1
|
Zeng G, Fu Z, Yin B, Huang L. Visible Light-Induced Single-Atom Insertion of Indenes via Aerobic Ring Scission-Condensation-Rearomatization. Chemistry 2025; 31:e202403828. [PMID: 40098588 DOI: 10.1002/chem.202403828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/19/2025]
Abstract
In this study, we present a photocatalyzed single-atom insertion of indenes, involving an aerobic ring scission into dicarbonyl intermediates, which subsequently undergo condensation and rearomatization to efficiently synthesize isoquinoline and naphthalene derivatives. The use of an inexpensive organic dye as the photocatalyst under aerobic conditions with cheap ammonium acetate (NH4OAc) as the nitrogen source makes this method very practical and environmentally friendly to access isoquinoline. Alternatively, an intramolecular carbon-atom-insertion process, involving the Aldol reaction of the dicarbonyl intermediates, affords the naphthalenamine and naphthalen-2-ol derivatives. Mechanistic studies support that the superoxide anion radical species mediates the C═C double bond scission of indenes rather than the singlet oxygen intermediate.
Collapse
Affiliation(s)
- Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zeyuan Fu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
2
|
Kafle P, Herndon D, Sharma I. Sulfenylcarbene-Mediated Carbon Atom Insertion for the Late-Stage Functionalization of N-Heterocycles. J Am Chem Soc 2025; 147:13824-13832. [PMID: 40215261 DOI: 10.1021/jacs.5c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Late-stage functionalization (LSF) is a crucial strategy in drug discovery, allowing the modification of complex molecules, including pharmaceuticals, to enhance chemical diversity in drug libraries. We harness the chemoselectivity of sulfenylcarbenes, which selectively react with alkenes even in the presence of more reactive functional groups such as alcohols, carboxylic acids, and amines. This reactivity allows sulfenylcarbenes to insert a single carbon atom bearing diverse functional groups, transforming pyrroles, indoles, and imidazoles into synthetically challenging pyridines, quinolines, and pyrimidines, respectively. Sulfenylcarbene precursors are easily synthesized in two steps from commercially available reagents. Our metal-free LSF approach employs benchtop-stable sulfenylcarbene precursors and enables late-stage modification of natural products, amino acids, pharmaceuticals, and C-glycosides. Mechanistic studies and density functional theory (DFT) calculations were conducted to investigate the regio- and chemoselectivity outcomes.
Collapse
Affiliation(s)
- Prakash Kafle
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Deacon Herndon
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Indrajeet Sharma
- Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| |
Collapse
|
3
|
Cui FH, Gao LH, Ruan K, Li F, Meng M, Ma K, Lu Z, Fei J, Tian H, Liu LL, Lin YM, Xia H. Fusion of Four Aromatic Rings via an Atom-Mutual-Embedding Strategy to Form a Tetrahexacyclic System. J Am Chem Soc 2025; 147:13601-13609. [PMID: 40227147 DOI: 10.1021/jacs.5c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Skeletal manipulation of aromatic compounds has emerged as a potent tool in synthetic chemistry, but simultaneous multiring manipulation remains largely unexplored due to the inherent complexities of ring and site selectivity. Herein, we report an unprecedented multiring skeletal manipulation that fuses four 5-membered aromatic rings, comprising two organic and two metal-containing aromatic systems, into a novel metal-bridged 6/6/6/6-membered ring scaffold. The sequential ring fusion is accomplished through an atom-mutual-embedding strategy; this strategy entails the stepwise insertion of two nitrogen atoms into separate metal-carbon bonds and simultaneously integrates a metal atom as a bridge across two isoxazole moieties. The presence of a central metal atom is crucial for ensuring precise substrate alignment and enhancing both the ring and site specificity. The resulting tetrahexacyclic products exhibit remarkable stability and superior near-infrared (NIR) functional properties, surpassing those of the precursor compounds. This work not only establishes a conceptual foundation for designing versatile substrate molecules amenable to intricate editing but also contributes to the rational and performance-targeted manipulation of molecular architectures.
