1
|
Hawthorne N, Broker EJ, Bao Y, Banerjee S, Moore Q, Cardinal C, Ha J, Braga UD, Rappe AM, Batteas JD. Studies of the mechanically induced reactivity of graphene with water using a 2D-materials strain reactor. MATERIALS HORIZONS 2025; 12:1179-1188. [PMID: 39588715 DOI: 10.1039/d4mh01360c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Using mechanical force to induce chemical reactions with two-dimensional (2D) materials provides an approach for both understanding mechanochemical processes on the molecular level, and a potential method for using mechanical strain as a means of directing the functionalization of 2D materials. To investigate this, we have designed a modular experimental platform which allows for in situ monitoring of reactions on strained graphene via Raman spectroscopy as a function of time. Both the strain present in graphene and the corresponding chemical changes it undergoes in the presence of a reagent can be followed concomitantly. As a case study, we have experimentally monitored and theoretically modeled the reactivity of a suspended single-layer graphene membrane under strain with water, where the graphene is strained via an applied backing pressure. While exposure of the unstrained membrane to water does not drive a chemical reaction, distortion of the membrane causes a rise in the ID/IG peak ratio, indicating an initial lattice conversion from crystalline to nanocrystalline due to reaction with water. With continued reaction, a decrease in the ID/IG peak ratio is then seen, indicative of a nanocrystalline to amorphous lattice transition. Using density functional theory (DFT) calculations, the reaction of water on graphene has been determined to be nucleated by epoxide defects, with the reaction barrier decreasing by nearly 5× for the strained vs. unstrained graphene. While demonstrated here for graphene, this approach also provides the opportunity to examine a host of force-driven chemical reactions with 2D materials.
Collapse
Affiliation(s)
- Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Edward J Broker
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Yutian Bao
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sayan Banerjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Quentarius Moore
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Camille Cardinal
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39401, USA
| | - Jimmy Ha
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | - Ulisses D Braga
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
- Department of Chemistry, University of Texas at Austin, Austin, TX 87812, USA
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Tu J, Yan M. Enhancing the Chemical Reactivity of Graphene through Substrate Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2408116. [PMID: 39703017 DOI: 10.1002/smll.202408116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/15/2024] [Indexed: 12/21/2024]
Abstract
Covalent functionalization of pristine graphene can modify its properties, enabling applications in optoelectronics, biomedical fields, environmental science, and energy. However, the chemical reactivity of pristine graphene is relatively low, and as such, methods have been developed to increase the reactivity of graphene. This review focuses on substrate engineering as an effective strategy to enhance the reactivity of graphene through strain and charge doping. Nanoparticles, metals with different crystal orientations, and stretchable polymers are employed to introduce strains in graphene, leading to enhanced chemical reactivity and increased degree of functionalization. Charge doping through orbital hybridization with metals and charge puddles induced by oxide substrates generally enhance the reactivity of graphene, while alkyl-modified surfaces and 2D materials often reduce graphene reactivity via charge screening and van der Waals interactions that increase the stability of the graphene layer, respectively. This review summarizes methods for creating and characterizing strains and charge doping in graphene and discusses their effects on the chemical functionalization of graphene in various reactions.
Collapse
Affiliation(s)
- Jia Tu
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
3
|
Khan AA, Rabi SN, Jamee T, Galib M, Elahi F, Rahman MA. Effects of Crumpling Stage and Porosity of Graphene Electrode on the Performance of Electrochemical Supercapacitor. J Phys Chem B 2024; 128:9586-9597. [PMID: 39313986 PMCID: PMC11457138 DOI: 10.1021/acs.jpcb.4c04097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024]
Abstract
The performance characteristics of supercapacitors composed of crumpled graphene electrodes and aqueous NaCl electrolytes are investigated through Molecular Dynamics (MD) simulations using a newly developed crumpled graphene-based supercapacitor model. Results suggest that the three-dimensional configuration of crumpled graphene boosts electrolyte-electrode interaction. This improved interaction, which includes a larger ion-accessible zone, increases the specific capacitance of the supercapacitor by roughly 400% (16.4 μF/cm2) compared to planar graphene electrodes. Examining the effect of different stages of crumpling and the inclusion of pores on the electrode surface shows that the stages of crumpling substantially influence the supercapacitor performance. A smaller crumpling radius, meaning fully crumpled stage, improves the performance as increased crumpling leads to better packing efficiency, which aids in more ion separation. Furthermore, adding pores on the surface of crumpled graphene improves the ion accessibility by creating additional adsorption sites. An exceptional capacitance of 19.8 μF/cm2 is obtained for a porosity of 20%. However, the results suggest that the in-plane-porosity of the electrode needs to be optimized as there is a decline in specific capacitance after that point (20% porosity), indicating a suboptimal relationship between the charge distribution, specific surface area (SSA) and the porosity of the electrode.
