1
|
Hacisuleyman A, Yuret D, Erman B. Dynamic Coupling and Entropy Changes in KRAS G12D Mutation: Insights into Molecular Flexibility, Allostery and Function. J Mol Biol 2025:169075. [PMID: 40064416 DOI: 10.1016/j.jmb.2025.169075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/13/2025] [Accepted: 03/04/2025] [Indexed: 03/21/2025]
Abstract
The oncogenic G12D mutation in KRAS is a major driver of cancer progression, yet the complete mechanism by which this mutation alters protein dynamics and function remains incompletely understood. Here, we investigate how the G12D mutation alters KRAS's conformational landscape and residue-residue interactions using molecular dynamics simulations coupled with entropy calculations and mutual information (MI) analysis. We demonstrate that the mutation increases local entropy at key functional residues (D12, Y32, G60, and Q61), and introduces new peaks to the Ramachandran angles, disrupting the precise structural alignment necessary for GTP hydrolysis. Notably, while individual residue entropy increases, joint entropy analysis shows a complex reorganization pattern. MI analysis identifies enhanced dynamic coupling between distant residues, suggesting that the mutation establishes new long-range interactions that stabilize the active state. These findings show how G12D mutation redefines KRAS's dynamic network, leading to persistent activation through enhanced residue coupling rather than mere local disruption. Our results suggest novel therapeutic strategies focused on modulating protein dynamics rather than targeting specific binding sites, potentially offering new approaches to combat KRAS-driven cancers.
Collapse
Affiliation(s)
- Aysima Hacisuleyman
- Department of Computational Biology, University of Lausanne CH-1015 Lausanne, Switzerland.
| | - Deniz Yuret
- Department of Computer Engineering, Koc University Rumelifeneri Yolu, Sariyer 34450 Istanbul, Turkey.
| | - Burak Erman
- Department of Chemical and Biological Engineering, Koc University Rumelifeneri Yolu, Sariyer 34450 Istanbul, Turkey.
| |
Collapse
|
2
|
Chao FA, Byrd RA. Existence of Singularities in NMR Relaxation Dispersion Profiles: Implications for Hidden Dynamics. J Am Chem Soc 2024; 146:24467-24475. [PMID: 39172084 DOI: 10.1021/jacs.4c06720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
It is common for NMR relaxation dispersion experiments to suggest an absence of dynamics despite anecdotal indications of conformational dynamics. We explore the potential explanations and approaches to this conundrum. Some inconsistencies have been observed between two relaxation dispersion experiments, Carr-Purcell-Meiboom-Gill (CPMG) and adiabatic relaxation dispersion experiments, in recent dynamic studies of different biomolecules. Theoretical analyses show that such seemingly paradoxical results might come from a complex exchange topology that is concealed by the application of the simple two-site exchange model for interpretation of the relaxation dispersion data. Scenarios are explored and revealed in which the presence of complex millisecond conformational exchange could suppress the amplitude of CPMG relaxation dispersion profiles, even when the exchange rates are within the detectable range of the experiments. With experimental errors, the suppressed relaxation dispersion profiles could lead to the conclusion of "no millisecond conformational exchange". However, such hidden dynamics can potentially be detected by adiabatic relaxation dispersion experiments. Finally, we demonstrate some advantages of adiabatic relaxation dispersion experiments over conventional relaxation dispersion experiments and a simplified computational approach to analyze the adiabatic relaxation dispersion profiles.