Collapse
Affiliation(s)
- Fei-Hu Cui
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Le-Han Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kaidong Ruan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Meng Meng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Kexin Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Zhengyu Lu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jiawei Fei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Liu Leo Liu
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu-Mei Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Haiping Xia
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Shenzhen Grubbs Institute, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Liu LJ, Tian MY, Lang ZY, Wang YL, He CY, Chen YZ, Han WY. Indole-Quinoline Transmutation Enabled by a Formal Rhodium Carbynoid. Angew Chem Int Ed Engl 2025:e202501966. [PMID: 40207390 DOI: 10.1002/anie.202501966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 04/09/2025] [Accepted: 04/09/2025] [Indexed: 04/11/2025]
Abstract
Skeleton editing is an emerging and powerful tool in organic chemistry because it can simplify synthetic procedures towards complex molecules. Herein, we present an approach for indole-quinoline transmutation through rhodium-catalyzed single-carbon insertion into the C2(sp2)─C3(sp2) bond of an indole with an α-diazotrifluoroethyl sulfonium salt that we developed. This protocol involves a formal trifluoromethyl rhodium carbynoid (CF3C+ = Rh) resembling a trifluoromethyl cationic carbyne (CF3C+:), allowing facile access to an array of quinolines in moderate to high yields. Potential applications in the late-stage skeletal editing of pharmaceutical and natural product derivatives, preparation of adapalene analogs, scaled-up synthesis, and transformations of products are highlighted. Finally, a computational study was conducted to support the envisioned mechanism.
Collapse
Affiliation(s)
- Lu-Jie Liu
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Meng-Yang Tian
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Zhi-Yu Lang
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Yong-Li Wang
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Chun-Yang He
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Yong-Zheng Chen
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| | - Wen-Yong Han
- Guizhou Provincial Key Laboratory of Innovation and Manufacturing for Pharmaceuticals, School of Pharmacy, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 West Xuefu Rd., Zunyi, 563006, China
| |
Collapse
|
5
|
Siddiqi Z, Sarlah D. Reimagining Dearomatization: Arenophile-Mediated Single-Atom Insertions and π-Extensions. Acc Chem Res 2025; 58:1134-1150. [PMID: 40069000 PMCID: PMC12040405 DOI: 10.1021/acs.accounts.5c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
ConspectusDearomatization of simple aromatics serves as one of the most direct strategies for converting abundant chemical feedstocks into three-dimensional value-added products. Among such transformations, cycloadditions between arenes and alkenes have historically offered effective means to construct complex polycyclic architectures. However, traditionally harsh conditions, such as high-energy UV light irradiation, have greatly limited the scope of this transformation. Nevertheless, recent progress has led to the development of visible-light-promoted dearomative photocycloadditions with expanded scope capable of preparing complex bicyclic structures.A fundamentally distinct approach to dearomative photocycloadditions involves the visible-light activation of arenophiles, which undergo para-photocycloaddition with various aromatic compounds to produce arene-arenophile cycloadducts. While only transiently stable and subject to retro-cycloaddition, further functionalization of the photocycloadducts has allowed for the development of a wide collection of dearomatization methodologies that access products orthogonal to existing chemical and biological processes. Central to this strategy was the observation that arene-arenophile photocycloaddition reveals a π-system that can be functionalized through traditional olefin chemistry. Coupled with subsequent [4 + 2]-cycloreversion of the arenophile, this process acts to effectively isolate a single π-system from an aromatic ring. We have developed several transformations that bias this methodology to perform dearomative single-atom insertion and π-extension reactions to prepare unique products that cannot be prepared easily through traditional means.Through the application of a dearomative epoxidation, we were able to develop a method for the epoxidation of arenes and pyridines to arene-oxides and pyridine-oxides, respectively. Notably, when this arenophile chemistry is applied to polycyclic arenes, photocycloaddition reveals a π-system transposed from the site of native olefinic reactivity, enabling unique site-selectivity for dearomative functionalization. As a result, we were able to perform a single-atom insertion of oxygen into polycyclic (aza)arenes to prepare 3-benzoxepines. When applying this strategy in the context of cyclopropanations, we were able to accomplish a dearomative cyclopropanation of polycyclic (aza)arenes which yield benzocycloheptatrienes upon cycloreversion. Notably, while the Buchner ring expansion is a powerful method for the direct single-atom insertion of carbon into arenes, the corresponding cyclopropanation of polycyclic arenes does not yield ring-expanded products. Furthermore, this strategy could be utilized for the synthesis of novel nanographenes through the development of an M-region annulative π-extension (M-APEX) reaction. Traditionally, methods for π-extension rely on the native reactivity of polycyclic aromatics at the K- and bay-region. However, photocycloaddition of polycyclic aromatics with arenophiles acts as a strategy to activate the M-region for further reactivity. As a result, arenophile-mediated dearomative diarylation, followed by cycloreversion, could deliver π-extended nanographenes with exclusive M-region site selectivity.