Collapse
Affiliation(s)
- Abrar Amin Khan
- Department
of Mechanical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Sazid Noor Rabi
- Department
of Mechanical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Tousif Jamee
- Department
of Mechanical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| | - Musanna Galib
- Department
of Mechanical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
- Department
of Mechanical Engineering, The University
of British Columbia, Vancouver V6T 1Z4, Canada
| | - Fazle Elahi
- Center
for Advanced Microscopy and Microanalysis, University of Delaware, Newark, Delaware 19711, United States
| | - Md. Ashiqur Rahman
- Department
of Mechanical Engineering, Bangladesh University
of Engineering and Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
4
|
Basiuk VA, Wu Y, Prezhdo OV, Basiuk EV. Lanthanide Atoms Induce Strong Graphene Sheet Distortion When Adsorbed on Stone-Wales Defects. J Phys Chem Lett 2024; 15:9706-9713. [PMID: 39284127 PMCID: PMC11440593 DOI: 10.1021/acs.jpclett.4c02356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
Local curvature in graphene can enhance its reactivity and catalytic activity and can be induced by the adsorption of certain chemical species. By employing periodic density functional theory (DFT) calculations, we demonstrate that significant local curvature can be systematically observed when lanthanide atoms (the full series from La to Lu) are adsorbed on the Stone-Wales (SW) defect in graphene, contrary to that in defect-free graphene. Despite the typical high coordination numbers of lanthanide species, their hapticity is always η2 (and not η5, η6, or η7), where Ln atoms are adsorbed on the (7,7) junction, forming relatively short Ln···C separations. Contrary to the pristine graphene, the SW region undergoes considerable distortion and results in much stronger Ln bonding. The positive charge acquired by Ln atoms upon adsorption on SW is approximately 1.5 times larger than that on defect-free graphene. The high visibility of electron-rich lanthanide species in scanning tunneling microscopy images provides a means to locate SW defects in graphene samples experimentally.
Collapse
Affiliation(s)
- Vladimir A. Basiuk
- Instituto
de Ciencias Nucleares, Universidad Nacional
Autónoma de México, Circuito Exterior C.U., 04510 Cd. México, Mexico
| | - Yifan Wu
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| | - Elena V. Basiuk
- Instituto
de Ciencias Aplicadas y Technología, Universidad Nacional Autónoma de México, Circuito Exterior C.U., 04510 Cd. México, Mexico
| |
Collapse
|
5
|
Karton A, Foller T, Joshi R. Catalyzing epoxy oxygen migration on the basal surface of graphene oxide using strong hydrogen-bond donors. Chem Commun (Camb) 2024; 60:7049-7052. [PMID: 38895846 DOI: 10.1039/d4cc01911c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
High-level double-hybrid DFT simulations reveal that strong hydrogen-bond-donor catalysts (e.g., ethylene glycol, guanidine, and thiourea) significantly accelerate the migration of epoxy oxygen on the surface of graphene oxide, enhancing the reaction rate by 6-12 orders of magnitude. These results shed light on previously puzzling experimental observations.
Collapse
Affiliation(s)
- Amir Karton
- School of Science and Technology, University of New England, Armidale, NSW 2351, Australia.
| | - Tobias Foller
- School of Materials Science and Engineering, University of New South Wales Sydney, NSW, 2052, Australia
| | - Rakesh Joshi
- School of Materials Science and Engineering, University of New South Wales Sydney, NSW, 2052, Australia
| |
Collapse
|
6
|
Sun J, Jiang Y, Du S, Chen L, Francisco JS, Cui S, Huang Q, Qian L. Charge Redistribution in Mechanochemical Reactions for Solid Interfaces. NANO LETTERS 2024; 24:6858-6864. [PMID: 38808664 DOI: 10.1021/acs.nanolett.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Mechanochemical strategies are widely used in various fields, ranging from friction and wear to mechanosynthesis, yet how the mechanical stress activates the chemical reactions at the electronic level is still open. We used first-principles density functional theory to study the rule of the stress-modified electronic states in transmitting mechanical energy to trigger chemical responses for different mechanochemical systems. The electron density redistribution among initial, transition, and final configurations is defined to correlate the energy evolution during reactions. We found that stress-induced changes in electron density redistribution are linearly related to activation energy and reaction energy, indicating the transition from mechanical work to chemical reactivity. The correlation coefficient is defined as the term "interface reactivity coefficient" to evaluate the susceptibility of chemical reactivity to mechanical action for material interfaces. The study may shed light on the electronic mechanism of the mechanochemical reactions behind the fundamental model as well as the mechanochemical phenomena.