Collapse
Affiliation(s)
- Fa-An Chao
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, Maryland 21701-4907, United States
| | - R Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702-1201, United States
| |
Collapse
|
3
|
Smith M, Hernández JS, Messing S, Ramakrishnan N, Higgins B, Mehalko J, Perkins S, Wall VE, Grose C, Frank PH, Cregger J, Le PV, Johnson A, Sherekar M, Pagonis M, Drew M, Hong M, Widmeyer SRT, Denson JP, Snead K, Poon I, Waybright T, Champagne A, Esposito D, Jones J, Taylor T, Gillette W. Producing recombinant proteins in Vibrio natriegens. Microb Cell Fact 2024; 23:208. [PMID: 39049057 PMCID: PMC11267860 DOI: 10.1186/s12934-024-02455-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024] Open
Abstract
The diversity of chemical and structural attributes of proteins makes it inherently difficult to produce a wide range of proteins in a single recombinant protein production system. The nature of the target proteins themselves, along with cost, ease of use, and speed, are typically cited as major factors to consider in production. Despite a wide variety of alternative expression systems, most recombinant proteins for research and therapeutics are produced in a limited number of systems: Escherichia coli, yeast, insect cells, and the mammalian cell lines HEK293 and CHO. Recent interest in Vibrio natriegens as a new bacterial recombinant protein expression host is due in part to its short doubling time of ≤ 10 min but also stems from the promise of compatibility with techniques and genetic systems developed for E. coli. We successfully incorporated V. natriegens as an additional bacterial expression system for recombinant protein production and report improvements to published protocols as well as new protocols that expand the versatility of the system. While not all proteins benefit from production in V. natriegens, we successfully produced several proteins that were difficult or impossible to produce in E. coli. We also show that in some cases, the increased yield is due to higher levels of properly folded protein. Additionally, we were able to adapt our enhanced isotope incorporation methods for use with V. natriegens. Taken together, these observations and improvements allowed production of proteins for structural biology, biochemistry, assay development, and structure-based drug design in V. natriegens that were impossible and/or unaffordable to produce in E. coli.
Collapse
Affiliation(s)
- Matthew Smith
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - José Sánchez Hernández
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Simon Messing
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Nitya Ramakrishnan
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Brianna Higgins
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jennifer Mehalko
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Shelley Perkins
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Vanessa E Wall
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Carissa Grose
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Peter H Frank
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Julia Cregger
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Phuong Vi Le
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Adam Johnson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Mukul Sherekar
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Morgan Pagonis
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Matt Drew
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Min Hong
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Stephanie R T Widmeyer
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - John-Paul Denson
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Kelly Snead
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ivy Poon
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Timothy Waybright
- NCI RAS Initiative, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Allison Champagne
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Dominic Esposito
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Jane Jones
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Troy Taylor
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - William Gillette
- Protein Expression Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA.
| |
Collapse
|
4
|
Chen J, Wang J, Yang W, Zhao L, Zhao J, Hu G. Molecular Mechanism of Phosphorylation-Mediated Impacts on the Conformation Dynamics of GTP-Bound KRAS Probed by GaMD Trajectory-Based Deep Learning. Molecules 2024; 29:2317. [PMID: 38792177 PMCID: PMC11123822 DOI: 10.3390/molecules29102317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
The phosphorylation of different sites produces a significant effect on the conformational dynamics of KRAS. Gaussian accelerated molecular dynamics (GaMD) simulations were combined with deep learning (DL) to explore the molecular mechanism of the phosphorylation-mediated effect on conformational dynamics of the GTP-bound KRAS. The DL finds that the switch domains are involved in obvious differences in conformation contacts and suggests that the switch domains play a key role in the function of KRAS. The analyses of free energy landscapes (FELs) reveal that the phosphorylation of pY32, pY64, and pY137 leads to more disordered states of the switch domains than the wild-type (WT) KRAS and induces conformational transformations between the closed and open states. The results from principal component analysis (PCA) indicate that principal motions PC1 and PC2 are responsible for the closed and open states of the phosphorylated KRAS. Interaction networks were analyzed and the results verify that the phosphorylation alters interactions of GTP and magnesium ion Mg2+ with the switch domains. It is concluded that the phosphorylation pY32, pY64, and pY137 tune the activity of KRAS through changing conformational dynamics and interactions of the switch domains. We anticipated that this work could provide theoretical aids for deeply understanding the function of KRAS.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Jian Wang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Wanchun Yang
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Lu Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Juan Zhao
- School of Science, Shandong Jiaotong University, Jinan 250357, China; (J.W.); (W.Y.); (L.Z.); (J.Z.)