Collapse
Affiliation(s)
- Zohaib Siddiqi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David Sarlah
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
6
|
Bartholomew GL, Karas LJ, Eason RM, Yeung CS, Sigman MS, Sarpong R. Cheminformatic Analysis of Core-Atom Transformations in Pharmaceutically Relevant Heteroaromatics. J Med Chem 2025; 68:6027-6040. [PMID: 40053676 DOI: 10.1021/acs.jmedchem.4c02839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Heteroaromatics are the basis for many pharmaceuticals. The ability to modify these structures through selective core-atom transformations, or "skeletal edits", can dramatically expand the landscape for drug discovery and development. However, despite the importance of core-atom modifications, the quantitative impact of such transformations on accessible chemical space remains undefined. Here, we report a cheminformatic platform to analyze which skeletal edits would most increase access to novel chemical space. This study underscores the significance of emerging single and multiple core-atom transformations of heteroaromatics in enhancing chemical diversity, for example, at a late-stage of a drug discovery campaign. Our findings provide a quantitative framework for prioritizing core-atom modifications in heteroaromatic structural motifs, calling for the development of new methods to achieve these types of transformations.
Collapse
Affiliation(s)
- G Logan Bartholomew
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Lucas J Karas
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Reilly M Eason
- Modeling & Informatics, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Charles S Yeung
- Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
7
|
Wu FP, Tyler JL, Glorius F. Diversity-Generating Skeletal Editing Transformations. Acc Chem Res 2025; 58:893-906. [PMID: 40042370 DOI: 10.1021/acs.accounts.4c00820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
ConspectusSkeletal editing, as a synthetic tool, offers the unique potential to selectively and efficiently modify the core skeleton of a target molecule at a late-stage. The main benefit of such transformations is the rapid exploration of the chemical space around lead compounds without necessitating a de novo synthesis for each new molecule. However, many skeletal editing transformations are inherently restricted to generating a single product from a single starting compound, limiting the potential for diversification, a concept central to expediting structure-activity relationship (SAR) investigations. In this Account, we describe our efforts to develop novel skeletal editing transformations in which a modification to the central motif of a molecule is performed simultaneously with the incorporation of additional functionality that can be easily varied through a judicious choice of the reagents. Specifically, we successfully developed an α-iodonium diazo-based carbynyl radical equivalent reagent that, under photoredox conditions, could facilitate the ring-expansion of indene scaffolds while enabling the insertion of over ten different functionalized carbon atoms into the corresponding naphthalene products. This concept was later extended to the design of an atomic carbon equivalent reagent that could promote mild and selective Ciamician-Dennstedt-type indole ring-expansion reactions, while simultaneously installing an oxime ester handle that could undergo further functionalization. Furthermore, we highlight recent work from our group on multiple-atom insertion reactions, namely, the development of a photocatalyzed De Mayo reaction for the ring-expansion of cyclic ketones and a photocatalyzed dearomative ring-expansion of thiophenes via small-ring insertion. In both of these cases, multiple products can be potentially accessed from a single starting material upon variation of the insertion reagent. The diversity-generating skeletal editing strategy could also be applied to single-atom transmutation, as demonstrated by the development of a nitrogen-to-functionalized carbon atom transmutation reaction to convert pyridine to benzene rings. Here, the desired transformation was achieved via a sequence of pyridine ring-opening, Horner-Wadsworth-Emmons (HWE) olefination, and ring-closure, with a judicious choice of the HWE reagent allowing the installation of a wide variety of versatile functional groups. Finally, an energy transfer-mediated quinoline ring-contraction is discussed, specifically with reference to the ways in which it does and does not fit the criteria of a skeletal editing reaction. Although formal atom deletion transformations are typically restricted to single products from each discrete substrate, this [2 + 2] cycloaddition/rearrangement cascade also involves the incorporation of an alkene into the molecule and introduces a point of variation that can be exploited for diversity generation. We hope to not only highlight the transformations reported herein but also inspire further research into this synthetic strategy to access new classes of skeletal editing transformations that, through rapid diversity generation, provide the potential to expedite SAR investigations.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| | - Jasper L Tyler
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| | - Frank Glorius
