1
|
Ji H, Abdalkarim SYH, Nie R, Yu HY. Functionalization of slow-release fertilizers and "passive predation microplastics" mechanism for polylactic acid composites. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137853. [PMID: 40073567 DOI: 10.1016/j.jhazmat.2025.137853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/24/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
The large-scale use of nonrenewable plastic mulch has resulted in serious agricultural health pollution. Biobased plastic materials with degradable properties offer attractive sustainable alternatives, but the shortcomings of their properties are slow degradation and extremely monofunctional, making their full-scale promotion still challenging. This work proposes a novel functionalized strategy for the multifunctionality empowerment of bio-based PLA materials for environmental protection and crop yield enhancement. This strategy relies on the effective combination of amine-modified lignin hybrid filler (L-U) and PLA matrix, which generates a hydrogen bonding network that can effectively synergize to improve crystalline ability and mechanical properties of PLA. In addition, L-U can effectively increase the PLA matrix degradation sites and improve its hydrophilicity to enhance its degradation properties further. In agricultural mulch, the functionalized materials (PLU) have high water insulation, biodegradability, and excellent slow release of nutrients, which can effectively improve the utilization of fertilizers and reduce the dependence of industrial fertilizers in agricultural systems. In addition, the "passive predation" mode of plants on bio-based polyester-based micron-sized microplastics was explored, which can better understand the adsorption characteristics of biopolyester-based micron-sized microplastics on plants, thus reducing the potential risk to food yield, quality, and safety.
Collapse
Affiliation(s)
- Haibin Ji
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Somia Yassin Hussain Abdalkarim
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruoxi Nie
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Hou-Yong Yu
- The Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
2
|
Park SB, Kwak H, Lee D, Shin G, Jang M, Jung H, Jeon H, Kim HJ, Park J, Oh DX. Development of Marine-Degradable Poly(Ester Amide)s with Strong, Up-Scalable, and Up-Cyclable Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417266. [PMID: 39690836 DOI: 10.1002/adma.202417266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Indexed: 12/19/2024]
Abstract
Biodegradable polyesters provide an attractive alternative to non-degradable plastics but often encounter a tradeoff between biodegradability and mechanical properties because esters are rotational and lack hydrogen bonds. Conversely, natural polyamides, i.e., silk exhibit excellent mechanical strength because amides are non-rotational and form hydrogen bonds. Unlike esters, the nitrogen in amides can enhance microbial biodegradation. However, protein engineering exhibits limited productivity, and artificial polyamides, i.e., nylon remain non-degradable due to their hydrophobic nature. Herein, a method is proposed for developing poly(ester amide)s (PEA)s, a polyester and polyamide hybrid, to address prevailing production challenges. These materials are synthesized from upcycled monomers in a 10 L reactor and converted into films and yarns. They achieve a tensile strength of 109 MPa and tenacity of 5.0 g de-1, while withstanding ironing temperatures. They achieve a remarkable 92% marine biodegradability in 12 months, which is rarely attained by current bioplastics, and exhibit low environmental impact in terms of greenhouse gas emissions. While biodegradable polyesters have remained within the performance range of commodity plastics, PEAs fall into the high-performance category, potentially reaching markets that existing biodegradable plastics have not, such as fishing lines and clothing.