| | - Guodong Hu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| |
Collapse
|
5
|
Whitley MJ, Tran TH, Rigby M, Yi M, Dharmaiah S, Waybright TJ, Ramakrishnan N, Perkins S, Taylor T, Messing S, Esposito D, Nissley DV, McCormick F, Stephen AG, Turbyville T, Cornilescu G, Simanshu DK. Comparative analysis of KRAS4a and KRAS4b splice variants reveals distinctive structural and functional properties. SCIENCE ADVANCES 2024; 10:eadj4137. [PMID: 38354232 PMCID: PMC11636682 DOI: 10.1126/sciadv.adj4137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
KRAS, the most frequently mutated oncogene in human cancer, produces two isoforms, KRAS4a and KRAS4b, through alternative splicing. These isoforms differ in exon 4, which encodes the final 15 residues of the G-domain and hypervariable regions (HVRs), vital for trafficking and membrane localization. While KRAS4b has been extensively studied, KRAS4a has been largely overlooked. Our multidisciplinary study compared the structural and functional characteristics of KRAS4a and KRAS4b, revealing distinct structural properties and thermal stability. Position 151 influences KRAS4a's thermal stability, while position 153 affects binding to RAF1 CRD protein. Nuclear magnetic resonance analysis identified localized structural differences near sequence variations and provided a solution-state conformational ensemble. Notably, KRAS4a exhibits substantial transcript abundance in bile ducts, liver, and stomach, with transcript levels approaching KRAS4b in the colon and rectum. Functional disparities were observed in full-length KRAS variants, highlighting the impact of HVR variations on interaction with trafficking proteins and downstream effectors like RAF and PI3K within cells.
Collapse
Affiliation(s)
- Matthew J. Whitley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy H. Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Megan Rigby
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ming Yi
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Timothy J. Waybright
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nitya Ramakrishnan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shelley Perkins
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Simon Messing
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dwight V. Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 3rd Street, San Francisco, CA, USA
| | - Andrew G. Stephen
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Thomas Turbyville
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Dhirendra K. Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| |
Collapse
|
6
|
Caceres-Cortes J, Falk B, Mueller L, Dhar TGM. Perspectives on Nuclear Magnetic Resonance Spectroscopy in Drug Discovery Research. J Med Chem 2024; 67:1701-1733. [PMID: 38290426 DOI: 10.1021/acs.jmedchem.3c02389] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The drug discovery landscape has undergone a significant transformation over the past decade, owing to research endeavors in a wide range of areas leading to strategies for pursuing new drug targets and the emergence of novel drug modalities. NMR spectroscopy has been a technology of fundamental importance to these research pursuits and has seen its use expanded both within and outside of traditional medicinal chemistry applications. In this perspective, we will present advancement of NMR-derived methods that have facilitated the characterization of small molecules and novel drug modalities including macrocyclic peptides, cyclic dinucleotides, and ligands for protein degradation. We will discuss innovations in NMR spectroscopy at the chemistry and biology interface that have broadened NMR's utility from hit identification through lead optimization activities. We will also discuss the promise of emerging NMR approaches in bridging our understanding and addressing challenges in the pursuit of the therapeutic agents of the future.
