1
|
Ford JJ, Santos-Aberturas J, Hems ES, Sallmen JW, Bögeholz LAK, Polturak G, Osbourn A, Wright JA, Rodnina MV, Vereecke D, Francis IM, Truman AW. Identification of the lydiamycin biosynthetic gene cluster in a plant pathogen guides structural revision and identification of molecular target. Proc Natl Acad Sci U S A 2025; 122:e2424388122. [PMID: 40388608 DOI: 10.1073/pnas.2424388122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/07/2025] [Indexed: 05/21/2025] Open
Abstract
The natural products actinonin and matlystatin feature an N-hydroxy-2-pentyl-succinamyl (HPS) chemophore that facilitates metal chelation and confers their metalloproteinase inhibitory activity. Actinonin is the most potent natural inhibitor of peptide deformylase (PDF) and exerts antimicrobial and herbicidal bioactivity by disrupting protein synthesis. Here, we used a genomics-led approach to identify candidate biosynthetic gene clusters (BGCs) hypothesized to produce HPS-containing natural products. We show that one of these BGCs is on the pathogenicity megaplasmid of the plant pathogen Rhodococcus fascians and produces lydiamycin A, a macrocyclic pentapeptide. The presence of genes predicted to make an HPS-like chemophore informed the structural recharacterization of lydiamycin via NMR and crystallography to show that it features a rare 2-pentyl-succinyl chemophore. We demonstrate that lydiamycin A inhibits bacterial PDF in vitro and show that a cluster-situated PDF gene confers resistance to lydiamycin A, representing an uncommon self-immunity mechanism associated with the production of a PDF inhibitor. In planta competition assays showed that lydiamycin enhances the fitness of R. fascians during plant colonization. This study highlights how a BGC can inform the structure, biochemical target, and ecological function of a natural product.
Collapse
Affiliation(s)
- Jonathan J Ford
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Javier Santos-Aberturas
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| | - Edward S Hems
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| | - Joseph W Sallmen
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Lena A K Bögeholz
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Guy Polturak
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - Joseph A Wright
- School of Chemistry, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
| | - Danny Vereecke
- School of Nursing, Howest University of Applied Sciences, Bruges 8200, Belgium
| | - Isolde M Francis
- Department of Biology, California State University, Bakersfield, CA 93311
| | - Andrew W Truman
- Department of Molecular Microbiology, John Innes Centre, Norwich NR4 7UH, United Kingdom
- Centre for Microbial Interactions, Norwich NR4 7UG, United Kingdom
| |
Collapse
|
2
|
Hagar M, Kang S, Andersen RJ, Oh DC, Ryan KS. Targeted isolation of piperazate-containing molecules: bioinformatics and spectroscopy. Curr Opin Microbiol 2025; 84:102584. [PMID: 39956039 DOI: 10.1016/j.mib.2025.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/18/2025]
Abstract
Piperazic acid (Piz) is an intriguing hydrazine-containing amino acid found in a diverse variety of natural products, the majority of which are bioactive. Recently, several approaches have been reported for targeted isolation of Piz-containing molecules, combining spectroscopic techniques for screening Piz moieties with recent advances in Piz biosynthesis. Here, we highlight bioactive natural products recently isolated using these methods and bring into focus structural elucidation challenges impeding the discovery of more Piz-containing molecules.
