling of native peptides, elucidating the protocols, reaction mechanisms and underlying design principles. We also discuss current challenges and opportunities this field offers for future applications, such as ligand discovery and peptide-based therapeutics.
Collapse
Affiliation(s)
- Fa-Jie Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
| | - Wanzhen Lin
- College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, P. R. China
| | - Fen-Er Chen
- College of Chemistry, Fuzhou University, Fuzhou, P. R. China.
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai, P. R. China.
- Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, Fudan University, Shanghai, P. R. China.
| |
Collapse
|
13
|
Villequey C, Zurmühl SS, Cramer CN, Bhusan B, Andersen B, Ren Q, Liu H, Qu X, Yang Y, Pan J, Chen Q, Münzel M. An efficient mRNA display protocol yields potent bicyclic peptide inhibitors for FGFR3c: outperforming linear and monocyclic formats in affinity and stability. Chem Sci 2024; 15:6122-6129. [PMID: 38665530 PMCID: PMC11040643 DOI: 10.1039/d3sc04763f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/15/2024] [Indexed: 04/28/2024] Open
Abstract
Macrocyclization has positioned itself as a powerful method for engineering potent peptide drug candidates. Introducing one or multiple cyclizations is a common strategy to improve properties such as affinity, bioavailability and proteolytic stability. Consequently, methodologies to create large libraries of polycyclic peptides by phage or mRNA display have emerged, allowing the rapid identification of binders to virtually any target. Yet, within those libraries, the performance of linear vs. mono- or bicyclic peptides has rarely been studied. Indeed, a key parameter to perform such a comparison is to use a display protocol and cyclization chemistry that enables the formation of all 3 formats in equal quality and diversity. Here, we developed a simple, efficient and fast mRNA display protocol which meets these criteria and can be used to generate highly diverse libraries of thioether cyclized polycyclic peptides. As a proof of concept, we selected peptides against fibroblast growth factor receptor 3c (FGFR3c) and compared the different formats regarding affinity, specificity, and human plasma stability. The peptides with the best KD's and stability were identified among bicyclic peptide hits, further strengthening the body of evidence pointing at the superiority of this class of molecules and providing functional and selective inhibitors of FGFR3c.
Collapse
Affiliation(s)
- Camille Villequey
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Silvana S Zurmühl
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Christian N Cramer
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Bhaskar Bhusan
- Department of Chemistry, Oxford University, Chemistry Research Laboratory 12 Mansfield Road Oxford UK
| | - Birgitte Andersen
- Global Drug Discovery, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| | - Qianshen Ren
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Haimo Liu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Xinping Qu
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Yang Yang
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Jia Pan
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Qiujia Chen
- Novo Nordisk Research Center China, Novo Nordisk A/S Shengmingyuan West Ring Rd, Changping District Beijing China
| | - Martin Münzel
- Global Research Technologies, Novo Nordisk A/S Novo Nordisk Park 2760 Måløv Denmark
| |
Collapse
|
14
|
Wan XC, Zhang YN, Zhang H, Chen Y, Cui ZH, Zhu WJ, Fang GM. Asparaginyl Endopeptidase-Mediated Peptide Cyclization for Phage Display. Org Lett 2024; 26:2601-2605. [PMID: 38529932 DOI: 10.1021/acs.orglett.4c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
We report here an enzymatic strategy for asparaginyl endopeptidase-mediated peptide cyclization. Incorporation of chloroacetyl groups into the recognition sequence of OaAEP1 enabled intramolecular cyclization with Cys residues. Combining this strategy and phage display, we identified nanomolar macrocyclic peptide ligands targeting TEAD4. One of the bicyclic peptides binds to TEAD4 with a KD value of 139 nM, 16 times lower than its linear analogue, demonstrating the utility of this platform in discovering high-affinity macrocyclic peptide ligands.