Collapse
Affiliation(s)
- Janet Caceres-Cortes
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Bradley Falk
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Luciano Mueller
- Synthesis and Enabling Technologies, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - T G Murali Dhar
- Discovery Chemistry, Small Molecule Drug Discovery, Bristol-Myers Squibb Company, Princeton, New Jersey 085401, United States
| |
Collapse
|
7
|
Castelli M, Marchetti F, Osuna S, F. Oliveira AS, Mulholland AJ, Serapian SA, Colombo G. Decrypting Allostery in Membrane-Bound K-Ras4B Using Complementary In Silico Approaches Based on Unbiased Molecular Dynamics Simulations. J Am Chem Soc 2024; 146:901-919. [PMID: 38116743 PMCID: PMC10785808 DOI: 10.1021/jacs.3c11396] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Protein functions are dynamically regulated by allostery, which enables conformational communication even between faraway residues, and expresses itself in many forms, akin to different "languages": allosteric control pathways predominating in an unperturbed protein are often unintuitively reshaped whenever biochemical perturbations arise (e.g., mutations). To accurately model allostery, unbiased molecular dynamics (MD) simulations require integration with a reliable method able to, e.g., detect incipient allosteric changes or likely perturbation pathways; this is because allostery can operate at longer time scales than those accessible by plain MD. Such methods are typically applied singularly, but we here argue their joint application─as a "multilingual" approach─could work significantly better. We successfully prove this through unbiased MD simulations (∼100 μs) of the widely studied, allosterically active oncotarget K-Ras4B, solvated and embedded in a phospholipid membrane, from which we decrypt allostery using four showcase "languages": Distance Fluctuation analysis and the Shortest Path Map capture allosteric hotspots at equilibrium; Anisotropic Thermal Diffusion and Dynamical Non-Equilibrium MD simulations assess perturbations upon, respectively, either superheating or hydrolyzing the GTP that oncogenically activates K-Ras4B. Chosen "languages" work synergistically, providing an articulate, mutually coherent, experimentally consistent picture of K-Ras4B allostery, whereby distinct traits emerge at equilibrium and upon GTP cleavage. At equilibrium, combined evidence confirms prominent allosteric communication from the membrane-embedded hypervariable region, through a hub comprising helix α5 and sheet β5, and up to the active site, encompassing allosteric "switches" I and II (marginally), and two proposed pockets. Upon GTP cleavage, allosteric perturbations mostly accumulate on the switches and documented interfaces.
Collapse
Affiliation(s)
- Matteo Castelli
- Department
of Chemistry, University of Pavia, viale T. Taramelli 12, 27100 Pavia, Italy
| | - Filippo Marchetti
- Department
of Chemistry, University of Pavia, viale T. Taramelli 12, 27100 Pavia, Italy
- INSTM, via G. Giusti 9, 50121 Florence, Italy
- E4
Computer Engineering, via Martiri delle libertà 66, 42019 Scandiano (RE), Italy
| | - Sílvia Osuna
- Institut
de Química Computacional i Catàlisi (IQCC) and Departament
de Química, Universitat de Girona, Girona, Catalonia E-17071, Spain
- ICREA, Barcelona, Catalonia E-08010, Spain
| | - A. Sofia F. Oliveira
- Centre for
Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Adrian J. Mulholland
- Centre for
Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, U.K.
| | - Stefano A. Serapian
- Department
of Chemistry, University of Pavia, viale T. Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department
of Chemistry, University of Pavia, viale T. Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
8
|
Taylor T, Gillette W. Production of Isotopically Labeled KRAS4b. Methods Mol Biol 2024; 2797:23-34. [PMID: 38570450 DOI: 10.1007/978-1-0716-3822-4_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Isotopically labelled proteins are important reagents in structural biology as well as in targeted drug development. The field continues to advance with complex multi-isotope labeling. We have combined our experience in high-level soluble KRAS4b expression with protocols for isotope incorporation, to achieve reliable and efficient approaches for several labeling strategies. Typical experiments achieve nearly 100% 15N incorporation, with yields in the range of 1.3-24.6 mg/L (median = 6.4 mg/L, n = 53). Improvements in the growth parameters in the presence of deuterium reduce the standard time of fermentation from 5 days to 3 days by modifying the medium used during the weaning process. The methods described are compatible with multi-isotope labeling and site-specific labeling.