Collapse
Affiliation(s)
- Mostafa Hagar
- Department of Chemistry, University of British Columbia, Vancouver, Canada; Department of Chemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Raymond J Andersen
- Department of Chemistry, University of British Columbia, Vancouver, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, Canada
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
3
|
Ehinger FJ, Scherlach K, Trottmann F, Fiedler J, Richter I, Hertweck C. A Catch-Release Strategy for the Genomics-Driven Discovery of Antiproliferative Furan-Functionalized Peptides. Angew Chem Int Ed Engl 2025; 64:e202421760. [PMID: 39680015 DOI: 10.1002/anie.202421760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 12/17/2024]
Abstract
Furan-functionalized peptides are of significant pharmacological interest due to their pronounced bioactivities and unique potential for orthogonal bioconjugation and derivatization. However, naturally occurring peptides with furyl side chains are exceedingly rare. This study presents a streamlined method to predict and assess the microbial production of peptides incorporating 3-furylalanine (Fua) moieties. The approach integrates genome mining and the reversible, chemoselective tagging of furyl residues, utilizing their unique Diels-Alder reactivity, for mass-spectrometry-guided identification of candidate compounds. By employing the rhizonin Fua synthase as a bioinformatic handle and through heterologous reconstitution of Fua biosynthesis, we identified previously unknown Fua biosynthetic pathways in diverse bacterial phyla, including actinomycetes, cyanobacteria, actinobacteria, and γ-proteobacteria, suggesting that Fua-containing peptides are remarkably widely distributed. Metabolic profiling by reversible tagging facilitated the detection of Fua-containing metabolites in their native producers. The successful adaptation of this method for solid support enabled the direct enrichment of furyl-substituted peptides from complex mixtures. This multi-pronged approach enabled the discovery and characterization of two novel families of Fua cyclopeptides (rubriamides and typhamides) with potent antiproliferative effects against human tumor cells and nematodes. The innovative catch-and-release strategy, in conjunction with genome mining, represents a valuable tool for the discovery of new furan-substituted natural products.
Collapse
Affiliation(s)
- Friedrich J Ehinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Jonas Fiedler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Beutenbergstraße 11a, 07745, Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
4
|
Jin S, Chen H, Zhang J, Lin Z, Qu X, Jia X, Lei C. Analyzing and engineering of the biosynthetic pathway of mollemycin A for enhancing its production. Synth Syst Biotechnol 2024; 9:445-452. [PMID: 38606205 PMCID: PMC11007384 DOI: 10.1016/j.synbio.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/27/2024] [Accepted: 03/19/2024] [Indexed: 04/13/2024] Open
Abstract
Mollemycin A (MOMA) is a unique glyco-hexadepsipeptide-polyketide that was isolated from a Streptomyces sp. derived from the Australian marine environment. MOMA exhibits remarkable inhibitory activity against both drug-sensitive and multidrug-resistant malaria parasites. Optimizing MOMA through structural modifications or product enhancements is necessary for the development of effective analogues. However, modifying MOMA using chemical approaches is challenging, and the production titer of MOMA in the wild-type strain is low. This study identified and characterized the biosynthetic gene cluster of MOMA for the first time, proposed its complex biosynthetic pathway, and achieved an effective two-pronged enhancement of MOMA production. The fermentation medium was optimized to increase the yield of MOMA from 0.9 mg L-1 to 1.3 mg L-1, a 44% boost. Additionally, a synergistic mutant strain was developed by deleting the momB3 gene and overexpressing momB2, resulting in a 2.6-fold increase from 1.3 mg L-1 to 3.4 mg L-1. These findings pave the way for investigating the biosynthetic mechanism of MOMA, creating opportunities to produce a wide range of MOMA analogues, and developing an efficient strain for the sustainable and economical production of MOMA and its analogues.
Collapse
Affiliation(s)
- Shixue Jin
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Huixue Chen
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jun Zhang
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhi Lin
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xudong Qu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinying Jia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, 4072, Australia
- Department of Biochemistry, National University of Singapore, 14 Medical Dr, Singapore, 117599
| | - Chun Lei
- School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
5
|
Ehinger FJ, Hertweck C. Biosynthesis and recruitment of reactive amino acids in nonribosomal peptide assembly lines. Curr Opin Chem Biol 2024; 81:102494. [PMID: 38936328 DOI: 10.1016/j.cbpa.2024.102494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
Reactive amino acid side chains play important roles in the binding of peptides to specific targets. In addition, their reactivity enables selective peptide conjugation and functionalization for pharmaceutical purposes. Diverse reactive amino acids are incorporated into nonribosomal peptides, which serve as a source for drug candidates. Notable examples include (poly)unsaturated (enamine, alkyne, and furyl) and halogenated residues, strained carbacycles (cyclopropyl and cyclopropanol), small heterocycles (oxirane and aziridine), and reactive N-N functionalities (hydrazones, diazo compounds, and diazeniumdiolates). Their biosynthesis requires diverse biocatalysts for sophisticated reaction mechanisms. Several avenues have been identified for their incorporation into peptides, the recruitment by adenylation domains or ligases, on-line modifications, and enzymatic tailoring reactions. Combined with protein engineering approaches, this knowledge provides new opportunities in synthetic biology and bioorthogonal chemistry.
