1
|
Rysich A, Favereau L, Boixel J. Design and Investigation of Carbazole-Dithienylethene Compounds for Switchable Organic Radical Systems. J Phys Chem Lett 2025:4796-4803. [PMID: 40335439 DOI: 10.1021/acs.jpclett.5c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Photoswitchable radicals incorporating dithienylethene (DTE) moieties offer unique opportunities for dynamic control in various chemical and material applications. By exploiting light-triggered isomerization processes, researchers can achieve precise modulation of radical reactivity, enabling spatiotemporal control of chemical transformations. Despite growing interest in this field, challenges remain in controlling spin-orbit coupling and spin dynamics, which influence the electronic structure and transitions induced by light absorption as well as achieving photostability for repeated photoisomerization cycles. To address these challenges, we have designed a new family of photoswitchable organic radicals that incorporate DTE moieties and carbazole radical centers. We studied the influence of spin delocalization through the molecular structure and spin evolution upon light irradiation by using ultraviolet/visible absorption, electron paramagnetic resonance, and nuclear magnetic resonance spectroscopies. Our findings demonstrate the photochromic behavior of the neutral form and reversible radical formation, contributing to advancements in this promising field.
Collapse
Affiliation(s)
| | - Ludovic Favereau
- Université de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| | - Julien Boixel
- Université de Rennes, CNRS, ISCR-UMR 6226, F-35000 Rennes, France
| |
Collapse
|
2
|
He P, Ye J, Zhang J, Lu T, Cui W, Liu J, Shen C, Hong W, Liu X. A Helicene-Based Single-Molecule Inductor and Capacitor with Frequency-Dependent Charge-Transport Pathways. Angew Chem Int Ed Engl 2025; 64:e202416319. [PMID: 39284773 DOI: 10.1002/anie.202416319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 09/16/2024] [Indexed: 11/03/2024]
Abstract
Despite extensive studies has been explored on single-molecule switches and rectifiers, the design of single-molecule inductors has not been explored due to the experimental challenges in the investigation of frequency-dependent charge transport at the single-molecule scale. In this study, we synthesized a helicene-based helical molecular wire and carried out meticulous single-molecule conductance measurements, combined with current-voltage (IV) studies with varying frequencies using the scanning tunneling microscope break junction (STM-BJ) technique. Our results reveal the formation of a single-molecule junction and highlight the unique behavior of the molecular wire in response to different alternating current (AC) varying frequencies. The transport of charges occurs selectively either through the coiled backbone of the conjugated helical structure or vertically via π-π stacking, depending on the frequency of the applied AC. Notably, our investigation demonstrates the functionality of the wire as an inductor at low frequencies, and a capacitor at high frequencies. This work lays the foundation for a systematic approach to designing, fabricating, and implementing single-molecule logic devices such as inductors and wave filters.
Collapse
Affiliation(s)
- Pengxing He
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Jingyao Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Junrui Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Taige Lu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Wenying Cui
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Chengshuo Shen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Xunshan Liu
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
3
|
Li Z, Liu X, Bao Q, Wang J, Liu X, Gong H, Han T, Feng C, Lu D, Yue L, Wu C, He G, Su Y, Rao B. The SUMO (Singly Unoccupied Molecular Orbital)-LUMO (Lowest Unoccupied Molecular Orbital) Inversion Radicals. J Am Chem Soc 2025; 147:1452-1457. [PMID: 39737560 DOI: 10.1021/jacs.4c16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Herein, SUMO-LUMO inversion (SLI) radicals 2a-2c were designed by the combination of the tris(2,4,6-trichlorophenyl)methyl (TTM) radical and pyridinium derivatives (electron-withdrawing groups) for the first time. The energy of the LUMO lies below that of the SUMO, which deviated from the Aufbau principle as an alternative electronic configuration beyond the well-established SOMO-HOMO inversed system. Thus, for SLI radicals, the injection of one extra electron preferred to occupy the LUMO rather than the SUMO, giving diradicals, one of which 3 had been fully confirmed by single crystal analysis, VT-NMR and VT-EPR experiments, as well as DFT calculations. Furthermore, SLI radicals 2a-2c exhibit photoluminescent properties and good photostability under UV irradiation (t1/2 > 24 days for 2c). This finding would open up new exploration on SLI radicals and their potential applications as photoelectromagnetic material.