Collapse
Affiliation(s)
- Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - William Gillette
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
9
|
Cornilescu G. 1D and 2D NMR for KRAS:Ligand Binding. Methods Mol Biol 2024; 2797:115-124. [PMID: 38570456 DOI: 10.1007/978-1-0716-3822-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Fragment-based screening by ligand-observed 1D NMR and binding interface mapping by protein-observed 2D NMR are popular methods used in drug discovery. These methods allow researchers to detect compound binding over a wide range of affinities and offer a simultaneous assessment of solubility, purity, and chemical formula accuracy of the target compounds and the 15N-labeled protein when examined by 1D and 2D NMR, respectively. These methods can be applied for screening fragment binding to the active (GMPPNP-bound) and inactive (GDP-bound) states of oncogenic KRAS mutants.
Collapse
Affiliation(s)
- Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA.
| |
Collapse
|
10
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
11
|
Gomez-Gutierrez P, Rubio-Martinez J, Perez JJ. Discovery of Hit Compounds Targeting the P4 Allosteric Site of K-RAS, Identified through Ensemble-Based Virtual Screening. J Chem Inf Model 2023; 63:6412-6422. [PMID: 37824186 PMCID: PMC10598794 DOI: 10.1021/acs.jcim.3c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Indexed: 10/13/2023]
Abstract
Mutants of Ras are oncogenic drivers of a large number of human tumors. Despite being recognized as an attractive target for the treatment of cancer, the high affinity for its substrate tagged the protein as undruggable for a few years. The identification of cryptic pockets on the protein surface gave the opportunity to identify molecules capable of acting as allosteric modulators. Several molecules were disclosed in recent years, with sotorasib and adagrasib already approved for clinical use. The present study makes use of computational methods to characterize eight prospective allosteric pockets (P1-P8) in K-Ras, four of which (P1-P4) were previously characterized in the literature. The present study also describes the results of a virtual screening study focused on the discovery of hit compounds, binders of the P4 site that can be considered as peptidomimetics of a fragment of the SOS αI helix, a guanine exchange factor of Ras. After a detailed description of the computational procedure followed, we disclose five hit compounds, prospective binders of the P4 allosteric site that exhibit an inhibitory capability higher than 30% in a cell proliferation assay at 50 μM.
Collapse
Affiliation(s)
- Patricia Gomez-Gutierrez
- Department
of Chemical Engineering. ETSEIB, Universitat
Politecnica de Catalunya, Av. Diagonal, 647, Barcelona 08028, Spain
- Allinky
Biopharma, Madrid Scientific Park, Faraday, 7, Madrid 28049, Spain
| | - Jaime Rubio-Martinez
- Department
of Materials Science and Physical Chemistry, University of Barcelona and the Institut de Recerca en Quimica Teorica
i Computacional (IQTCUB), Marti i Franques, 1, Barcelona 08028, Spain
| | - Juan J. Perez
- Department
of Chemical Engineering. ETSEIB, Universitat
Politecnica de Catalunya, Av. Diagonal, 647, Barcelona 08028, Spain
| |
Collapse
|
12
|
Johnson CW, Fetics SK, Davis KP, Rodrigues JA, Mattos C. Allosteric site variants affect GTP hydrolysis on Ras. Protein Sci 2023; 32:e4767. [PMID: 37615343 PMCID: PMC10510474 DOI: 10.1002/pro.4767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/03/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
RAS GTPases are proto-oncoproteins that regulate cell growth, proliferation, and differentiation in response to extracellular signals. The signaling functions of RAS, and other small GTPases, are dependent on their ability to cycle between GDP-bound and GTP-bound states. Structural analyses suggest that GTP hydrolysis catalyzed by HRAS can be regulated by an allosteric site located between helices 3, 4, and loop 7. Here we explore the relationship between intrinsic GTP hydrolysis on HRAS and the position of helix 3 and loop 7 through manipulation of the allosteric site, showing that the two sites are functionally connected. We generated several hydrophobic mutations in the allosteric site of HRAS to promote shifts in helix 3 relative to helix 4. By combining crystallography and enzymology to study these mutants, we show that closure of the allosteric site correlates with increased hydrolysis of GTP on HRAS in solution. Interestingly, binding to the RAS binding domain of RAF kinase (RAF-RBD) inhibits GTP hydrolysis in the mutants. This behavior may be representative of a cluster of mutations found in human tumors, which potentially cooperate with RAF complex formation to stabilize the GTP-bound state of RAS.