Collapse
Affiliation(s)
- Friedrich Johannes Ehinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany.
| |
Collapse
|
6
|
Sakata S, Li J, Yasuno Y, Shinada T, Shin-Ya K, Katsuyama Y, Ohnishi Y. Identification of the Cirratiomycin Biosynthesis Gene Cluster in Streptomyces Cirratus: Elucidation of the Biosynthetic Pathways for 2,3-Diaminobutyric Acid and Hydroxymethylserine. Chemistry 2024; 30:e202400271. [PMID: 38456538 DOI: 10.1002/chem.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 03/09/2024]
Abstract
Cirratiomycin, a heptapeptide with antibacterial activity, was isolated and characterized in 1981; however, its biosynthetic pathway has not been elucidated. It contains several interesting nonproteinogenic amino acids, such as (2S,3S)-2,3-diaminobutyric acid ((2S,3S)-DABA) and α-(hydroxymethyl)serine, as building blocks. Here, we report the identification of a cirratiomycin biosynthetic gene cluster in Streptomyces cirratus. Bioinformatic analysis revealed that several Streptomyces viridifaciens and Kitasatospora aureofaciens strains also have this cluster. One S. viridifaciens strain was confirmed to produce cirratiomycin. The biosynthetic gene cluster was shown to be responsible for cirratiomycin biosynthesis in S. cirratus in a gene inactivation experiment using CRISPR-cBEST. Interestingly, this cluster encodes a nonribosomal peptide synthetase (NRPS) composed of 12 proteins, including those with an unusual domain organization: a stand-alone adenylation domain, two stand-alone condensation domains, two type II thioesterases, and two NRPS modules that have no adenylation domain. Using heterologous expression and in vitro analysis of recombinant enzymes, we revealed the biosynthetic pathway of (2S,3S)-DABA: (2S,3S)-DABA is synthesized from l-threonine by four enzymes, CirR, CirS, CirQ, and CirB. In addition, CirH, a glycine/serine hydroxymethyltransferase homolog, was shown to synthesize α-(hydroxymethyl)serine from d-serine in vitro. These findings broaden our knowledge of nonproteinogenic amino acid biosynthesis.
Collapse
Affiliation(s)
- Shunki Sakata
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Jiafeng Li
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yoko Yasuno
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Tetsuro Shinada
- Graduate School of Science, Osaka City University, Sugimoto, Sumiyoshi, Osaka, 558-8585, Japan
| | - Kazuo Shin-Ya
- National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan
| |
Collapse
|
7
|
Strickland KA, Martinez Rodriguez B, Holland AA, Wagner S, Luna-Alva M, Graham DE, Caranto JD. Activity assays of NnlA homologs suggest the natural product N-nitroglycine is degraded by diverse bacteria. Beilstein J Org Chem 2024; 20:830-840. [PMID: 38655556 PMCID: PMC11035981 DOI: 10.3762/bjoc.20.75] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/04/2024] [Indexed: 04/26/2024] Open
Abstract
Linear nitramines (R-N(R')NO2; R' = H or alkyl) are toxic compounds, some with environmental relevance, while others are rare natural product nitramines. One of these natural product nitramines is N-nitroglycine (NNG), which is produced by some Streptomyces strains and exhibits antibiotic activity towards Gram-negative bacteria. An NNG degrading heme enzyme, called NnlA, has recently been discovered in the genome of Variovorax sp. strain JS1663 (Vs NnlA). Evidence is presented that NnlA and therefore, NNG degradation activity is widespread. To achieve this objective, we characterized and tested the NNG degradation activity of five Vs NnlA homologs originating from bacteria spanning several classes and isolated from geographically distinct locations. E. coli transformants containing all five homologs converted NNG to nitrite. Four of these five homologs were isolated and characterized. Each isolated homolog exhibited similar oligomerization and heme occupancy as Vs NnlA. Reduction of this heme was shown to be required for NnlA activity in each homolog, and each homolog degraded NNG to glyoxylate, NO2- and NH4+ in accordance with observations of Vs NnlA. It was also shown that NnlA cannot degrade the NNG analog 2-nitroaminoethanol. The combined data strongly suggest that NnlA enzymes specifically degrade NNG and are found in diverse bacteria and environments. These results imply that NNG is also produced in diverse environments and NnlA may act as a detoxification enzyme to protect bacteria from exposure to NNG.