Collapse
Affiliation(s)
- Junhui Sun
- School of Mechanical Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yilong Jiang
- School of Mechanical Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Shiyu Du
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
- School of Computer Science, China University of Petroleum (East China) Qingdao 266580, People's Republic of China
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, Zhejiang 311121, People's Republic of China
| | - Lei Chen
- School of Mechanical Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Shuxun Cui
- School of Mechanical Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| | - Qing Huang
- Engineering Laboratory of Advanced Energy Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Linmao Qian
- School of Mechanical Engineering, State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, People's Republic of China
| |
Collapse
|
7
|
Banerjee S, Hawthorne N, Batteas JD, Rappe AM. Two-Legged Molecular Walker and Curvature: Mechanochemical Ring Migration on Graphene. J Am Chem Soc 2023. [PMID: 38049385 DOI: 10.1021/jacs.3c08850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
Attaining controllable molecular motion at the nanoscale can be beneficial for multiple reasons, spanning from optoelectronics to catalysis. Here we study the movement of a two-legged molecular walker by modeling the migration of a phenyl aziridine ring on curved graphene. We find that directional ring migration can be attained on graphene in the cases of both 1D (wrinkled/rippled) and 2D (bubble-shaped) curvature. Using a descriptor approach based on graphene's frontier orbital orientation, we can understand the changes in binding energy of the ring as it translates across different sites with variable curvature and the kinetic barriers associated with ring migration. Additionally, we show that the extent of covalent bonding between graphene and the molecule at different sites directly controls the binding energy gradient, propelling molecular migration. Importantly, one can envision such walkers as carriers of charge and disruptors of local bonding. This study enables a new way to tune the electronic structure of two-dimensional materials for a range of applications.
Collapse
Affiliation(s)
- Sayan Banerjee
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| | - Nathaniel Hawthorne
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
| | - James D Batteas
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-3255, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3127, United States
| | - Andrew M Rappe
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
8
|
Jiang L, Peng Z, Liang Y, Tang ZB, Liang K, Liu J, Liu Z. Strain-Driven Formal [1,3]-Aryl Shift within Molecular Bows. Angew Chem Int Ed Engl 2023; 62:e202312238. [PMID: 37656430 DOI: 10.1002/anie.202312238] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Delving into the influence of strain on organic reactions in small molecules at the molecular level can unveil valuable insight into developing innovative synthetic strategies and structuring molecules with superior properties. Herein, we present a molecular-strain engineering approach to facilitate the consecutive [1,2]-aryl shift (formal [1,3]-aryl shift) in molecular bows (MBs) that integrate 1,4-dimethoxy-2,5-cyclohexadiene moieties. By introducing ring strain into MBs through tethering the bow limb, we can harness the intrinsic mechanical forces to drive multistep aryl shifts from the para- to the meta- to the ortho-position. Through the use of precise intramolecular strain, the seemingly impractical [1,3]-aryl shift was realized, resulting in the formation of ortho-disubstituted products. The solvent and temperature play a crucial role in the occurrence of the [1,3]-aryl shift. The free energy calculations with inclusion of solvation support a feasible mechanism, which entails multistep carbocation rearrangements, for the formal [1,3]-aryl shift. By exploring the application of molecular strain in synthetic chemistry, this research offers a promising direction for developing new tools and strategies towards precision organic synthesis.