Collapse
Affiliation(s)
- Xiao-Cui Wan
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Yan-Ni Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Hua Zhang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ying Chen
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Zhi-Hui Cui
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Wen-Jing Zhu
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| | - Ge-Min Fang
- School of Life Science, Institutes of Physical Science and Information Technology, Institute of Health Sciences, Anhui University, Hefei 230601, P.R. China
| |
Collapse
|
15
|
Dengler S, Howard RT, Morozov V, Tsiamantas C, Huang WE, Liu Z, Dobrzanski C, Pophristic V, Brameyer S, Douat C, Suga H, Huc I. Display Selection of a Hybrid Foldamer-Peptide Macrocycle. Angew Chem Int Ed Engl 2023; 62:e202308408. [PMID: 37707879 DOI: 10.1002/anie.202308408] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
Expanding the chemical diversity of peptide macrocycle libraries for display selection is desirable to improve their potential to bind biomolecular targets. We now have implemented a considerable expansion through a large aromatic helical foldamer inclusion. A foldamer was first identified that undergoes flexizyme-mediated tRNA acylation and that is capable of initiating ribosomal translation with yields sufficiently high to perform an mRNA display selection of macrocyclic foldamer-peptide hybrids. A hybrid macrocyclic nanomolar binder to the C-lobe of the E6AP HECT domain was selected that showed a highly converged peptide sequence. A crystal structure and molecular dynamics simulations revealed that both the peptide and foldamer are helical in an intriguing reciprocal stapling fashion. The strong residue convergence could be rationalized based on their involvement in specific interactions with the target protein. The foldamer stabilizes the peptide helix through stapling and through contacts with key residues. These results altogether represent a significant extension of the chemical space amenable to display selection and highlight possible benefits of inserting an aromatic foldamer into a peptide macrocycle for the purpose of protein recognition.
Collapse
Affiliation(s)
- Sebastian Dengler
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Ryan T Howard
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Vasily Morozov
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Christos Tsiamantas
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Wei-En Huang
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Zhiwei Liu
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Christopher Dobrzanski
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Vojislava Pophristic
- Department of Chemistry & Biochemistry, Rowan University, 201 Mullica Hill Road, 08028, Glassboro, New Jersey, USA
| | - Sophie Brameyer
- Biozentrum, Microbiology, Ludwig-Maximilians-Universität, Großhaderner Str. 2-4, 82152, Martinsried, Germany
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| | - Hiroaki Suga
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, 113-0033, Tokyo, Japan
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein Science, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, München, Germany
| |
Collapse
|
16
|
Reja RM, Chau B, Gao J. Diazaborine-Mediated Bicyclization of Native Peptides with Inducible Reversibility. Org Lett 2023; 25:4489-4492. [PMID: 37306633 PMCID: PMC10330595 DOI: 10.1021/acs.orglett.3c01496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Multicyclic peptides are appealing candidates for peptide-based drug discovery. While various methods are developed for peptide cyclization, few allow multicyclization of native peptides. Herein we report a novel cross-linker DCA-RMR1, which elicits facile bicyclization of native peptides via N-terminus Cys-Cys cross-linking. The bicyclization is fast, affords quantitative conversion, and tolerates various side chain functionalities. Importantly, the resulting diazaborine linkage, while stable at a neutral pH, can readily reverse upon mild acidification to give pH-responsive peptides.
Collapse
Affiliation(s)
- Rahi M. Reja
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| | - Brittney Chau
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| | - Jianmin Gao
- Department of Chemistry, Boston College, 2609 Beacon Street, Chestnut Hill, MA 02467; United Sates
| |
Collapse
|
17
|
Fleming MC, Bowler MM, Park R, Popov KI, Bowers AA. Tyrosinase-Catalyzed Peptide Macrocyclization for mRNA Display. J Am Chem Soc 2023; 145:10445-10450. [PMID: 37155687 PMCID: PMC11091840 DOI: 10.1021/jacs.2c12629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
mRNA display of macrocyclic peptides has proven itself to be a powerful technique to discover high-affinity ligands for a protein target. However, only a limited number of cyclization chemistries are known to be compatible with mRNA display. Tyrosinase is a copper-dependent oxidase that oxidizes tyrosine phenol to an electrophilic o-quinone, which is readily attacked by cysteine thiol. Here we show that peptides containing tyrosine and cysteine are rapidly cyclized upon tyrosinase treatment. Characterization of the cyclization reveals it to be widely applicable to multiple macrocycle sizes and scaffolds. We combine tyrosinase-mediated cyclization with mRNA display to discover new macrocyclic ligands targeting melanoma-associated antigen A4 (MAGE-A4). These macrocycles potently inhibit the MAGE-A4 binding axis with nanomolar IC50 values. Importantly, macrocyclic ligands show clear advantage over noncyclized analogues with ∼40-fold or greater decrease in IC50 values.