Collapse
Affiliation(s)
- Kara A Strickland
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | | | - Ashley A Holland
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Shelby Wagner
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - Michelle Luna-Alva
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| | - David E Graham
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Jonathan D Caranto
- Department of Chemistry, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
8
|
García-Gutiérrez C, Pérez-Victoria I, Montero I, Fernández-De la Hoz J, Malmierca MG, Martín J, Salas JA, Olano C, Reyes F, Méndez C. Unearthing a Cryptic Biosynthetic Gene Cluster for the Piperazic Acid-Bearing Depsipeptide Diperamycin in the Ant-Dweller Streptomyces sp. CS113. Int J Mol Sci 2024; 25:2347. [PMID: 38397022 PMCID: PMC10888640 DOI: 10.3390/ijms25042347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Piperazic acid is a cyclic nonproteinogenic amino acid that contains a hydrazine N-N bond formed by a piperazate synthase (KtzT-like). This amino acid, found in bioactive natural products synthesized by non-ribosomal peptide synthetases (NRPSs), confers conformational constraint to peptides, an important feature for their biological activities. Genome mining of Streptomyces strains has been revealed as a strategy to identify biosynthetic gene clusters (BGCs) for potentially active compounds. Moreover, the isolation of new strains from underexplored habitats or associated with other organisms has allowed to uncover new BGCs for unknown compounds. The in-house "Carlos Sialer (CS)" strain collection consists of seventy-one Streptomyces strains isolated from the cuticle of leaf-cutting ants of the tribe Attini. Genomes from twelve of these strains have been sequenced and mined using bioinformatics tools, highlighting their potential to encode secondary metabolites. In this work, we have screened in silico those genomes, using KtzT as a hook to identify BGCs encoding piperazic acid-containing compounds. This resulted in uncovering the new BGC dpn in Streptomyces sp. CS113, which encodes the biosynthesis of the hybrid polyketide-depsipeptide diperamycin. Analysis of the diperamycin polyketide synthase (PKS) and NRPS reveals their functional similarity to those from the aurantimycin A biosynthetic pathway. Experimental proof linking the dpn BGC to its encoded compound was achieved by determining the growth conditions for the expression of the cluster and by inactivating the NRPS encoding gene dpnS2 and the piperazate synthase gene dpnZ. The identity of diperamycin was confirmed by High-Resolution Mass Spectrometry (HRMS) and Nuclear Magnetic Resonance (NMR) and by analysis of the domain composition of modules from the DpnP PKS and DpnS NRPS. The identification of the dpn BGC expands the number of BGCs that have been confirmed to encode the relatively scarcely represented BGCs for depsipeptides of the azinothricin family of compounds and will facilitate the generation of new-to-nature analogues by combinatorial biosynthesis.
Collapse
Affiliation(s)
- Coral García-Gutiérrez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain; (C.G.-G.); (I.M.); (J.F.-D.l.H.); (M.G.M.); (J.A.S.); (C.O.)
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain; (I.P.-V.); (J.M.); (F.R.)
| | - Ignacio Montero
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain; (C.G.-G.); (I.M.); (J.F.-D.l.H.); (M.G.M.); (J.A.S.); (C.O.)
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Jorge Fernández-De la Hoz
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain; (C.G.-G.); (I.M.); (J.F.-D.l.H.); (M.G.M.); (J.A.S.); (C.O.)
| | - Mónica G. Malmierca
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain; (C.G.-G.); (I.M.); (J.F.-D.l.H.); (M.G.M.); (J.A.S.); (C.O.)
| | - Jesús Martín
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain; (I.P.-V.); (J.M.); (F.R.)
| | - José A. Salas
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain; (C.G.-G.); (I.M.); (J.F.-D.l.H.); (M.G.M.); (J.A.S.); (C.O.)
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos Olano
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain; (C.G.-G.); (I.M.); (J.F.-D.l.H.); (M.G.M.); (J.A.S.); (C.O.)
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| | - Fernando Reyes
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, 18016 Granada, Spain; (I.P.-V.); (J.M.); (F.R.)
| | - Carmen Méndez
- Departamento de Biología Funcional e Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A), Universidad de Oviedo, 33006 Oviedo, Spain; (C.G.-G.); (I.M.); (J.F.-D.l.H.); (M.G.M.); (J.A.S.); (C.O.)