Collapse
Affiliation(s)
- Zenghui Li
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Xiaoyang Liu
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qidi Bao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Jing Wang
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Xu Liu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Honghong Gong
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Tian Han
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Chao Feng
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
- Instrumental Analysis Center, Xi'an Jiaotong University, Xi'an 710049, China
| | - Dongmei Lu
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Ling Yue
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| | - Chao Wu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gang He
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuanting Su
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Bin Rao
- School of Chemistry, Xi'an Jiaotong University, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an 710049, China
| |
Collapse
|
4
|
Wang T, Tang S, Dong X, Zhao Y, Sun Q, Kong S, Zhao Y, Wang X. Rational Design of Crystalline and Enantiomerically Pure Helicenes with Open-Shell Singlet Ground States. Angew Chem Int Ed Engl 2025; 64:e202415331. [PMID: 39301773 DOI: 10.1002/anie.202415331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Helicene diradical derivatives have attracted widespread attentions because of their unique magnetic and chiroptoelectronic properties, however, crystalline and enantiomerically pure forms of helicene diradicals are extremely rare. Herein, we describe the rational design and synthesis of o-quinone functionalized helicene diradicals with crystalline enantiomerical purity. Diradical dianion salt Rac-3K and its enantiomers P/M-3K were obtained by reduction of corresponding precursors Rac-3 and P/M-3 with two equivalent potassium graphite in THF in the presence of (di)benzo-18-crown-6. Neutral dioxoborocyclic helicene diradicals (Rac-3B and P/M-3B) were produced by reactions of Rac-3 or P/M-3 with chlorobis(perfluorophenyl)borane (B(C6F5)2Cl. Crystal structures of compounds Rac-3K, Rac-3B and P/M-3K were obtained by single crystal X-ray diffraction. Their open-shell singlet state ground states were confirmed by electron paramagnetic resonance (EPR) spectroscopy, superconducting quantum interference device (SQUID) measurements and theoretical calculations. Their chiroptical properties were investigated by the electronic circular dichroism (ECD) spectroscopy. This work provides the first examples of enantiopure helicene diradical dianions and boron-containing helicene diradicals.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shuxuan Tang
- Sinopec (Beijing) Research Institute of Chemical Industry Co., Ltd., Sinopec Beijing Research Institute of Chemical Industry, Beijing, 100013, China
| | - Xue Dong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yu Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Quanchun Sun
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Shanshan Kong
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
5
|
Debnath S, Park J, Hugar V, Canjeevaram Balasubramanyam RK, Oh J, Kim W, Patil S. Stabilizing Diketopyrrolopyrrole Radical Cations Through Carbazoles: Substitution Pattern vs Spin Delocalization. J Phys Chem Lett 2025; 16:123-130. [PMID: 39704750 DOI: 10.1021/acs.jpclett.4c03335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
The synthesis of organic radicals continues to garner significant interest due to their fascinating optical, electronic, and magnetic properties. Moreover, the growing demand for chemically stable organic radicals is driven by the rapid expansion of the market for electronic devices utilizing organic semiconductors. In this context, the development of multifaceted approaches for the design of stable organic radicals is of great importance. In this work, we introduce a strategy for generating stable radical cations of diketopyrrolopyrroles (DPP) by modulating the substitution pattern of the electron-donating carbazole substituent. Using electronic, spin resonance, and vibrational spectroscopies, supported by density functional theory, we carefully investigated the electronic structures and chemical stability of the DPP radical cations. Our findings demonstrate that the position of electron-rich heteroatoms and the presence of Clar's aromatic sextets in donor moieties play a pivotal role in enhancing the chemical stability of DPP radical cations.