Collapse
Affiliation(s)
- Matthew C. Fleming
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Matthew M. Bowler
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Rodney Park
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Konstantin I. Popov
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Albert A. Bowers
- Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, 301 Pharmacy Lane, Chapel Hill, North Carolina 27599, USA
- Center for Integrative Chemical Biology and Drug Discovery, Chemical Biology and Medicinal Chemistry, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
18
|
Peptide Designs for Use in Caries Management: A Systematic Review. Int J Mol Sci 2023; 24:ijms24044247. [PMID: 36835657 PMCID: PMC9961499 DOI: 10.3390/ijms24044247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 02/23/2023] Open
Abstract
The objective of this study was to review the design methods that have been used to create peptides for use in caries management. Two independent researchers systematically reviewed many in vitro studies in which peptides were designed for use in caries management. They assessed the risk of bias in the included studies. This review identified 3592 publications, of which 62 were selected. Forty-seven studies reported 57 antimicrobial peptides. Among them, 31 studies (66%, 31/47) used the template-based design method; 9 studies (19%, 9/47) used the conjugation method; and 7 studies (15%, 7/47) used other methods, such as the synthetic combinatorial technology method, the de novo design method and cyclisation. Ten studies reported mineralising peptides. Seven of these (70%, 7/10) used the template-based design method, two (20%, 2/10) used the de novo design method, and one study (10%, 1/10) used the conjugation method. In addition, five studies developed their own peptides with antimicrobial and mineralising properties. These studies used the conjugation method. Our assessment for the risk of bias in the 62 reviewed studies showed that 44 publications (71%, 44/62) had a medium risk and that 3 publications had a low risk (5%, 3/62). The two most common methods for developing peptides for use in caries management that were used in these studies were the template-based design method and the conjugation method.
Collapse
|
19
|
Dockerill M, Winssinger N. DNA-Encoded Libraries: Towards Harnessing their Full Power with Darwinian Evolution. Angew Chem Int Ed Engl 2023; 62:e202215542. [PMID: 36458812 DOI: 10.1002/anie.202215542] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022]
Abstract
DNA-encoded library (DEL) technologies are transforming the drug discovery process, enabling the identification of ligands at unprecedented speed and scale. DEL makes use of libraries that are orders of magnitude larger than traditional high-throughput screens. While a DNA tag alludes to a genotype-phenotype connection that is exploitable for molecular evolution, most of the work in the field is performed with libraries where the tag serves as an amplifiable barcode but does not allow "translation" into the synthetic product it is linked to. In this Review, we cover technologies that enable the "translation" of the genetic tag into synthetic molecules, both biochemically and chemically, and explore how it can be used to harness Darwinian evolutionary pressure.
Collapse
Affiliation(s)
- Millicent Dockerill
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| | - Nicolas Winssinger
- Department of Organic Chemistry, NCCR Chemical Biology, Faculty of Sciences, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
20
|
Li K, Tokareva OS, Thomson TM, Wahl SCT, Travaline TL, Ramirez JD, Choudary SK, Agarwal S, Walkup WG, Olsen TJ, Brennan MJ, Verdine GL, McGee JH. De novo mapping of α-helix recognition sites on protein surfaces using unbiased libraries. Proc Natl Acad Sci U S A 2022; 119:e2210435119. [PMID: 36534810 PMCID: PMC9907135 DOI: 10.1073/pnas.2210435119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 10/21/2022] [Indexed: 12/24/2022] Open
Abstract
The α-helix is one of the most common protein surface recognition motifs found in nature, and its unique amide-cloaking properties also enable α-helical polypeptide motifs to exist in membranes. Together, these properties have inspired the development of α-helically constrained (Helicon) therapeutics that can enter cells and bind targets that have been considered "undruggable", such as protein-protein interactions. To date, no general method for discovering α-helical binders to proteins has been reported, limiting Helicon drug discovery to only those proteins with previously characterized α-helix recognition sites, and restricting the starting chemical matter to those known α-helical binders. Here, we report a general and rapid screening method to empirically map the α-helix binding sites on a broad range of target proteins in parallel using large, unbiased Helicon phage display libraries and next-generation sequencing. We apply this method to screen six structurally diverse protein domains, only one of which had been previously reported to bind isolated α-helical peptides, discovering 20 families that collectively comprise several hundred individual Helicons. Analysis of 14 X-ray cocrystal structures reveals at least nine distinct α-helix recognition sites across these six proteins, and biochemical and biophysical studies show that these Helicons can block protein-protein interactions, inhibit enzymatic activity, induce conformational rearrangements, and cause protein dimerization. We anticipate that this method will prove broadly useful for the study of protein recognition and for the development of both biochemical tools and therapeutics for traditionally challenging protein targets.
