1
|
Morales-Montesinos IB, Rios MY, Ocampo-Acuña YD, Esquivel-Rodríguez B, Bustos-Brito C, Osorio-Ramírez MDC, Durán-Riveroll LM, González-Maya L. The Benthic Dinoflagellate Coolia malayensis (Dinophyceae) Produces an Array of Compounds with Antineoplastic Activity in Cells of Tumor Origin. Mar Drugs 2025; 23:127. [PMID: 40137313 PMCID: PMC11944075 DOI: 10.3390/md23030127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/27/2025] Open
Abstract
Among aquatic organisms, marine dinoflagellates are essential sources of bioactive metabolites. The benthic dinoflagellate Coolia malayensis produces metabolites that have exhibited substantial and specific cytotoxicity on cancer cells; however, isolation and identification of the purified compounds remain a challenge. This study reports C. malayensis biomass multi-step extraction plus chemical analyses for identifying compounds with antineoplastic activity. Through bio-directed fractionation, the cytotoxicity of extracts and fractions was tested on H1299 (lung), PC-3 (prostate), HeLa (cervical), and MCF-7 (breast) cancer cell lines. Dichloromethane (DCM) phase, hydroalcoholic (HYD) secondary extract, and methanolic (MET) extract showed cytotoxic effects on all cell lines. Active extracts and fractions were analyzed by HPLC-QTOF-MS, 1H, and 13C NMR. Cell lines H1299 and PC-3 treated with fractions F4, F7, and DCM2-AQ-Ch sub-extract showed morphological changes resembling those observed in the apoptosis control, and no signs of necrosis were observed. The selectivity of fraction F7 was above 100 μg mL-1 for healthy cells, while cytotoxic activity was observed in cancer cells. This fraction was identified as mostly fatty acids (FA) by NMR. Seventeen compounds with reported biological activities, such as antioxidant, analgesic, antiviral, and anticancer, were identified from C. malayensis extracts and fractions. Among them, the phycotoxins gambieric acid A and B, okadaic acid, and dinophysistoxin-1 were detected. Further studies are needed to reveal more significant anti-cancer potential from C. malayensis.
Collapse
Affiliation(s)
- Itzel B. Morales-Montesinos
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico;
| | - Maria Yolanda Rios
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico; (M.Y.R.); (Y.D.O.-A.)
| | - Yordin D. Ocampo-Acuña
- Centro de Investigaciones Químicas, IICBA, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico; (M.Y.R.); (Y.D.O.-A.)
| | - Baldomero Esquivel-Rodríguez
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico; (B.E.-R.); (C.B.-B.)
| | - Celia Bustos-Brito
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Mexico City 04510, Mexico; (B.E.-R.); (C.B.-B.)
| | - María del Carmen Osorio-Ramírez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada 22860, Mexico;
| | - Lorena M. Durán-Riveroll
- SECIHTI-Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación, Superior de Ensenada, Ensenada 22860, Mexico
| | - Leticia González-Maya
- Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Mexico;
| |
Collapse
|
2
|
Hollingsworth BE, Alves-de-Souza C, Leblond JD. Production of amphisterol and other Δ 8 (14) sterols by Togula jolla (formerly Amphidinium sensu lato) overlaps chemotaxonomically with Amphidinium carterae. J Eukaryot Microbiol 2025; 72:e13075. [PMID: 39829045 DOI: 10.1111/jeu.13075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/06/2024] [Accepted: 12/11/2024] [Indexed: 01/22/2025]
Abstract
While a longstanding method for identifying dinoflagellates, morphology alone can be inaccurate because of convergent evolution of truly different species toward a particular cellular shape. The dinoflagellate genus Togula is a case in point in that its type species Togula britannica was previously assigned to the genus Amphidinium based on morphology but was recently recognized as an independent genus following phylogenetic characterization. Chemotaxonomy can be a useful tool to complement the characterization of dinoflagellates by phylogeny. To this point, some, but not all, species of Amphidinium, such as Amphidinium carterae, have been observed to produce the rare 4α-methyl-substituted, Δ8(14)-nuclear-unsaturated major sterol 4α-methyl-5α-ergosta-8(14),24(28)-dien-3β-ol (amphisterol) that has historically been considered a potential chemotaxonomic biomarker for the genus as it is found in very few other dinoflagellate genera. To date, no isolates within the genus Togula have had their sterols characterized; our objective was thus to provide a first examination of the sterols of an isolate of Togula to compare to the sterols of Amphidinium. To this end, we have characterized the sterols of Togula jolla, one of the few members of Togula available for study, to demonstrate the production of amphisterol, among other Δ8(14)-nuclear unsaturated sterols, as its major sterol.