Collapse
Affiliation(s)
- Sanchari Debnath
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | - Jungjin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Vithobha Hugar
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| | | | - Juwon Oh
- Department of Chemistry, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Woojae Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Satish Patil
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bengaluru 560012, India
| |
Collapse
|
6
|
Mutoh K, Abe J. Fast photochromism of helicene-bridged imidazole dimers. Chem Sci 2024; 15:13343-13350. [PMID: 39183935 PMCID: PMC11339945 DOI: 10.1039/d4sc03578j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/19/2024] [Indexed: 08/27/2024] Open
Abstract
The unique optical and magnetic properties of organic biradicaloids on polycyclic aromatic hydrocarbons are of fundamental interest in the development of novel organic optoelectronic materials. Open-shell π-conjugated molecules with helicity have recently attracted a great deal of attention due to the magnetic-field-dependence and spin-selectivity arising from the combination of helical chirality and electron spins. However, the molecular design for helical biradicaloids is limited due to the thermal instability and high reactivity. Herein, we achieved fast photochromic reactions and reversible photo-generation of biradical species using helicene-bridged imidazole dimers. A [9]helicene-bridged imidazole dimer exhibits reversible photochromism upon UV light irradiation. The transient species produced reversibly by UV light irradiation exhibited ESR spectra with a fine structure characteristic of a triplet radical pair, indicating the reversible generation of the biradical. The half-life of the thermal recombination reaction of the biradical was estimated to be 29 ms at 298 K. Conversely, a substantial activation energy barrier was confirmed for the intramolecular recombination reaction in the [7]helicene-bridged imidazole dimer, attributed to the extended pitch length of [7]helicene. The temperature dependence of the thermal back reactions revealed that the [7]helicene and [9]helicene moieties functioned as 'soft' and 'hard' molecular bridges, respectively. These findings pave the way for future advances in the development of photoswitchable helical biradicaloids.
Collapse
Affiliation(s)
- Katsuya Mutoh
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara Kanagawa 252-5258 Japan
| | - Jiro Abe
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University Sagamihara Kanagawa 252-5258 Japan
| |
Collapse
|
7
|
Shi Y, Li C, Di J, Xue Y, Jia Y, Duan J, Hu X, Tian Y, Li Y, Sun C, Zhang N, Xiong Y, Jin T, Chen P. Polycationic Open-Shell Cyclophanes: Synthesis of Electron-Rich Chiral Macrocycles, and Redox-Dependent Electronic States. Angew Chem Int Ed Engl 2024; 63:e202402800. [PMID: 38411404 DOI: 10.1002/anie.202402800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 02/28/2024]
Abstract
π-Conjugated chiral nanorings with intriguing electronic structures and chiroptical properties have attracted considerable interests in synthetic chemistry and materials science. We present the design principles to access new chiral macrocycles (1 and 2) that are essentially built on the key components of main-group electron-donating carbazolyl moieties or the π-expanded aza[7]helicenes. Both macrocycles show the unique molecular conformations with a (quasi) figure-of-eight topology as a result of the conjugation patterns of 2,2',7,7'-spirobifluorenyl in 1 and triarylamine-coupled aza[7]helicene-based building blocks in 2. This electronic nature of redox-active, carbazole-rich backbones enabled these macrocycles to be readily oxidized chemically and electrochemically, leading to the sequential production of a series of positively charged polycationic open-shell cyclophanes. Their redox-dependent electronic states of the resulting multispin polyradicals have been characterized by VT-ESR, UV/Vis-NIR absorption and spectroelectrochemical measurements. The singlet (ΔES-T=-1.29 kcal mol-1) and a nearly degenerate singlet-triplet ground state (ΔES-T(calcd)=-0.15 kcal mol-1 and ΔES-T(exp)=0.01 kcal mol-1) were proved for diradical dications 12+2⋅ and 22+2⋅, respectively. Our work provides an experimental proof for the construction of electron-donating new chiral nanorings, and more importantly for highly charged polyradicals with potential applications in chirospintronics and organic conductors.