- Instituto de Investigación Sanitaria de Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
9
|
Kries H, Trottmann F, Hertweck C. Novel Biocatalysts from Specialized Metabolism. Angew Chem Int Ed Engl 2024; 63:e202309284. [PMID: 37737720 DOI: 10.1002/anie.202309284] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023]
Abstract
Enzymes are increasingly recognized as valuable (bio)catalysts that complement existing synthetic methods. However, the range of biotransformations used in the laboratory is limited. Here we give an overview on the biosynthesis-inspired discovery of novel biocatalysts that address various synthetic challenges. Prominent examples from this dynamic field highlight remarkable enzymes for protecting-group-free amide formation and modification, control of pericyclic reactions, stereoselective hetero- and polycyclizations, atroposelective aryl couplings, site-selective C-H activations, introduction of ring strain, and N-N bond formation. We also explore unusual functions of cytochrome P450 monooxygenases, radical SAM-dependent enzymes, flavoproteins, and enzymes recruited from primary metabolism, which offer opportunities for synthetic biology, enzyme engineering, directed evolution, and catalyst design.
Collapse
Affiliation(s)
- Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743, Jena, Germany
| |
Collapse
|
10
|
Shapiro J, Post SJ, Smith GC, Wuest WM. Total Synthesis of the Reported Structure of Cahuitamycin A: Insights into an Elusive Natural Product Scaffold. Org Lett 2023; 25:9243-9248. [PMID: 38155597 PMCID: PMC10758118 DOI: 10.1021/acs.orglett.3c03993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/13/2023] [Accepted: 12/13/2023] [Indexed: 12/30/2023]
Abstract
In a 2016 screen of natural product extracts, a new family of natural products, the cahuitamycins, was discovered and found to inhibit biofilm formation in the human pathogen Acinetobacter baumannii. The proposed molecular structures contained an unusual piperazic acid residue, which piqued interest related to their structure/function and biosynthesis. Herein we disclose the first total synthesis of the proposed structure of cahuitamycin A in a 12-step longest linear sequence and 18% overall yield. Comparison of spectral and biological data of the authentic natural product and synthetic compound revealed inconsistentancies with the isolated metabolite. We therefore executed the diverted total synthesis of three isomeric compounds, which were also found to be disparate from the isolated natural product. This work sets the stage for future synthetic and biochemical investigations of an important class of natural products.
Collapse
Affiliation(s)
- Justin
A. Shapiro
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Savannah J. Post
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Gavin C. Smith
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
- Emory
Antibiotic Resistance Center, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
11
|
Huang H, Yue L, Deng F, Wang X, Wang N, Chen H, Li H. NMR-Metabolomic Profiling and Genome Mining Drive the Discovery of Cyclic Decapeptides from a Marine Streptomyces. JOURNAL OF NATURAL PRODUCTS 2023; 86:2122-2130. [PMID: 37672645 DOI: 10.1021/acs.jnatprod.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The integration of NMR-metabolomic and genomic analyses can provide enhanced identification of structural properties as well as key biosynthetic information, thus achieving the targeted discovery of new natural products. For this purpose, NMR-based metabolomic profiling of the marine-derived Streptomyces sp. S063 (CGMCC 14582) was performed, by which N-methylated peptides possessing unusual negative 1H NMR chemical shift values were tracked. Meanwhile, genome mining of this strain revealed the presence of an unknown NRPS gene cluster (len) with piperazic-acid-encoding genes (lenE and lenF). Under the guidance of the combined information, two cyclic decapeptides, lenziamides D1 (1) and B1 (2), were isolated from Streptomyces sp. S063, which contains piperazic acids with negative 1H NMR values. The structures of 1 and 2 were determined by extensive spectroscopic analysis combined with Marfey's method and ECD calculations. Furthermore, we provided a detailed model of lenziamide (1 and 2) biosynthesis in Streptomyces sp. S063. In the cytotoxicity evaluation, 1 and 2 showed moderate growth inhibition against the human cancer cells HEL, H1975, H1299, and drug-resistant A549-taxol with IC50 values of 8-24 μM.