Collapse
Affiliation(s)
- Braedyn E Hollingsworth
- Ecology and Evolution Group, Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| | - Catharina Alves-de-Souza
- Departamento de Oceanografía, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepcion, Chile
- Centro de Investigación Oceanográfica COPAS Coastal, Universidad de Concepción, Concepcion, Chile
| | - Jeffrey D Leblond
- Ecology and Evolution Group, Department of Biology, Middle Tennessee State University, Murfreesboro, Tennessee, USA
| |
Collapse
|
3
|
Malla MA, Ansari FA, Bux F, Kumari S. Re-vitalizing wastewater: Nutrient recovery and carbon capture through microbe-algae synergy using omics-biology. ENVIRONMENTAL RESEARCH 2024; 259:119439. [PMID: 38901811 DOI: 10.1016/j.envres.2024.119439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/23/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Increasing amounts of wastewater is the most pervasive and challenging environmental problem globally. Conventional treatment methods are costly and entail huge energy, carbon consumption and greenhouse gas emissions. Owing to their unique ability of carbon capturing and resource recovery, microalgae-microbiome based treatment is a potential approach and is widely used for carbon-neutral wastewater treatment. Microalgae-bacteria synergy (i.e., the functionally beneficial microbial synthetic communities) performs better and enhances carbon-sequestration and nutrient recovery from wastewater treatment plants. This review presents a comprehensive information regarding the potential of microalgae-microbiome as a sustainable agent for wastewater and discusses synergistic approaches for effective nutrient removal. Moreover, this review discusses, the role of omics-biology and Insilco approaches in unravelling and understanding the algae-microbe synergism and their response toward wastewater treatment. Finally, it discusses various microbiome engineering approaches for developing the effective microalgae-bacteria partners for carbon sequestration and nutrient recovery from wastewater, and summarizes future research perspectives on microalgae-microbiome based bioremediation.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faiz Ahmad Ansari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, South Africa.
| |
Collapse
|
4
|
Gan Q, Cui X, Zhang L, Zhou W, Lu Y. Control Phytophagous Nematodes By Engineering Phytosterol Dealkylation Caenorhabditis elegans as a Model. Mol Biotechnol 2024; 66:2769-2777. [PMID: 37843756 DOI: 10.1007/s12033-023-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/25/2023] [Indexed: 10/17/2023]
Abstract
Plant-parasitic nematodes ingest and convert host phytosterols via dealkylation to cholesterol for both structural and hormonal requirements. The insect 24-dehydrocholesterol reductase (DHCR24) was shown in vitro as a committed enzyme in the dealkylation via chemical blocking. However, an increased brood size and ovulation rate, instead compromised development, were observed in the engineered nematode Caenorhabditis elegans where the DHCR24 gene was knocked down, indicating the relationship between DHCR24 and dealkylation and their function in nematodes remains illusive. In this study, a defect in C. elegans DHCR24 causes impaired growth of the nematode with sitosterol (a major component of phytosterols) as a sole sterol source. Plant sterols with rationally designed structure (null substrates for dealkylation) can't be converted to cholesterol in wild-type worms, and their development was completely halted. This study underpins the essential function of DHCR24 in nematodes and would be beneficial for the development of novel nematocidal strategies.
Collapse
Affiliation(s)
- Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China
- School of Tropical Agriculture and Forestry, Hainan University, Haikou Province, 570228, Hainan, China
| | - Xinyu Cui
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China
| | - Lin Zhang
- Shandong Rongchen Pharmaceuticals Inc, Qingdao, 266061, China
| | - Wenxu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China.
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Biology and Fisheries, Hainan University, Hainan Province, 570228, Hainan, China.
- Key Laboratory of Tropical Hydrobiotechnology of Hainan Province, Hainan University, Haikou, 570228, China.
- Haikou Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou, 570228, China.