Collapse
Affiliation(s)
- Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yuting Xue
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yawei Jia
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Xiaoyu Hu
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yu Tian
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Yanqiu Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Cuiping Sun
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Yan Xiong
- Analysis and Testing Centre, Beijing Institute of Technology, 102488, Beijing, China
| | - Tianyun Jin
- Center of Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography University of California, San Diego La Jolla, 92093, USA
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science, Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
8
|
Mishra S, Vilas-Varela M, Fatayer S, Albrecht F, Peña D, Gross L. Observation of SOMO-HOMO Inversion in a Neutral Polycyclic Conjugated Hydrocarbon. ACS NANO 2024; 18:15898-15904. [PMID: 38833667 PMCID: PMC11191738 DOI: 10.1021/acsnano.4c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
We report the generation of a nonbenzenoid polycyclic conjugated hydrocarbon, which consists of a biphenyl moiety substituted by indenyl units at the 4,4' positions, on ultrathin sodium chloride films by tip-induced chemistry. Single-molecule characterization by scanning tunneling and atomic force microscopy reveals an open-shell biradical ground state with a peculiar electronic configuration wherein the singly occupied molecular orbitals (SOMOs) are lower in energy than the highest occupied molecular orbital (HOMO).
Collapse
Affiliation(s)
| | - Manuel Vilas-Varela
- Center
for Research in Biological Chemistry and Molecular Materials (CiQUS)
and Department of Organic Chemistry, University
of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Shadi Fatayer
- Applied
Physics Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | | | - Diego Peña
- Center
for Research in Biological Chemistry and Molecular Materials (CiQUS)
and Department of Organic Chemistry, University
of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Oportunius, Galician
Innovation Agency (GAIN), Santiago
de Compostela 15702, Spain
| | - Leo Gross
- IBM
Research Europe − Zurich, Rüschlikon 8803, Switzerland
| |
Collapse
|
9
|
Sakamaki T, Zhang Y, Fukuma S, Cruz CM, Valdivia AC, Campaña AG, Casado J, Shang R, Nakamura E. Doubly Spiro-Conjugated Chiral Carbocycles Exhibiting SOMO-HOMO Inversion in Persistent Radical Cations. J Am Chem Soc 2024; 146:12712-12722. [PMID: 38655573 DOI: 10.1021/jacs.4c02404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Persistent chiral organic open-shell systems have captured growing interest due to their potential applications in organic spintronic and optoelectronic devices. Nevertheless, the integration of configurationally stable chirality into an organic open-shell system continues to pose challenges in molecular design. The π-extended skeleton incorporated in spiro-conjugated carbocycles can provide robust chiroptical properties and a significant stabilization of the excited and ionic radical states. However, this approach has been relatively less explored in the design of persistent organic open-shell systems. We report here the (S,S)-, (R,R)-, and meso-isomers of doubly spiro-conjugated carbocycles featuring flat and rigid carbon-bridged para-phenylenevinylene (CPV) of different conjugation lengths connected by two spiro-carbon centers, which we denote D-spiro-CPV for its quasi-dimeric structure. Our synthetic method based on a double lithiation cyclization approach enables facile production of D-spiro-CPV. D-spiro-CPVs exhibit circularly polarized luminescence (CPL) with high fluorescence quantum yields (ΦFL) resulting in a high CPL brightness of 21 M-1 cm-1 and also exhibit high thermal and photostability. The monoradical cation of D-spiro-CPV absorbing near-infrared light is notably persistent, exhibiting a half-life of 570 h under ambient conditions due to doubly spiro-conjugative stabilization. Theoretical and electrochemical studies indicate the radical cation of D-spiro-CPVs presents a non-Aufbau electron filling, exhibiting inversion of the energy level of the singly occupied molecular orbital (SOMO) and the highest (doubly) occupied molecular orbitals with the SOMO level even below the HOMO-1 level (double SHI effect). Our discoveries provide valuable insights into non-Aufbau molecules and the development of configurationally stable, optically active persistent radicals.