Collapse
Affiliation(s)
- Christian W. Johnson
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Susan K. Fetics
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Kathleen P. Davis
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| | - Jose A. Rodrigues
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Carla Mattos
- Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
- Department of Molecular and Structural BiochemistryNorth Carolina State UniversityRaleighNorth CarolinaUSA
| |
Collapse
|
13
|
Morstein J, Shrestha R, Van QN, López CA, Arora N, Tonelli M, Liang H, Chen D, Zhou Y, Hancock JF, Stephen AG, Turbyville TJ, Shokat KM. Direct Modulators of K-Ras-Membrane Interactions. ACS Chem Biol 2023; 18:2082-2093. [PMID: 37579045 PMCID: PMC10510109 DOI: 10.1021/acschembio.3c00413] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 07/31/2023] [Indexed: 08/16/2023]
Abstract
Protein-membrane interactions (PMIs) are ubiquitous in cellular signaling. Initial steps of signal transduction cascades often rely on transient and dynamic interactions with the inner plasma membrane leaflet to populate and regulate signaling hotspots. Methods to target and modulate these interactions could yield attractive tool compounds and drug candidates. Here, we demonstrate that the conjugation of a medium-chain lipid tail to the covalent K-Ras(G12C) binder MRTX849 at a solvent-exposed site enables such direct modulation of PMIs. The conjugated lipid tail interacts with the tethered membrane and changes the relative membrane orientation and conformation of K-Ras(G12C), as shown by molecular dynamics (MD) simulation-supported NMR studies. In cells, this PMI modulation restricts the lateral mobility of K-Ras(G12C) and disrupts nanoclusters. The described strategy could be broadly applicable to selectively modulate transient PMIs.
Collapse
Affiliation(s)
- Johannes Morstein
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| | - Rebika Shrestha
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Que N. Van
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - César A. López
- Theoretical
Biology and Biophysics Group, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Neha Arora
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Marco Tonelli
- National
Magnetic Resonance Facility at Madison, Biochemistry Department, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Hong Liang
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - De Chen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Yong Zhou
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - John F. Hancock
- Department
of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center, Houston, Texas 77030, United States
| | - Andrew G. Stephen
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Thomas J. Turbyville
- NCI
RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Kevan M. Shokat
- Department
of Cellular and Molecular Pharmacology and Howard Hughes Medical Institute, University of California, San Francisco, California 94158, United States
| |
Collapse
|
14
|
Chao FA, Chan AH, Dharmaiah S, Schwieters CD, Tran TH, Taylor T, Ramakrishnan N, Esposito D, Nissley DV, McCormick F, Simanshu DK, Cornilescu G. Reduced dynamic complexity allows structure elucidation of an excited state of KRAS G13D. Commun Biol 2023; 6:594. [PMID: 37268708 DOI: 10.1038/s42003-023-04960-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023] Open
Abstract
Localized dynamics of RAS, including regions distal to the nucleotide-binding site, is of high interest for elucidating the mechanisms by which RAS proteins interact with effectors and regulators and for designing inhibitors. Among several oncogenic mutants, methyl relaxation dispersion experiments reveal highly synchronized conformational dynamics in the active (GMPPNP-bound) KRASG13D, which suggests an exchange between two conformational states in solution. Methyl and 31P NMR spectra of active KRASG13D in solution confirm a two-state ensemble interconverting on the millisecond timescale, with a major Pγ atom peak corresponding to the dominant State 1 conformation and a secondary peak indicating an intermediate state different from the known State 2 conformation recognized by RAS effectors. High-resolution crystal structures of active KRASG13D and KRASG13D-RAF1 RBD complex provide snapshots of the State 1 and 2 conformations, respectively. We use residual dipolar couplings to solve and cross-validate the structure of the intermediate state of active KRASG13D, showing a conformation distinct from those of States 1 and 2 outside the known flexible switch regions. The dynamic coupling between the conformational exchange in the effector lobe and the breathing motion in the allosteric lobe is further validated by a secondary mutation in the allosteric lobe, which affects the conformational population equilibrium.