Collapse
Affiliation(s)
- Huiming Huang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Liangguang Yue
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Fayu Deng
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Xiaoyu Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Ning Wang
- School of Life Sciences, Liaocheng University, Liaocheng 252000, China
| | - Hu Chen
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
| | - Huayue Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
12
|
Shin D, Byun WS, Kang S, Kang I, Bae ES, An JS, Im JH, Park J, Kim E, Ko K, Hwang S, Lee H, Kwon Y, Ko YJ, Hong S, Nam SJ, Kim SB, Fenical W, Yoon YJ, Cho JC, Lee SK, Oh DC. Targeted and Logical Discovery of Piperazic Acid-Bearing Natural Products Based on Genomic and Spectroscopic Signatures. J Am Chem Soc 2023; 145:19676-19690. [PMID: 37642383 DOI: 10.1021/jacs.3c04699] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A targeted and logical discovery method was devised for natural products containing piperazic acid (Piz), which is biosynthesized from ornithine by l-ornithine N-hydroxylase (KtzI) and N-N bond formation enzyme (KtzT). Genomic signature-based screening of a bacterial DNA library (2020 strains) using polymerase chain reaction (PCR) primers targeting ktzT identified 62 strains (3.1%). The PCR amplicons of KtzT-encoding genes were phylogenetically analyzed to classify the 23 clades into two monophyletic groups, I and II. Cultivating hit strains in media supplemented with 15NH4Cl and applying 1H-15N heteronuclear multiple bond correlation (HMBC) along with 1H-15N heteronuclear single quantum coherence (HSQC) and 1H-15N HSQC-total correlation spectroscopy (HSQC-TOCSY) NMR experiments detected the spectroscopic signatures of Piz and modified Piz. Chemical investigation of the hit strains prioritized by genomic and spectroscopic signatures led to the identification of a new azinothricin congener, polyoxyperuin B seco acid (1), previously reported chloptosin (2) in group I, depsidomycin D (3) incorporating two dehydropiperazic acids (Dpz), and lenziamides A and B (4 and 5), structurally novel 31-membered cyclic decapeptides in group II. By consolidating the phylogenetic and chemical analyses, clade-structure relationships were elucidated for 19 of the 23 clades. Lenziamide A (4) inhibited STAT3 activation and induced G2/M cell cycle arrest, apoptotic cell death, and tumor growth suppression in human colorectal cancer cells. Moreover, lenziamide A (4) resensitized 5-fluorouracil (5-FU) activity in both in vitro cell cultures and the in vivo 5-FU-resistant tumor xenograft mouse model. This work demonstrates that the genomic and spectroscopic signature-based searches provide an efficient and general strategy for new bioactive natural products containing specific structural motifs.
Collapse
Affiliation(s)
- Daniel Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Woong Sub Byun
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Eun Seo Bae
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hyeon Im
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyoon Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunji Kim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Keebeom Ko
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunghoon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Honghui Lee
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yun Kwon
- Research Institute of Pharmaceutical Science, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Yoon-Joo Ko
- Laboratory of Nuclear Magnetic Resonance, National Center for Inter-University Research Facilities (NCIRF), Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Natural Products Research Institute and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Seung Bum Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California 92093, United States
| | - Yeo Joon Yoon
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- MolGenBio Co., Ltd., Seoul 08826, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Stephan P, Langley C, Winkler D, Basquin J, Caputi L, O'Connor SE, Kries H. Directed Evolution of Piperazic Acid Incorporation by a Nonribosomal Peptide Synthetase. Angew Chem Int Ed Engl 2023; 62:e202304843. [PMID: 37326625 DOI: 10.1002/anie.202304843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023]
Abstract
Engineering of biosynthetic enzymes is increasingly employed to synthesize structural analogues of antibiotics. Of special interest are nonribosomal peptide synthetases (NRPSs) responsible for the production of important antimicrobial peptides. Here, directed evolution of an adenylation domain of a Pro-specific NRPS module completely switched substrate specificity to the non-standard amino acid piperazic acid (Piz) bearing a labile N-N bond. This success was achieved by UPLC-MS/MS-based screening of small, rationally designed mutant libraries and can presumably be replicated with a larger number of substrates and NRPS modules. The evolved NRPS produces a Piz-derived gramicidin S analogue. Thus, we give new impetus to the too-early dismissed idea that widely accessible low-throughput methods can switch the specificity of NRPSs in a biosynthetically useful fashion.