Collapse
Affiliation(s)
- Takumi Sakamaki
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Yan Zhang
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Shota Fukuma
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Carlos M Cruz
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avenida Fuente Nueva s/n, 18071 Granada, Spain
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Campus de Teatinos, s/n, 29071 Málaga, Spain
| | - Araceli G Campaña
- Departamento de Química Orgánica, Facultad de Ciencias, Unidad de Excelencia de Química Aplicada a Biomedicina y Medioambiente (UEQ), Universidad de Granada (UGR), Avenida Fuente Nueva s/n, 18071 Granada, Spain
| | - Juan Casado
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Campus de Teatinos, s/n, 29071 Málaga, Spain
| | - Rui Shang
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Eiichi Nakamura
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
10
|
Guo H, Lovell JB, Shu C, Pink M, Morton M, Rajca S, Rajca A. Chiral π-Conjugated Double Helical Aminyl Diradical with the Triplet Ground State. J Am Chem Soc 2024; 146:9422-9433. [PMID: 38501228 DOI: 10.1021/jacs.4c02057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
We report a neutral high-spin diradical of chiral C2-symmetric bis[5]diazahelicene with ΔEST ≈ 0.4 kcal mol-1, as determined by EPR spectroscopy/SQUID magnetometry. The diradical is the most persistent among all high-spin aminyl radicals reported to date by a factor of 20, with a half-life of up to 6 days in 2-MeTHF at room temperature. Its triplet ground state and excellent persistence may be associated with the unique spin density distribution within the dihydrophenazine moiety, which characterizes two effective 3-electron C-N bonds analogous to the N-O bond of a nitroxide radical. The enantiomerically enriched (ee ≥ 94%) (MM)- and (PP)-enantiomers of the precursors to the diradicals are obtained by either preparative chiral supercritical fluid chromatography or resolution via functionalization with the chiral auxiliary of the C2-symmetric racemic tetraamine. The barrier for the racemization of the solid tetraamine is ΔG‡ = 43 ± 0.01 kcal mol-1 in the 483-523 K range. The experimentally estimated lower limit of the barrier for the racemization of a diradical, ΔG‡ ≥ 26 kcal mol-1 in 2-MeTHF at 293 K, is comparable to the DFT-determined barrier of ΔG‡ = 31 kcal mol-1 in the gas phase at 298 K. While the enantiomerically pure tetraamine displays strong chiroptical properties, with anisotropy factor |g| = |Δε|/ε = 0.036 at 376 nm, |g| ≈ 0.005 at 548 nm of the high-spin diradical is comparable to that recently reported triplet ground-state diradical dication. Notably, the radical anion intermediate in the generation of diradical exhibits a large SOMO-HOMO inversion, SHI = 35 kcal mol-1.
Collapse
Affiliation(s)
- Haoxin Guo
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Joshua B Lovell
- Teledyne ISCO, 4700 Superior Street, Lincoln, Nebraska 68504-1328, United States
| | - Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Martha Morton
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
11
|
Fabri B, Funaioli T, Frédéric L, Elsner C, Bordignon E, Zinna F, Di Bari L, Pescitelli G, Lacour J. Triple para-Functionalized Cations and Neutral Radicals of Enantiopure Diaza[4]helicenes. J Am Chem Soc 2024; 146:8308-8319. [PMID: 38483324 DOI: 10.1021/jacs.3c13487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Modulation of absorbance and emission is key for the design of chiral chromophores. Accessing a series of compounds absorbing and emitting (circularly polarized) light over a wide spectral window and often toward near-infrared is of practical value in (chir)optical applications. Herein, by late-stage functionalization on derivatives bridging triaryl methyl and helicene domains, we have achieved the regioselective triple introduction of para electron-donating or electron-withdrawing substituents. Extended tuning of electronic (e.g., E1/2red -1.50 V → -0.68 V) and optical (e.g., emission covering from 550 to 850 nm) properties is achieved for the cations and neutral radicals; the latter compounds being easily prepared by mono electron reductions under electrochemical or chemical conditions. While luminescence quantum yields can be increased up to 70% in the cationic series, strong Cotton effects are obtained for certain radicals at low energies (λabs ∼ 700-900 nm) with gabs values above 10-3. The open-shell electronic nature of the radicals was further characterized by electron paramagnetic resonance revealing an important spin density delocalization that contributes to their persistence.