Collapse
Affiliation(s)
- Fa-An Chao
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| | - Albert H Chan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Srisathiyanarayanan Dharmaiah
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Charles D Schwieters
- Division of Computational Bioscience, Center for Information Technology, National Institutes of Health, Building 12A, 20892-5624, Bethesda, MD, USA
| | - Timothy H Tran
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Troy Taylor
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Nitya Ramakrishnan
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Dominic Esposito
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Dwight V Nissley
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
| | - Frank McCormick
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 1450 3rd Street, San Francisco, CA, 94158, USA
| | - Dhirendra K Simanshu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| | - Gabriel Cornilescu
- NCI RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD, 21701, USA.
| |
Collapse
|
15
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
16
|
Kolch W, Berta D, Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem J 2023; 480:1-23. [PMID: 36607281 PMCID: PMC9988006 DOI: 10.1042/bcj20220234] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/07/2023]
Abstract
RAS proteins regulate most aspects of cellular physiology. They are mutated in 30% of human cancers and 4% of developmental disorders termed Rasopathies. They cycle between active GTP-bound and inactive GDP-bound states. When active, they can interact with a wide range of effectors that control fundamental biochemical and biological processes. Emerging evidence suggests that RAS proteins are not simple on/off switches but sophisticated information processing devices that compute cell fate decisions by integrating external and internal cues. A critical component of this compute function is the dynamic regulation of RAS activation and downstream signaling that allows RAS to produce a rich and nuanced spectrum of biological outputs. We discuss recent findings how the dynamics of RAS and its downstream signaling is regulated. Starting from the structural and biochemical properties of wild-type and mutant RAS proteins and their activation cycle, we examine higher molecular assemblies, effector interactions and downstream signaling outputs, all under the aspect of dynamic regulation. We also consider how computational and mathematical modeling approaches contribute to analyze and understand the pleiotropic functions of RAS in health and disease.
Collapse
Affiliation(s)
- Walter Kolch
- Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dénes Berta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
17
|
Li J, Byrd RA. A simple protocol for the production of highly deuterated proteins for biophysical studies. J Biol Chem 2022; 298:102253. [PMID: 35835218 PMCID: PMC9386462 DOI: 10.1016/j.jbc.2022.102253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 11/06/2022] Open
Abstract
Highly deuterated protein samples expand the biophysics and biological tool kit by providing, among other qualities, contrast matching in neutron diffraction experiments and reduction of dipolar spin interactions from normally protonated proteins in magnetic resonance studies, impacting both electron paramagnetic resonance and NMR spectroscopy. In NMR applications, deuteration is often combined with other isotopic labeling patterns to expand the range of conventional NMR spectroscopy research in both solution and solid-state conditions. However, preparation of deuterated proteins is challenging. We present here a simple, effective, and user-friendly protocol to produce highly deuterated proteins in Escherichia coli cells. The protocol utilizes the common shaker flask growth method and the well-known pET system (which provides expression control via the T7 promotor) for large-scale recombinant protein expression. One liter expression typically yields 5 to 50 mg of highly deuterated protein. Our data demonstrate that the optimized procedure produces a comparable quantity of protein in deuterium (2H2O) oxide M9 medium compared with that in 1H2O M9 medium. The protocol will enable a broader utilization of deuterated proteins in a number of biophysical techniques.
Collapse
Affiliation(s)
- Jess Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201.
| | - R Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702-1201.
| |
Collapse
|