1
|
Deng P, Zhang Y, Xu L, Lyu J, Li L, Sun F, Zhang WB, Gao H. Computational discovery and systematic analysis of protein entangling motifs in nature: from algorithm to database. Chem Sci 2025; 16:8998-9009. [PMID: 40271025 PMCID: PMC12013726 DOI: 10.1039/d4sc08649j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/29/2025] [Indexed: 04/25/2025] Open
Abstract
Nontrivial protein topology has the potential to revolutionize protein engineering by enabling the manipulation of proteins' stability and dynamics. However, the rarity of topological proteins in nature poses a challenge for their design, synthesis and application, primarily due to the limited number of available entangling motifs as synthetic templates. Discovering these motifs is particularly difficult, as entanglement is a subtle structural feature that is not readily discernible from protein sequences. In this study, we developed a streamlined workflow enabling efficient and accurate identification of structurally reliable and applicable entangling motifs from protein sequences. Through this workflow, we automatically curated a database of 1115 entangling protein motifs from over 100 thousand sequences in the UniProt Knowledgebase. In our database, 73.3% of C2 entangling motifs and 80.1% of C3 entangling motifs exhibited low structural similarity to known protein structures. The entangled structures in the database were categorized into different groups and their functional and biological significance were analyzed. The results were summarized in an online database accessible through a user-friendly web platform, providing researchers with an expanded toolbox of entangling motifs. This resource is poised to significantly advance the field of protein topology engineering and inspire new research directions in protein design and application.
Collapse
Affiliation(s)
- Puqing Deng
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Yuxuan Zhang
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
| | - Jinyu Lyu
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Linyan Li
- Department of Data Science, City University of Hong Kong Kowloon Hong Kong
| | - Fei Sun
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China
- AI for Science (AI4S)-Preferred Program, Shenzhen Graduate School, Peking University Shenzhen 518055 P. R. China
| | - Hanyu Gao
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology Clear Water Bay Hong Kong
| |
Collapse
|
2
|
Deng P, Xu L, Wei Y, Sun F, Li L, Zhang WB, Gao H. Deep Learning-Assisted Discovery of Protein Entangling Motifs. Biomacromolecules 2025; 26:1520-1529. [PMID: 39937127 DOI: 10.1021/acs.biomac.4c01243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
Natural topological proteins exhibit unique properties including enhanced stability, controlled quaternary structures, and dynamic switching properties, highlighting topology as a unique dimension in protein engineering. Although artificial design and synthesis of topological proteins have achieved certain success, their diversity and complexity remain rather limited due to the scarcity of available entangling motifs essential for the construction of nontrivial protein topologies. In this work, we developed a deep-learning model to predict the entanglement features of a homodimer based solely on its amino acid sequence via the Gauss linking number matrices. The model achieved a search speed that was dozens of times faster than AlphaFold-Multimer, while maintaining comparable mean squared error. It was used to screen for entangling motifs from the genome of a hyperthermophilic archaeon. We demonstrated the effectiveness of our model by successful wet-lab synthesis of protein catenanes using two candidate entangling motifs. These findings show the great potential of our model for advancing the design and synthesis of novel topological proteins.