Collapse
Affiliation(s)
- Bibiana Fabri
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Tiziana Funaioli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lucas Frédéric
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Christina Elsner
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Enrica Bordignon
- Department of Physical Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Gennaro Pescitelli
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi 13, Pisa 56124, Italy
| | - Jérôme Lacour
- Department of Organic Chemistry, University of Geneva, Quai Ernest Ansermet 30, Geneva 4 1211, Switzerland
| |
Collapse
|
12
|
Duan L, Xue X, Hong B, Gu Z. Conjugation-Induced Spin Delocalization in Helical Chiral Carbon Radicals via Through-Bond and Through-Space Effects. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304563. [PMID: 37867251 DOI: 10.1002/advs.202304563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Indexed: 10/24/2023]
Abstract
A class of highly stable hydrocarbon radicals with helical chirality are synthesized, which can be isolated and purified by routine column chromatography on silica gel. These carbon-centered radicals are stabilized by through-bond delocalization and intramolecular through-space conjugation, which is evidenced by Density Functional Theory (DFT) calculation. The high stability enables to directly modify the carbon radical via palladium-catalyzed cross-coupling with the radical being untapped. The structures and optoelectronic properties are investigated with a variety of experimental methods, including Electron Paramagnetic Resonance (EPR), Ultraviolet Visisble Near Infrared (UV-vis-NIR) measurements, Cyclic Voltammetry (CV), Thermogravimetry Analysis (TGA), Circular Dichroism (CD) spectra, High-Performance Liquid Chromatography (HPLC), and X-ray crystallographic analysis. DFT calculations indicated that the 9-anthryl helical radical is more stable than its tail-to-tail σ-dimer over 13.2 kJ mol-1 , which is consistent with experimental observations.
Collapse
Affiliation(s)
- Longhui Duan
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Xiaoping Xue
- College of Science, Henan Agricultural University, Zhengzhou, Henan, 450002, P. R. China
| | - Biqiong Hong
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
13
|
Shu C, Yang Z, Rajca A. From Stable Radicals to Thermally Robust High-Spin Diradicals and Triradicals. Chem Rev 2023; 123:11954-12003. [PMID: 37831948 DOI: 10.1021/acs.chemrev.3c00406] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Stable radicals and thermally robust high-spin di- and triradicals have emerged as important organic materials due to their promising applications in diverse fields. New fundamental properties, such as SOMO/HOMO inversion of orbital energies, are explored for the design of new stable radicals, including highly luminescent ones with good photostability. A relation with the singlet-triplet energy gap in the corresponding diradicals is proposed. Thermally robust high-spin di- and triradicals, with energy gaps that are comparable to or greater than a thermal energy at room temperature, are more challenging to synthesize but more rewarding. We summarize a number of high-spin di- and triradicals, based on nitronyl nitroxides that provide a relation between the experimental pairwise exchange coupling constant J/k in the high-spin species vs experimental hyperfine coupling constants in the corresponding monoradicals. This relation allows us to identify outliers, which may correspond to radicals where J/k is not measured with sufficient accuracy. Double helical high-spin diradicals, in which spin density is delocalized over the chiral π-system, have been barely explored, with the sole example of such high-spin diradical possessing alternant π-system with Kekulé resonance form. Finally, we discuss a high-spin diradical with electrical conductivity and derivatives of triangulene diradicals.
Collapse
Affiliation(s)
- Chan Shu
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, United States
| |
Collapse
|
14
|
Duan J, Shi Y, Zhao F, Li C, Duan Z, Zhang N, Chen P. Chiral Luminescent Aza[7]helicenes Functionalized with a Triarylborane Acceptor and Near-Infrared-Emissive Doublet-State Radicals. Inorg Chem 2023; 62:15829-15833. [PMID: 37713177 DOI: 10.1021/acs.inorgchem.3c02470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
This paper presents new chiral luminescent molecules (N7-BMes2 and N7-TTM) using configurationally stable aza[7]helicene (1) as a universal heteroatom-doped chiral scaffold. The respective reactions of electron-donating 1 with a triarylborane acceptor via palladium-catalyzed Buchwald-Hartwig C-N coupling and with the open-shell doublet-state TTM radical via nucleophilic aromatic substitution (SN2Ar) resulted not only in tunable emissions from blue to the NIR domain but also in significantly enhanced emission quantum efficiency up to Φ = 50%.