Collapse
Affiliation(s)
- Philipp Stephan
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Chloe Langley
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Daniela Winkler
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| | - Jérôme Basquin
- Department of Structural Cell Biology, Max Planck Institute for Biochemistry, Am Klopferspitz 18, 82152, Planegg Martinsried, Germany
| | - Lorenzo Caputi
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Sarah E O'Connor
- Department of Natural Product Biosynthesis, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745, Jena, Germany
| | - Hajo Kries
- Junior Research Group Biosynthetic Design of Natural Products, Leibniz Institute for Natural Product Research and Infection Biology (HKI), Beutenbergstr. 11a, 07745, Jena, Germany
| |
Collapse
|
14
|
Morgan KD. The use of nitrogen-15 in microbial natural product discovery and biosynthetic characterization. Front Microbiol 2023; 14:1174591. [PMID: 37234518 PMCID: PMC10206073 DOI: 10.3389/fmicb.2023.1174591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
This mini-review covers the use of nitrogen-15 in bacterial and fungal natural product discovery and biosynthetic characterization from 1970 to 2022. Nitrogen is an important element in a number of bioactive and structurally intriguing natural products including alkaloids, non-ribosomal peptides, and hybrid natural products. Nitrogen-15 can be detected at natural abundance utilizing two-dimensional nuclear magnetic resonance and mass spectrometry. Additionally, it is a stable isotope that can be added to growth media for both filamentous fungi and bacteria. With stable isotope feeding, additional two-dimensional nuclear magnetic resonance and mass spectrometry strategies have become available, and there is a growing trend to use nitrogen-15 stable isotope feeding for the biosynthetic characterization of natural products. This mini-review will catalog the use of these strategies, analyze the strengths and weaknesses of the different approaches, and suggest future directions for the use of nitrogen-15 in natural product discovery and biosynthetic characterization.
Collapse
|
15
|
Jian BS, Chiou SL, Hsu CC, Ho J, Wu YW, Chu J. Bioinformatic Analysis Reveals both Oversampled and Underexplored Biosynthetic Diversity in Nonribosomal Peptides. ACS Chem Biol 2023; 18:476-483. [PMID: 36820820 PMCID: PMC10028606 DOI: 10.1021/acschembio.2c00761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The traditional natural product discovery approach has accessed only a fraction of the chemical diversity in nature. The use of bioinformatic tools to interpret the instructions encoded in microbial biosynthetic genes has the potential to circumvent the existing methodological bottlenecks and greatly expand the scope of discovery. Structural prediction algorithms for nonribosomal peptides (NRPs), the largest family of microbial natural products, lie at the heart of this new approach. To understand the scope and limitation of the existing prediction algorithms, we evaluated their performances on NRP synthetase biosynthetic gene clusters. Our systematic analysis shows that the NRP biosynthetic landscape is uneven. Phenylglycine and its derivatives as a group of NRP building blocks (BBs), for example, have been oversampled, reflecting an extensive historical interest in the glycopeptide antibiotics family. In contrast, the benzoyl BB, including 2,3-dihydroxybenzoate (DHB), has been the most underexplored, hinting at the possibility of a reservoir of as yet unknown DHB containing NRPs with functional roles other than a siderophore. Our results also suggest that there is still vast unexplored biosynthetic diversity in nature, and the analysis presented herein shall help guide and strategize future natural product discovery campaigns. We also discuss possible ways bioinformaticians and biochemists could work together to improve the existing prediction algorithms.