Collapse
Affiliation(s)
- Puqing Deng
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Ying Wei
- College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, P. R. China
| | - Fei Sun
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| | - Linyan Li
- Department of Data Science, City University of Hong Kong, Kowloon 999077, Hong Kong
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
- AI for Science (AI4S)-Preferred Program, Shenzhen Graduate School, Peking University, Shenzhen 518055, P. R. China
| | - Hanyu Gao
- Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Clear Water Bay 999077, Hong Kong
| |
Collapse
|
3
|
Sun X, Wang D, Chang S, Yin L, Zhang H, Ji S, Fei H, Jin Y. Development of Cytolytic Iridium-Complexed Octaarginine Peptide Albumin Nanomedicine for Hepatocellular Carcinoma Treatment. Int J Nanomedicine 2025; 20:2395-2409. [PMID: 40027874 PMCID: PMC11871924 DOI: 10.2147/ijn.s502257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/21/2025] [Indexed: 03/05/2025] Open
Abstract
Objective Hepatocellular carcinoma is one of the most challenging malignancies and has high incidence and mortality rates worldwide. Digital subtraction angiography (DSA)-guided hepatic arterial infusion of the standard chemotherapeutic agent oxaliplatin (OXA) has the advantages of both precision and efficacy, making it an important therapeutic strategy for advanced-stage liver cancer. However, patients receiving this treatment still face severe systemic toxicity and poor tolerability of oxaliplatin. Methods In this study, we compared oxaliplatin with novel albumin-formulated oncolytic peptide nanoparticles, Ir-cR8 (abbreviated as iPep), in the treatment of orthotopic liver cancer in a mouse model by intravenous injection and in a rabbit model via DSA-guided hepatic arterial infusion. Results The results showed that intravenous Ir-cR8-BSA-NPs had enhanced inhibitory effects to the growth of H22 ectopic liver tumors in mice and also with reduced toxicity in animals compared to OXA treatment. Specifically, Ir-cR8-BSA-NPs-treated mice showed approximately 92% tumor growth inhibition compared to approximately 88% for OXA. In the rabbit VX2 ectopic hepatocellular carcinoma model, Ir-cR8-BSA-NPs demonstrated significantly stronger inhibition (P<0.01) of tumor size compared to OXA, as assessed by PET/CT imaging, with SUV values decreasing from 5.15±0.46 to 2.52±0.57, compared to OXA-treated group, which decreased from 5.44±0.43 to 3.90±0.24. Furthermore, Ir-cR8- BSA-NPs significantly improved stability by albumin encapsulation and reduced hemolytic toxicity (P<0.001), resulting in improved therapeutic efficacy. Conclusion This study demonstrated the combined advantages of a novel membrane-active oncolytic peptide nanomedicine and precise drug delivery enabled by arterial infusion technology for the interventional treatment of liver cancer.
Collapse
Affiliation(s)
- Xingwei Sun
- Department of Interventional Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Di Wang
- Department of Interventional Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Shiwei Chang
- Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People’s Republic of China
| | - Liang Yin
- Department of Interventional Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Hao Zhang
- Department of Interventional Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| | - Shuangshuang Ji
- Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People’s Republic of China
| | - Hao Fei
- Nanobiomedicine Division, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, People’s Republic of China
| | - Yong Jin
- Department of Interventional Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People’s Republic of China
| |
Collapse
|
4
|
Chen M, Miao S, Zhang Y, Chang X, Dai J, Chen C, Li S, Li H, Xia F. Precise Preparation of Supramolecular Spherical Nucleic Acids for Nucleolin-Targeted Gene Delivery. Angew Chem Int Ed Engl 2024; 63:e202410744. [PMID: 39177424 DOI: 10.1002/anie.202410744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Molecular spherical nucleic acids (m-SNAs) are a second generation of spherical nucleic acids (SNAs), which are of significance in potential application of targeted delivery of nucleic acids or gene regulation due to their defined molecular structures. Nevertheless, m-SNAs typically involve a single DNA sequence which greatly limits its functions as either targeting purpose or gene regulation. In response, we proposed here a third generation, supramolecular spherical nucleic acids (Supra-SNAs) with two different sequences to achieve both above-mentioned functions. Specifically, we constructed a series of supramolecular self-assembly structures by coupling a cell membrane receptor (i.e., nucleolin)-recognizing aptamer (AS1411)-modified adamantine as targeting probe and human epithelial growth factor receptor 2 (HER2) antisense-functionalized β-cyclodextrin to specifically inhibit the overexpression of HER2 proteins for gene regulations. In comparison to the m-SNA precursors, such Supra-SNA structures exhibited enhanced levels of resistance to nuclease degradation, cellular uptake, gene regulation capabilities and tumor retention capacity. We demonstrated that Supra-SNAs exhibited optimal cell suppression rates and cell apoptosis via a phosphatidylinositol 3-kinase/protein kinase B signaling pathway. The well-defined molecular structures provide an attractive platform for investigating interrelationship between structure and property at the molecular level.