Collapse
Affiliation(s)
- Kunhua Li
- FOG Pharmaceuticals Inc., Cambridge, MA02140
| | | | | | | | | | | | | | | | | | | | | | - Gregory L. Verdine
- FOG Pharmaceuticals Inc., Cambridge, MA02140
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA02138
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA02138
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA02138
| | | |
Collapse
|
21
|
Abstract
Cysteine bioconjugation serves as a powerful tool in biological research and has been widely used for chemical modification of proteins, constructing antibody-drug conjugates, and enabling cell imaging studies. Cysteine conjugation reactions with fast kinetics and exquisite selectivity have been under heavy pursuit as they would allow clean protein modification with just stoichiometric amounts of reagents, which minimizes side reactions, simplifies purification and broadens functional group tolerance. In this concept, we summarize the recent advances in fast cysteine bioconjugation, and discuss the mechanism and chemical principles that underlie the high efficiencies of the newly developed cysteine reactive reagents.
Collapse
Affiliation(s)
- Fa-Jie Chen
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| | - Jianmin Gao
- Department of Chemistry, Boston College, Merkert Chemistry Center, 2609 Beacon Street, Chestnut Hill, MA 02467, USA
| |
Collapse
|
22
|
Dengler S, Douat C, Huc I. Differential Peptide Multi-Macrocyclizations at the Surface of a Helical Foldamer Template. Angew Chem Int Ed Engl 2022; 61:e202211138. [PMID: 35994239 PMCID: PMC9828397 DOI: 10.1002/anie.202211138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 01/12/2023]
Abstract
Hybrid sequences comprising a peptide with several Cys residues and an aromatic foldamer helix with several chloroacetamide functions at its surface were synthesized. Such products may in principle form numerous macromulticyclic thioether products by intramolecularly combining all Cys residues and all chloroacetamide functions. However, we show that the reactive sites on the structurally defined helix can be placed at such locations that the peptide selectively stitches itself to form a series of different macrocycles within mostly one preferred product. Reactions were monitored by HPLC and products with two, three or four macrocycles were identified using LC-MS and NMR. The series of selective macrocyclizations define a sort of reaction trail where reaction sites otherwise identical are involved successively because of their precise positioning in space. The trails can be predicted to a large extent based on structural considerations and the assumption that smaller macrocycles form faster.
Collapse
Affiliation(s)
- Sebastian Dengler
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Céline Douat
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| | - Ivan Huc
- Department of Pharmacy and Center for Integrated Protein ScienceLudwig-Maximilians-UniversitätButenandtstr. 5–1381377MünchenGermany
| |
Collapse
|
23
|
Wei T, Li D, Zhang Y, Tang Y, Zhou H, Liu H, Li X. Thiophene-2,3-Dialdehyde Enables Chemoselective Cyclization on Unprotected Peptides, Proteins, and Phage Displayed Peptides. SMALL METHODS 2022; 6:e2201164. [PMID: 36156489 DOI: 10.1002/smtd.202201164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/12/1912] [Indexed: 06/16/2023]
Abstract
Ortho-phthalaldehyde has recently found wide potentials for protein bioconjugation and peptide cyclization. Herein, the second-generation dialdehyde-based peptide cyclization method is reported. The thiophene-2,3-dialdehyde (TDA) reacts specifically with the primary amine (from Lys side chain or peptide N-terminus) and thiol (from Cys side chain) within unprotected peptides to generate a highly stable thieno[2,3-c]pyrrole-bridged cyclic structure, while it does not react with primary amine alone. This reaction is carried out in the aqueous buffer and features tolerance of diverse functionalities, rapid and clean transformation, and operational simplicity. The features allow TDA to be used for protein stapling and phage displayed peptide cyclization.