Collapse
Affiliation(s)
- Liang Jiang
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Zhen Peng
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Yimin Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Zheng-Bin Tang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Kejiang Liang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Jiali Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| | - Zhichang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Westlake Institute for Advanced Study, 600 Dunyu Road, Hangzhou, Zhejiang 310030, China
| |
Collapse
|
9
|
Liang J, Ma K, Zhao X, Lu G, Riffle J, Andrei CM, Dong C, Furkan T, Rajabpour S, Prabhakar RR, Robinson JA, Magdaleno V, Trinh QT, Ager JW, Salmeron M, Aloni S, Caldwell JD, Hollen S, Bechtel HA, Bassim ND, Sherburne MP, Al Balushi ZY. Elucidating the Mechanism of Large Phosphate Molecule Intercalation Through Graphene-Substrate Heterointerfaces. ACS APPLIED MATERIALS & INTERFACES 2023; 15:47649-47660. [PMID: 37782678 PMCID: PMC10571006 DOI: 10.1021/acsami.3c07763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Intercalation is the process of inserting chemical species into the heterointerfaces of two-dimensional (2D) layered materials. While much research has focused on the intercalation of metals and small gas molecules into graphene, the intercalation of larger molecules through the basal plane of graphene remains challenging. In this work, we present a new mechanism for intercalating large molecules through monolayer graphene to form confined oxide materials at the graphene-substrate heterointerface. We investigate the intercalation of phosphorus pentoxide (P2O5) molecules directly from the vapor phase and confirm the formation of confined P2O5 at the graphene-substrate heterointerface using various techniques. Density functional theory (DFT) corroborates the experimental results and reveals the intercalation mechanism, whereby P2O5 dissociates into small fragments catalyzed by defects in the graphene that then permeates through lattice defects and reacts at the heterointerface to form P2O5. This process can also be used to form new confined metal phosphates (e.g., 2D InPO4). While the focus of this study is on P2O5 intercalation, the possibility of intercalation from predissociated molecules catalyzed by defects in graphene may exist for other types of molecules as well. This in-depth study advances our understanding of intercalation routes of large molecules via the basal plane of graphene as well as heterointerface chemical reactions leading to the formation of distinctive confined complex oxide compounds.
Collapse
Affiliation(s)
- Jiayun Liang
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Ke Ma
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Xiao Zhao
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Guanyu Lu
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Jake Riffle
- Department
of Physics and Astronomy, University of
New Hampshire, Durham, New Hampshire 03824, United States
| | - Carmen M. Andrei
- Canadian
Centre for Electron Microscopy, McMaster
University, Hamilton ,ON L8S 4L8, Canada
| | - Chengye Dong
- 2D Crystal
Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Turker Furkan
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Siavash Rajabpour
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rajiv Ramanujam Prabhakar
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Joshua A. Robinson
- 2D Crystal
Consortium, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
- Department
of Materials Science and Engineering, The
Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vasquez Magdaleno
- Department
of Mining, Metallurgy, and Materials Engineering, University of the Philippines, Diliman, Quezon City 1101, Philippines
| | - Quang Thang Trinh
- Queensland
Micro- and Nanotechnology Centre, Griffith
University, Brisbane, 4111 Australia
| | - Joel W. Ager
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Miquel Salmeron
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Shaul Aloni
- The Molecular Foundry, Lawrence
Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Joshua D. Caldwell
- Department
of Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, United States
| | - Shawna Hollen
- Department
of Physics and Astronomy, University of
New Hampshire, Durham, New Hampshire 03824, United States
| | - Hans A. Bechtel
- Advanced
Light Source, Lawrence Berkeley
National Laboratory, Berkeley, California 94720, United States
| | - Nabil D. Bassim
- Canadian
Centre for Electron Microscopy, McMaster
University, Hamilton ,ON L8S 4L8, Canada
- Department of
Materials Science and Engineering, McMaster
University, Hamilton ,ON L8S 4L8, Canada
| | - Matthew P. Sherburne
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Zakaria Y. Al Balushi
- Department
of Materials Science and Engineering, University
of California, Berkeley, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Feng S, Luo Y, Jiang J, Wang S. Examining the Long-Range Effect in Very Long Graphene Nanoribbons: A First-Principles Study. J Phys Chem Lett 2022; 13:11223-11229. [PMID: 36445836 DOI: 10.1021/acs.jpclett.2c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The role of long-range effect on the modulation of the electronic structure of graphene nanoribbons has been little studied due to the limitations of existing theoretical and computational methods. By splitting a molecule top-down and calculating and jointing the Fock matrix of fragments, we developed a computational method suitable for large-size molecules with random doping and arbitrary geometry. Utilizing this method, we achieved the study of the effects of dopants and curvature on graphene nanoribbons (GNRs). It reveals that both dopants and curvature can change the charge distribution of GNRs, while the influence of dopants is more significant and can extend up to 1-3 nm. The electronic excitation properties of GNRs are also largely modified by the doping state or nonuniform curvature. Our findings provide not only a feasible approach for studying the electronic structure of large-size molecules but also the possibility to improve the properties of graphene-based materials by dopants and local curvature.
Collapse
Affiliation(s)
- Shuo Feng
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yi Luo
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jun Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Collaborative Innovation Center of Chemistry for Energy Materials, CAS Center for Excellence in Nanoscience, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|