Collapse
Affiliation(s)
- Ming Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yaqi Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Xueman Chang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chuxin Chen
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
5
|
Li Z, Song K, Chen Y, Huang Q, You L, Yu L, Chen B, Yuan Z, Xu Y, Su Y, Da L, Zhu X, Dong R. Sequence-encoded bioactive protein-multiblock polymer conjugates via quantitative one-pot iterative living polymerization. Nat Commun 2024; 15:6729. [PMID: 39112493 PMCID: PMC11306232 DOI: 10.1038/s41467-024-51122-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Protein therapeutics are essential in treating various diseases, but their inherent biological instability and short circulatory half-lives in vivo pose challenges. Herein, a quantitative one-pot iterative living polymerization technique is reported towards precision control over the molecular structure and monomer sequence of protein-polymer conjugates, aiming to maximize physicochemical properties and biological functions of proteins. Using this quantitative one-pot iterative living polymerization technique, we successfully develop a series of sequence-controlled protein-multiblock polymer conjugates, enhancing their biostability, pharmacokinetics, cellular uptake, and in vivo biodistribution. All-atom molecular dynamics simulations are performed to disclose the definite sequence-function relationship of the bioconjugates, further demonstrating their sequence-encoded cellular uptake behavior and in vivo biodistribution in mice. Overall, this work provides a robust approach for creating precision protein-polymer conjugates with defined sequences and advanced functions as a promising candidate in disease treatment.
Collapse
Affiliation(s)
- Ziying Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Kaiyuan Song
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yu Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Qijing Huang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Lujia You
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Li Yu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Baiyang Chen
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Zihang Yuan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqin Xu
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China
| | - Yue Su
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Lintai Da
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Frontiers Science Centre for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, China
| | - Ruijiao Dong
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
6
|
Liu Y, Tian X, Zhang F, Zhang WB. Probing the Topological Effects on Stability Enhancement and Therapeutic Performance of Protein Bioconjugates: Tadpole, Macrocycle versus Figure-of-Eight. Adv Healthc Mater 2024:e2400466. [PMID: 39091049 DOI: 10.1002/adhm.202400466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Chemical topology provides a unique dimension for making therapeutic protein bioconjugates with native structure and intact function, yet the effects of topology remain elusive. Herein, the design, synthesis, and characterization of therapeutic protein bioconjugates in three topologies (i.e., tadpole, macrocycle, and figure-of-eight), are reported. The interferon α2b (IFN) and albumin binding domain (ABD) are selected as the model proteins for bioconjugation and proof-of-concept. The biosynthesis of these topological isoforms is accomplished via direct expression in cells using SpyTag-SpyCatcher chemistry and/or split-intein-mediated ligation for topology diversification. The corresponding topologies are proven with combined techniques of LC-MS, SDS-PAGE, and controlled proteolytic digestion. While the properties of these topological isoforms are similar in most cases, the figure-of-eight-shaped bioconjugate, f8-IFN-ABD, exhibits the best thermal stability and anti-aggregation properties along with prolonged half-life and enhanced tumor retention relative to the tadpole-shaped control, tadp-IFN-ABD, and the macrocyclic control, c-IFN-ABD, showcasing considerable topological effects. The work expands the topological diversity of proteins and demonstrates the potential advantages of leveraging chemical topology for functional benefits beyond multi-function integration in protein therapeutics.