Collapse
Affiliation(s)
- Tongyao Wei
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Dongfang Li
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yue Zhang
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Yubo Tang
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Haiyan Zhou
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515063, P. R. China
| | - Han Liu
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| | - Xuechen Li
- Department of Chemistry, State Key Laboratory of Synthetic Organic Chemistry, The University of Hong Kong, Hong Kong, SAR, P. R. China
| |
Collapse
|
24
|
Hampton JT, Lalonde TJ, Tharp JM, Kurra Y, Alugubelli YR, Roundy CM, Hamer GL, Xu S, Liu WR. Novel Regioselective Approach to Cyclize Phage-Displayed Peptides in Combination with Epitope-Directed Selection to Identify a Potent Neutralizing Macrocyclic Peptide for SARS-CoV-2. ACS Chem Biol 2022; 17:2911-2922. [PMID: 36174018 PMCID: PMC9528030 DOI: 10.1021/acschembio.2c00565] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 01/20/2023]
Abstract
Using the regioselective cyanobenzothiazole condensation reaction with an N-terminal cysteine and the chloroacetamide reaction with an internal cysteine, a phage-displayed macrocyclic 12-mer peptide library was constructed and subsequently validated. Using this library in combination with iterative selections against two epitopes from the receptor binding domain (RBD) of the novel severe acute respiratory syndrome virus 2 (SARS-CoV-2) Spike protein, macrocyclic peptides that strongly inhibit the interaction between the Spike RBD and angiotensin-converting enzyme 2 (ACE2), the human host receptor of SARS-CoV-2, were identified. The two epitopes were used instead of the Spike RBD to avoid selection of nonproductive macrocyclic peptides that bind RBD but do not directly inhibit its interactions with ACE2. Antiviral tests against SARS-CoV-2 showed that one macrocyclic peptide is highly potent against viral reproduction in Vero E6 cells with an EC50 value of 3.1 μM. The AlphaLISA-detected IC50 value for this macrocyclic peptide was 0.3 μM. The current study demonstrates that two kinetically controlled reactions toward N-terminal and internal cysteines, respectively, are highly effective in the construction of phage-displayed macrocyclic peptides, and the selection based on the SARS-CoV-2 Spike epitopes is a promising methodology in the identification of peptidyl antivirals.
Collapse
Affiliation(s)
- J. Trae Hampton
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Tyler J. Lalonde
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Jeffery M. Tharp
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yadagiri Kurra
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Yugendar R. Alugubelli
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | | | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, TX 77843, USA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of Chemistry, Texas A&M University, College Station, TX 77843, USA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of Medicine, Texas A&M University, Houston, TX 77030, USA
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
25
|
Dengler S, Douat C, Huc I. Differential Peptide Multi‐Macrocyclizations at the Surface of a Helical Foldamer Template. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Céline Douat
- LMU München: Ludwig-Maximilians-Universitat Munchen Pharmacy GERMANY
| | - Ivan Huc
- Ludwig-Maximilians-Universitat Munchen Pharmacy Butenandtstraße 5 - 13 81377 Munich GERMANY
| |
Collapse
|
26
|
Zheng M, Haeffner F, Gao J. N-Terminal cysteine mediated backbone-side chain cyclization for chemically enhanced phage display. Chem Sci 2022; 13:8349-8354. [PMID: 35919713 PMCID: PMC9297441 DOI: 10.1039/d2sc03241d] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Phage display, an ingenious invention for evaluating peptide libraries, has been limited to natural peptides that are ribosomally assembled with proteinogenic amino acids. Recently, there has been growing interest in chemically modifying phage libraries to create nonnatural cyclic and multicyclic peptides, which are appealing for use as inhibitors of protein-protein interactions. While earlier reports largely focused on side-chain side-chain cyclization, we report herein a novel strategy for creating backbone-side chain cyclized peptide libraries on phage. Our strategy capitalizes on the unique reactivity of an N-terminal cysteine (NCys) with 2-cyanobenzothiazole (CBT) which, in conjugation with another thiol-reactive group, can elicit rapid cyclization between an NCys and an internal cysteine. The resulting library was screened against two model proteins, namely Keap1 and Sortase A. The screening readily revealed potent inhibitors for both proteins with certain Keap1 ligands reaching low nanomolar potency. The backbone-side chain cyclization strategy described herein presents a significant addition to the toolkit of creating nonnatural macrocyclic peptide libraries for phage display.
Collapse
Affiliation(s)
- Mengmeng Zheng
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| | - Fredrik Haeffner
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| | - Jianmin Gao
- Department of Chemistry, Merkert Chemistry Center, Boston College Chestnut Hill MA 02467 USA
| |
Collapse
|
27
|
Masui H, Fuse S. Recent Advances in the Solid- and Solution-Phase Synthesis of Peptides and Proteins Using Microflow Technology. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Hisashi Masui
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shinichiro Fuse
- Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
28
|
Atkinson BC, Thomson AR. Structured cyclic peptide mimics by chemical ligation. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|