- Organisch-Chemisches Institut, University of Münster, 48149 Münster, Germany
| |
Collapse
|
8
|
Lu H, Chang J, Wei H. Transition Metal-Catalyzed Nitrogen Atom Insertion into Carbocycles. Acc Chem Res 2025; 58:933-946. [PMID: 40008653 DOI: 10.1021/acs.accounts.4c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
ConspectusN-Heterocycles are essential in pharmaceutical engineering, materials science, and synthetic chemistry. Recently, skeletal editing, which involves making specific point changes to the core of a molecule through single-atom insertion, deletion, or transmutation, has gained attention for its potential to modify complex substrates. In this context, the insertion of nitrogen atoms into carbocycles to form N-heterocycles has emerged as a significant research focus in modern synthetic chemistry owing to its novel synthetic logic. This distinctive retrosynthetic approach enables late-stage modification of molecular skeletons and provides a different pathway for synthesizing multiply substituted N-heterocycles. Nevertheless, nitrogen atom insertion into carbocycles has proven challenging because of the inherent inertness of carbon-based skeletons and difficulty in cleaving C-C bonds. Therefore, selective insertion of nitrogen atoms for skeletal editing remains a challenging and growing field in synthetic chemistry. This Account primarily highlights the contributions of our laboratory to this active field and acknowledges the key contributions from other researchers. It is organized into two sections based on the type of the carbocycle. The first section explores the insertion of nitrogen atoms into cycloalkenes. Recent Co-catalyzed oxidative azidation strategies have enabled nitrogen atom insertion into cyclobutenes, cyclopentenes, and cyclohexenes, facilitating the synthesis of polysubstituted pyridines, which has been conventionally challenging through pyridine cross-coupling. The subsequent section highlights our discovery in the realm of nitrogen atom insertion into arenes. The site-selective skeletal editing of stable arenes is challenging in synthetic chemistry. We developed a method for the intramolecular insertion of nitrogen atoms into the benzene rings of 2-amino biaryls by suppressing the competing C-H insertion process by using a paddlewheel dirhodium catalyst. In addition, to address the challenging site-selective issues in nitrogen atom insertion, we employed arenols as substrates, which could act as selective controlling elements in site-selective skeletal editing. We reported a Cu-catalyzed nitrogen atom insertion into arenols, which proceeds through a dearomative azidation/aryl migration process, enabling the site-selective incorporation of nitrogen atoms into arenes. Inspired by this result, we recently extended the reaction model by using a Fe-catalyst to facilitate the ring contraction of the nitrogen-inserted product, achieving the carbon-to-nitrogen transmutation of arenols. Various complex polyaromatic arenols could effectively undergo the desired atom's transmutation, presenting considerable potential for various applications in materials chemistry. In this Account, we present an overview of our achievements in nitrogen atom insertion reactions, with a focus on the reaction scopes, mechanistic features, and synthetic applications. We anticipate that this Account will provide valuable insights and propel the development of innovative methodologies in both skeletal editing and N-heterocycle synthesis.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jie Chang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
9
|
Zhang X, Zhang JQ, Sun ZH, Shan HM, Su JC, Ma XP, Su GF, Xu LP, Mo DL. Copper-Catalyzed Enantioselective Skeletal Editing through a Formal Nitrogen Insertion into Indoles to Synthesize Atropisomeric Aminoaryl Quinoxalines. Angew Chem Int Ed Engl 2025; 64:e202420390. [PMID: 39686810 DOI: 10.1002/anie.202420390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Skeletal editing represents an attractive strategy for adding complexity to a given molecular scaffold in chemical synthesis. Isodesmic reactions provide a complementary skeletal editing approach for the redistribution of chemical bonds in chemical synthesis. However, catalytic enantioselective isodesmic reaction is extremely scarce and enantioselective isodesmic reaction to synthesize atropisomeric compounds is unknown. Herein, we report a facile method to synthesize axially chiral aminoaryl quinoxalines through Cu(I)-catalyzed dearomatization and sequential chiral phosphoric acid (CPA) catalyzed enantioselective isodesmic C-N bond formation and cleavage from indoles and 1,2-diaminoarenes under mild reaction conditions. In this process, the five-membered ring of the indole scaffold was broken and a novel quinoxaline skeleton was constructed. This method allows the practical and atom-economical synthesis of valuable axially chiral aminoaryl quinoxalines in high yields (up to 95 %) and generally excellent enantioselectivities (up to 99 % ee). Notably, this novel type of quinoxaline atropisomers has promising applications in developing axially chiral ligand in asymmetric catalysis. This strategy represents the first example of CPA-catalyzed enantioselective isodesmic reaction to form axially chiral compounds.