Collapse
Affiliation(s)
- Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xibao Tian
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
7
|
Zhang Y, Yang Z, Saimi D, Shen X, Ye J, Yu B, Pefaur N, Scheer JM, Nixon AE, Chen Z. Geometric Antibody Engineering Reveals the Spatial Factor on the Efficacy of Bispecific T Cell Engagers. ACS Chem Biol 2024; 19:916-925. [PMID: 38491942 DOI: 10.1021/acschembio.3c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Bispecific antibodies (BsAbs) represent an emerging class of biologics that can recognize two different antigens or epitopes. T-cell engagers (TcEs) bind two targets in trans on the cell surface of the effector and target cell to induce proximal immune effects, opening exciting windows for immunotherapies. To date, the engineering of BsAbs has been mainly focused on tuning the molecular weight and valency. However, the effects of spatial factors on the biological functions of BsAbs have been less explored due to the lack of biochemical methods to precisely manipulate protein geometry. Here, we studied the geometric effects of the TcEs. First, by genetically inserting rigidly designed ankyrin repeat proteins into TcEs, we revealed that the efficacy progressively decreased as the spacer distance of the two binding domains increased. Then, we constructed 26 pairs of TcEs with the same size but varying orientations using click chemistry-mediated conjugation at different mutation sites. We found that linear ligation sites play a minor role in modulating cell-killing efficacy. Next, we rendered the TcEs' advanced topology by cyclization chemistry using the SpyTag/SpyCatcher pair or sortase ligation approaches. Cyclized TcEs were generally more potent than their linear counterparts. Particularly, sortase A cyclized TcEs, bearing a minimal tagging motif, exhibited better cell-killing efficacy in vitro and improved stability both in vitro and in vivo compared to the linear TcE. This work combines modern bioconjugation chemistry and protein engineering tools for antibody engineering, shedding light on the elusive spatial factors of BsAbs functionality.
Collapse
Affiliation(s)
- Yu Zhang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Zhe Yang
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Dilizhatai Saimi
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
| | - Xiaowen Shen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junqing Ye
- Department of Research Beyond Borders, Boehringer Ingelheim, Investment Co., Ltd., Beijing 100027, China
| | - Bingke Yu
- Department of Research Beyond Borders, Boehringer Ingelheim, Investment Co., Ltd., Shanghai 200040, China
| | - Noah Pefaur
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Justin M Scheer
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Andrew E Nixon
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals, Inc., 900 Ridgebury Road, Ridgefield, Connecticut 06877, United States
| | - Zhixing Chen
- College of Future Technology, Institute of Molecular Medicine, National Biomedical Imaging Center, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Fang J, Li T, Lee J, Im D, Xu L, Liu Y, Seo J, Zhang WB. A single-domain protein catenane of dihydrofolate reductase. Natl Sci Rev 2023; 10:nwad304. [PMID: 38188024 PMCID: PMC10769465 DOI: 10.1093/nsr/nwad304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 01/09/2024] Open
Abstract
A single-domain protein catenane refers to two mechanically interlocked polypeptide rings that fold synergistically into a compact and integrated structure, which is extremely rare in nature. Here, we report a single-domain protein catenane of dihydrofolate reductase (cat-DHFR). This design was achieved by rewiring the connectivity between secondary motifs to introduce artificial entanglement and synthesis was readily accomplished through a series of programmed and streamlined post-translational processing events in cells without any additional in vitro reactions. The target molecule contained few exogenous motifs and was thoroughly characterized using a combination of ultra-performance liquid chromatography-mass spectrometry, sodium dodecyl sulfate-polyacrylamide gel electrophoresis, protease cleavage experiments and ion mobility spectrometry-mass spectrometry. Compared with the linear control, cat-DHFR retained its catalytic capability and exhibited enhanced stability against thermal or chemical denaturation due to conformational restriction. These results suggest that linear proteins may be converted into their concatenated single-domain counterparts with almost identical chemical compositions, well-preserved functions and elevated stabilities, representing an entirely new horizon in protein science.
Collapse
Affiliation(s)
- Jing Fang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Tianzuo Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiyeon Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dahye Im
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yajie Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jongcheol Seo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing Academy of Artificial Intelligence, Beijing 100084, China
| |
Collapse
|
9
|
Peng Y, Gong C. New Strategy for Improving Protein Therapeutics by Mechano-bioconjugation. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202200070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|