Collapse
Affiliation(s)
- Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zhihua Duan
- Baoshan Animal Disease Prevention and Control Center, Baoshan 678000, Yunnan, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
15
|
Yang Z, Pink M, Nowik-Boltyk EM, Lu S, Junghoefer T, Rajca S, Stoll S, Casu MB, Rajca A. Thermally Ultrarobust S = 1/2 Tetrazolinyl Radicals: Synthesis, Electronic Structure, Magnetism, and Nanoneedle Assemblies on Silicon Surface. J Am Chem Soc 2023; 145:13335-13346. [PMID: 37285418 PMCID: PMC10438971 DOI: 10.1021/jacs.3c03402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Open-shell organic molecules, including S = 1/2 radicals, may provide enhanced properties for several emerging technologies; however, relatively few synthesized to date possess robust thermal stability and processability. We report the synthesis of S = 1/2 biphenylene-fused tetrazolinyl radicals 1 and 2. Both radicals possess near-perfect planar structures based on their X-ray structures and density-functional theory (DFT) computations. Radical 1 possesses outstanding thermal stability as indicated by the onset of decomposition at 269 °C, based on thermogravimetric analysis (TGA) data. Both radicals possess very low oxidation potentials <0 V (vs. SCE) and their electrochemical energy gaps, Ecell ≈ 0.9 eV, are rather low. Magnetic properties of polycrystalline 1 are characterized by superconducting quantum interference device (SQUID) magnetometry revealing a one-dimensional S = 1/2 antiferromagnetic Heisenberg chain with exchange coupling constant J'/k ≈ -22.0 K. Radical 1 in toluene glass possesses a long electron spin coherence time, Tm ≈ 7 μs in the 40-80 K temperature range, a property advantageous for potential applications as a molecular spin qubit. Radical 1 is evaporated under ultrahigh vacuum (UHV) forming assemblies of intact radicals on a silicon substrate, as confirmed by high-resolution X-ray photoelectron spectroscopy (XPS). Scanning electron microscope (SEM) images indicate that the radical molecules form nanoneedles on the substrate. The nanoneedles are stable for at least 64 hours under air as monitored by using X-ray photoelectron spectroscopy. Electron paramagnetic resonance (EPR) studies of the thicker assemblies, prepared by UHV evaporation, indicate radical decay according to first-order kinetics with a long half-life of 50 ± 4 days at ambient conditions.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | - Maren Pink
- IUMSC, Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | - Shutian Lu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Suchada Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| | - Stefan Stoll
- Department of Chemistry, University of Washington, Seattle, Washington 98195, USA
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Andrzej Rajca
- Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68588-0304, USA
| |
Collapse
|
16
|
Zhao F, Zhao J, Liu H, Wang Y, Duan J, Li C, Di J, Zhang N, Zheng X, Chen P. Synthesis of π-Conjugated Chiral Organoborane Macrocycles with Blue to Near-Infrared Emissions and the Diradical Character of Cations. J Am Chem Soc 2023; 145:10092-10103. [PMID: 37125835 DOI: 10.1021/jacs.3c00306] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Highly emissive π-conjugated macrocycles with tunable circularly polarized luminescence (CPL) have sparked theoretical and synthetic interests in recent years. Herein, we report a synthetic approach to obtain new chiral organoborane macrocycles (CMC1, CMC2, and CMC3) that are built on the structurally chiral [5]helicenes and highly luminescent triarylborane/amine moieties embedded into the cyclic systems. These rarely accessible B/N-doped main-group chiral macrocycles show a unique topology dependence of the optoelectronic and chiroptical properties. CMC1 and CMC2 show a higher luminescence dissymmetry factor (glum) together with an enhanced CPL brightness (BCPL) as compared with CMC3. Electronic effects were also tuned and resulted in bathochromic shifts of their emission and CPL responses from blue for CMC1 to the near-infrared (NIR) region for CMC3. Furthermore, chemical oxidations of the N donor sites in CMC1 gave rise to a highly stable radical cation (CMC1·+SbF6-) and diradical dication species (CMC12·2+2SbF6-) that serve as a rare example of a positively charged open-shell chiral macrocycle.
Collapse
Affiliation(s)
- Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jingyi Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Houting Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Yu Wang
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Jiaqi Di
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Niu Zhang
- Analysis & Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Xiaoyan Zheng
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|