Collapse
Affiliation(s)
- Sung Bae Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Dohoon Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Min Jang
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
- Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Jeyoung Park
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea
| | - Dongyeop X Oh
- Department of Polymer Science and Engineering and Program in Environmental and Polymer Engineering, Inha University, Incheon, 22212, Republic of Korea
| |
Collapse
|
3
|
Wang Y, Li C, Tan C, Chen C. Integrated Ziegler-Natta/Brookhart-Ni Catalysts for the Synthesis of Sutured Polar High-Impact Polypropylenes. Angew Chem Int Ed Engl 2025; 64:e202417849. [PMID: 39487628 DOI: 10.1002/anie.202417849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/30/2024] [Indexed: 11/04/2024]
Abstract
The direct synthesis of polar high-impact polypropylenes using industrially-preferred heterogeneous catalysts is challenging due to the poisoning of polar functional groups towards metal center and the high stereo-selectivity requirement. In this work, dual-site catalysts combining Ziegler-Natta and Brookhart-Ni catalysts were used to produce polar polyolefin ionomers, followed by polar high-impact polypropylenes containing isotactic polypropylene and branched polyethylene as toughening agents. Three combination modes between these catalysts were investigated, including mixed, core-shell, and integrated types. The integrated dual-site catalyst achieved the optimal material properties because the polyolefin ionomer acted as a suture molecule that stitched different components into a whole network. This produced sutured polar high-impact polypropylenes with excellent mechanical properties and compatibility with polar substances. The restraining effect of the suture molecules greatly reduced the release of microplastic particles after aging. Moreover, the obtained polar high-impact polypropylene can serve as an efficient compatibilizer to recycle polyethylene/polypropylene mixed-waste plastics. This work provides an appealing and potentially practical strategy to upgrade the widely used polypropylenes and to alleviate the ever-growing plastic pollution issue.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Chao Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Chen Tan
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei, 230601, China
| | - Changle Chen
- Key Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Park SU, Seo HJ, Seo YH, Park JY, Kim H, Cho WY, Lee PC, Lee BY. Ductile Copolyesters Prepared Using Succinic Acid, 1,4-Butanediol, and Bis(2-hydroxyethyl) Terephthalate with Minimizing Generation of Tetrahydrofuran. Polymers (Basel) 2024; 16:519. [PMID: 38399897 PMCID: PMC10891720 DOI: 10.3390/polym16040519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Poly(1,4-butylene succinate) (PBS) is a promising sustainable and biodegradable synthetic polyester. In this study, we synthesized PBS-based copolyesters by incorporating 5-20 mol% of -O2CC6H4CO2- and -OCH2CH2O- units through the polycondensation of succinic acid (SA) with 1,4-butanediol (BD) and bis(2-hydroxyethyl) terephthalate (BHET). Two different catalysts, H3PO4 and the conventional catalyst (nBuO)4Ti, were used comparatively in the synthesis process. The copolyesters produced using the former were treated with M(2-ethylhexanoate)2 (M = Mg, Zn, Mn) to connect the chains through ionic interactions between M2+ ions and either -CH2OP(O)(OH)O- or (-CH2O)2P(O)O- groups. By incorporating BHET units (i.e., -O2CC6H4CO2- and -OCH2CH2O-), the resulting copolyesters exhibited improved ductile properties with enhanced elongation at break, albeit with reduced tensile strength. The copolyesters prepared with H3PO4/M(2-ethylhexanoate)2 displayed a less random distribution of -O2CC6H4CO2- and -OCH2CH2O- units, leading to a faster crystallization rate, higher Tm value, and higher yield strength compared to those prepared with (nBuO)4Ti using the same amount of BHET. Furthermore, they displayed substantial shear-thinning behavior in their rheological properties due to the presence of long-chain branches of (-CH2O)3P=O units. Unfortunately, the copolyesters prepared with H3PO4/M(2-ethylhexanoate)2, and hence containing M2+, -CH2OP(O)(OH)O-, (-CH2O)2P(O)O- groups, did not exhibit enhanced biodegradability under ambient soil conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea; (S.U.P.); (H.J.S.); (Y.H.S.); (J.Y.P.); (H.K.); (W.Y.C.); (P.C.L.)