Collapse
Affiliation(s)
- Bo-Siyuan Jian
- Department of Computer Science and Information Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Shao-Lun Chiou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chun-Chia Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Josh Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 10675, Taiwan
- Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei 10675, Taiwan
- TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 10675, Taiwan
| | - John Chu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
16
|
Martinet L, Naômé A, Rezende LCD, Tellatin D, Pignon B, Docquier JD, Sannio F, Baiwir D, Mazzucchelli G, Frédérich M, Rigali S. Lunaemycins, New Cyclic Hexapeptide Antibiotics from the Cave Moonmilk-Dweller Streptomyces lunaelactis MM109 T. Int J Mol Sci 2023; 24:ijms24021114. [PMID: 36674628 PMCID: PMC9866976 DOI: 10.3390/ijms24021114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Streptomyces lunaelactis strains have been isolated from moonmilk deposits, which are calcium carbonate speleothems used for centuries in traditional medicine for their antimicrobial properties. Genome mining revealed that these strains are a remarkable example of a Streptomyces species with huge heterogeneity regarding their content in biosynthetic gene clusters (BGCs) for specialized metabolite production. BGC 28a is one of the cryptic BGCs that is only carried by a subgroup of S. lunaelactis strains for which in silico analysis predicted the production of nonribosomal peptide antibiotics containing the non-proteogenic amino acid piperazic acid (Piz). Comparative metabolomics of culture extracts of S. lunaelactis strains either holding or not holding BGC 28a combined with MS/MS-guided peptidogenomics and 1H/13C NMR allowed us to identify the cyclic hexapeptide with the amino acid sequence (D-Phe)-(L-HO-Ile)-(D-Piz)-(L-Piz)-(D-Piz)-(L-Piz), called lunaemycin A, as the main compound synthesized by BGC 28a. Molecular networking further identified 18 additional lunaemycins, with 14 of them having their structure elucidated by HRMS/MS. Antimicrobial assays demonstrated a significant bactericidal activity of lunaemycins against Gram-positive bacteria, including multi-drug resistant clinical isolates. Our work demonstrates how an accurate in silico analysis of a cryptic BGC can highly facilitate the identification, the structural elucidation, and the bioactivity of its associated specialized metabolites.
Collapse
Affiliation(s)
- Loïc Martinet
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium
| | - Aymeric Naômé
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium
| | | | - Déborah Tellatin
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
| | - Bernard Pignon
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
| | - Jean-Denis Docquier
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Filomena Sannio
- Dipartimento di Biotecnologie Mediche, University of Siena, Viale Bracci 16, 53100 Siena, Italy
| | - Dominique Baiwir
- GIGA Proteomics Facility, University of Liege, B-4000 Liege, Belgium
| | - Gabriel Mazzucchelli
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, B-4000 Liege, Belgium
| | - Michel Frédérich
- Laboratory of Pharmacognosy, Center of Interdisciplinary Research on Medicines (CIRM), University of Liege, B-4000 Liege, Belgium
| | - Sébastien Rigali
- InBioS—Centre for Protein Engineering, Institut de Chimie B6a, University of Liège, B-4000 Liege, Belgium
- Hedera-22, Boulevard du Rectorat 27b, B-4000 Liege, Belgium
- Correspondence:
| |
Collapse
|
17
|
Zhao S, Xia Y, Liu H, Cui T, Fu P, Zhu W. A Cyclohexapeptide and Its Rare Glycosides from Marine Sponge-Derived Streptomyces sp. OUCMDZ-4539. Org Lett 2022; 24:6750-6754. [PMID: 36073973 DOI: 10.1021/acs.orglett.2c02520] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pyridapeptide A (1), a cyclohexapeptide containing hexahydropyridazine-3-carboxylic acid (HPDA), 5-hydroxytetrahydropyridazine-3-carboxylic acid (γ-OH-TPDA), and (2S,3R,4E,6E)-2-amino-3-hydroxy-8-methylnona-4,6-dienoic acid residues, and its four glycopeptides, pyridapeptides B-E (2-5, respectively), were isolated from the fermentation broth of the marine sponge-derived Streptomyces sp. OUCMDZ-4539. Their structures were determined on the basis of spectroscopic analysis and chemical methods. Pyridapeptides B-E have one or more 2,3,6-trideoxyhexose sugar units glycosylated at the γ-OH-TPDA residue. The biosynthetic pathways were proposed on the basis of gene cluster analysis. Compounds 4 and 5, containing four sugar groups, displayed significant antiproliferative activity against five human cancer cell lines (PC9, MKN45, HepG2, HCT-116, and K562).
Collapse
Affiliation(s)
- Shuige Zhao
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yuwei Xia
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Haishan Liu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Tongxu Cui
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Peng Fu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Weiming Zhu
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China.,Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| |
Collapse
|
18
|
Hill RA, Sutherland A. Hot off the Press. Nat Prod Rep 2022. [DOI: 10.1039/d2np90034c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A personal selection of 32 recent papers is presented covering various aspects of current developments in bioorganic chemistry and novel natural products such as hyjapone A from Hypericum japonicum.
Collapse
Affiliation(s)
- Robert A. Hill
- School of Chemistry, Glasgow University, Glasgow, G12 8QQ, UK
| | | |
Collapse
|