- Hainan Engineering and Research Center of Marine Bioactives & Bioproducts, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
6
|
Gu X, Deng Y, Wang A, Gan Q, Xin Y, Paithoonrangsarid K, Lu Y. Engineering a marine microalga Chlorella sp. as the cell factory. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:133. [PMID: 37679828 PMCID: PMC10485975 DOI: 10.1186/s13068-023-02384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023]
Abstract
The use of marine microalgae in industrial systems is attractive for converting CO2 into value-added products using saline water and sunlight. The plant nature and demonstrated industrial potential facilitate Chlorella spp. as excellent model organisms for both basic research and commercial application. However, the transformation method has not been developed in marine Chlorella spp., thus genetic engineering is hindered in exploiting the industrial potentialities of these strains. In this study, we provided a transformation protocol for the marine Chlorella strain MEM25, which showed robust characteristics, including high production of proteins and polyunsaturated fatty acids in multiple cultivation systems over various spatial-temporal scales. We showed that transformants could be obtained in a dramatically time-saving manner (comparable to Saccharomyces cerevisiae) with four functional proteins expressed properly. The transgenes are integrated into the genome and can be successfully inherited for more than two years. The development of a marine Chlorella transformation method, in combination with the complete genome, will greatly facilitate more comprehensive mechanism studies and provide possibilities to use this species as chassis for synthetic biology to produce value-added compounds with mutual advantage in neutralization of CO2 in commercial scales.
Collapse
Affiliation(s)
- Xinping Gu
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Ying Deng
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Aoqi Wang
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Qinhua Gan
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Yi Xin
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China
| | - Kalyanee Paithoonrangsarid
- Biochemical Engineering and Systems Biology Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at King Mongkut's University of Technology Thonburi, Bangkok, 10150, Thailand
| | - Yandu Lu
- Single-cell BioEngineering Group, State Key Laboratory of Marine Resource Utilization in South China Sea, School of Marine Life and Aquaculture, Hainan University, Haikou, 570228, China.
- Hainan Provincial Key Laboratory of Tropical Hydrobiotechnology, Hainan University, Haikou, China.
- Haikou Technology Innovation Center for Research and Utilization of Algal Bioresources, Hainan University, Haikou, China.
| |
Collapse
|
7
|
Synergy between microalgae and microbiome in polluted waters. Trends Microbiol 2023; 31:9-21. [PMID: 35985939 DOI: 10.1016/j.tim.2022.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022]
Abstract
Microalga-microbiome interactions are central to both health and disease of aquatic environments. Despite impressive advances in deciphering how microorganisms participate in and impact aquatic ecosystems, the evolution and ecological involvement of microalgae and the microbiome in polluted waters are typically studied independently. Here, the phycosphere (i.e., the consortia of microalgae and the related microbiome) is regarded as an independent and integrated life form, and we summarize the survival strategies exhibited by this symbiont when exposed to anthropogenic pollution. We highlight the cellular strategies and discuss the modulation at the transcriptional and population levels, which reciprocally alters community structure or genome composition for medium-term acclimation or long-term adaptation. We propose a 'PollutantBiome' concept to help the understanding of microalga-microbiome interactions and development of beneficial microbial synthetic communities for pollutant remediation.
Collapse
|
8
|
Wu D, Yang L, Gu J, Tarkowska D, Deng X, Gan Q, Zhou W, Strnad M, Lu Y. A Functional Genomics View of Gibberellin Metabolism in the Cnidarian Symbiont Breviolum minutum. FRONTIERS IN PLANT SCIENCE 2022; 13:927200. [PMID: 36172550 PMCID: PMC9510744 DOI: 10.3389/fpls.2022.927200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/07/2022] [Indexed: 06/16/2023]
Abstract
Dinoflagellate inhabitants of the reef-building corals exchange nutrients and signals with host cells, which often benefit the growth of both partners. Phytohormones serve as central hubs for signal integration between symbiotic microbes and their hosts, allowing appropriate modulation of plant growth and defense in response to various stresses. However, the presence and function of phytohormones in photosynthetic dinoflagellates and their function in the holobionts remain elusive. We hypothesized that endosymbiotic dinoflagellates may produce and employ phytohormones for stress responses. Using the endosymbiont of reef corals Breviolum minutum as model, this study aims to exam whether the alga employ analogous signaling systems by an integrated multiomics approach. We show that key gibberellin (GA) biosynthetic genes are widely present in the genomes of the selected dinoflagellate algae. The non-13-hydroxylation pathway is the predominant route for GA biosynthesis and the multifunctional GA dioxygenase in B. minutum has distinct substrate preference from high plants. GA biosynthesis is modulated by the investigated bleaching-stimulating stresses at both transcriptional and metabolic levels and the exogenously applied GAs improve the thermal tolerance of the dinoflagellate. Our results demonstrate the innate ability of a selected Symbiodiniaceae to produce the important phytohormone and the active involvement of GAs in the coordination and the integration of the stress response.
Collapse
Affiliation(s)
- Dan Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Lin Yang
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Jiahua Gu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Danuse Tarkowska
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Olomouc, Czechia
| | - Xiangzi Deng
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Qinhua Gan
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Wenxu Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany Czech Academy of Sciences, Olomouc, Czechia
| | - Yandu Lu
- State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, China
| |
Collapse
|