| |
Collapse
|
5
|
Seo HJ, Seo YH, Park SU, Lee HJ, Lee MR, Park JH, Cho WY, Lee PC, Lee BY. Glycerol-derived organic carbonates: environmentally friendly plasticizers for PLA. RSC Adv 2024; 14:4702-4716. [PMID: 38318613 PMCID: PMC10840682 DOI: 10.1039/d3ra08922c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Polylactic acid (PLA) stands as a promising material, sourced from renewables and exhibiting biodegradability-albeit under stringent industrial composting settings. A primary challenge impeding PLA's broad applications is its inherent brittleness, as it fractures with minimal elongation despite its commendable tensile strength. A well-established remedy involves blending PLA with plasticizers. In this study, a range of organic carbonates-namely, 4-ethoxycarbonyloximethyl-[1,3]dioxolan-2-one (1), 4-methoxycarbonyloximethyl-[1,3]dioxolan-2-one (2), glycerol carbonate (3), and glycerol 1-acetate 2,3-carbonate (4)-were synthesized on a preparative scale (∼100 g), using renewable glycerol and CO2-derived diethyl carbonate (DEC) or dimethyl carbonate (DMC). Significantly, 1-4 exhibited biodegradability under ambient conditions within a week, ascertained through soil exposure at 25 °C-outpacing the degradation of comparative cellulose. Further investigations revealed 1's efficacy as a PLA plasticizer. Compatibility with PLA, up to 30 phr (parts per hundred resin), was verified using an array of techniques, including DSC, DMA, SEM, and rotational rheometry. The resulting blends showcased enhanced ductility, evident from tensile property measurements. Notably, the novel plasticizer 1 displayed an advantage over conventional acetyltributylcitrate (ATBC) in terms of morphological stability. Slow crystallization, observed in PLA/ATBC blends over time at room temperature, was absent in PLA/1 blends, preserving amorphous domain dimensions and mitigating plasticizer migration-confirmed through DMA assessments of aged and unaged specimens. Nevertheless, biodegradation assessments of the blends revealed that the biodegradable organic carbonate plasticizers did not augment PLA's biodegradation. The PLA in the blends remained mostly unchanged under ambient soil conditions of 25 °C over a 6 month period. This work underscores the potential of organic carbonates as both eco-friendly plasticizers for PLA and as biodegradable compounds, contributing to the development of environmentally conscious polymer systems.
Collapse
Affiliation(s)
- Hyeon Jeong Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Yeong Hyun Seo
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Sang Uk Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Hyun Ju Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Mi Ryu Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Jun Hyeong Park
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Woo Yeon Cho
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Pyung Cheon Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| | - Bun Yeoul Lee
- Department of Molecular Science and Technology, Ajou University Suwon 16499 South Korea +82-31-219-2394 +82-31-219-1844
| |
Collapse
|
6
|
Saumer A, Mecking S. Recyclable and Degradable Ionic-Substituted Long-Chain Polyesters. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:12414-12422. [PMID: 37621695 PMCID: PMC10445281 DOI: 10.1021/acssuschemeng.3c03141] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/07/2023] [Indexed: 08/26/2023]
Abstract
Ionic groups can endow apolar polymers like polyethylene with desirable traits like adhesion with polar compounds. While ethylene copolymers provide a wide range of tunability via the carboxylate content and neutralization with different cations, they lack degradability or suitability for chemical recycling due to their all-carbon backbones. Here, we report ion-containing long-chain polyesters with low amounts of ionic groups (Mn = 50-60 kg/mol, <0.5 mol % of ionic monomers) which can be synthesized from plant oils and exhibit HDPE-like character in their structural and mechanical properties. In the sulfonic acid as well as neutralized sulfonate-containing polyesters, the nature of the cation counterions (Mg2+, Ca2+, and Zn2+) significantly impacts the mechanical properties and melt rheology. Acid-containing polyesters exhibit a relatively high capability to absorb water and are susceptible to abiotic degradation. Enhanced surface wettability is reflected by facilitation of printing on films of these polymers. Depolymerization by methanolysis to afford the neat long-chain monomers demonstrates the suitability for chemical recycling. The surface properties of the neutralized sulfonate-containing polyesters are enhanced, showing a higher adsorption capability. Our findings allow for tuning the properties of recyclable polyethylene-like polymers and widen the scope of these promising materials.
Collapse
Affiliation(s)
- Anne Saumer
- Department of Chemistry, University
of Konstanz, Universitätsstraße
10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University
of Konstanz, Universitätsstraße
10, 78457 Konstanz, Germany
| |
Collapse
|