Collapse
Affiliation(s)
- Xu Zhang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Jin-Qi Zhang
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Ze-Hua Sun
- School of Chemistry and Chemical Engineering, Shandong University
| | - Hui-Mei Shan
- School of Chemistry and Chemical Engineering, Shandong University
- School of Chemistry and Chemical Engineering, Shandong University of Technology
| | - Jun-Cheng Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Xiao-Pan Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, College of Pharmacy, Guilin Medical University, 1 Zhi Yuan Road, Guilin, 541199, China
| | - Gui-Fa Su
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University
| | - Dong-Liang Mo
- State key laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin, 541004, China
| |
Collapse
|
10
|
Bro FS, Laraia L. Unifying principles for the design and evaluation of natural product-inspired compound collections. Chem Sci 2025; 16:2961-2979. [PMID: 39906386 PMCID: PMC11788825 DOI: 10.1039/d4sc08017c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025] Open
Abstract
Natural products play a major role in the discovery of novel bioactive compounds. In this regard, the synthesis of natural product-inspired and -derived analogues is an active field that is further developing. Several strategies and principles for the design of such compounds have been developed to streamline their access and synthesis. This perspective describes how individual strategies or their elements can be combined depending on the project goal. Illustrative examples are shown that demonstrate the blurred lines between approaches and how they can work in concert to discover new biologically active molecules. Lastly, a general set of guidelines for choosing an appropriate strategy combination for the specific purpose is presented.
Collapse
Affiliation(s)
- Frederik Simonsen Bro
- Department of Chemistry, Technical University of Denmark 2800 Kongens Lyngby Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark 2800 Kongens Lyngby Denmark
| |
Collapse
|
11
|
Zeng G, Wan J, Yuan Y, Wen Y, Liu L, Li J, Li J, Huang C. Base-Promoted [4 + 1 + 1] Multicomponent Tandem Cycloaddition of Ortho-Substituted Nitroarenes, Aldehydes, and Ammonium Salts To Access 2,4-Substituted Quinazoline Frameworks. J Org Chem 2025; 90:1982-1995. [PMID: 39846728 DOI: 10.1021/acs.joc.4c02724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
We report a base-promoted, metal-free multicomponent tandem reaction, involving a [4 + 1 + 1] cycloaddition process between ortho-substituted nitroarenes, aldehydes, and ammonium salts. Modifying the substituents on the nitroaromatic compounds effectively provides structurally diverse 2-substituted and 4-alkenylquinazolines with good to excellent yields (77%-90% and quinazoline 51 examples) and high tolerance for various inorganic ammonium salts (13 examples, such as NH3·H2O, NH4Cl, and NH4HF2). A new method for constructing 2,4-substituted quinazoline compounds with high selectivity from simple nitrogen source compounds was developed, and the reaction can be scaled up to a gram scale. Additionally, this method also facilitates the preparation of organic molecules with photophysical properties, offering new insights into the further transformation of quinazolines.
Collapse
Affiliation(s)
- Guiyun Zeng
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Juan Wan
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Yilong Yuan
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Yuanmin Wen
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Linyou Liu
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Junjie Li
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Jingpeng Li
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| | - Chao Huang
- Key Laboratory of Biomass Green Chemical Conversion of Yunnan Provincial Education Department, Yunnan Key La-boratory of Chiral Functional Substance Research and Application, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, School of Chemistry & Environment, Yunnan Minzu University, Kunming 650504, P. R. China
| |
Collapse
|
12
|
Liu G, Shi Z, Guo C, Gu D, Wang Z. Metallaphotoredox Enabled Single Carbon Atom Insertion into Alkenes for Allene Synthesis. Angew Chem Int Ed Engl 2025; 64:e202418746. [PMID: 39779479 DOI: 10.1002/anie.202418746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 01/11/2025]
Abstract
Efficient methods for synthesizing allenes from readily available starting materials pose a persistent challenge in organic chemistry. In this work, we present a novel two-stage protocol for allene synthesis involving the single-atom insertion into alkenes, facilitated by synergistic photoredox and cobalt catalysis. Diverging from conventional methods such as the Doering-LaFlamme reaction, this photochemical rearrangement approach operates efficiently under mild conditions in a radical-based manner. The protocol exhibits a broad substrate scope and demonstrates applicability in the late-stage diversification of alkene-containing natural products and bioactive molecules. Preliminary mechanistic studies and density functional theory (DFT) calculations offer insights into the reaction pathway, indicating a radical mechanism involving fleeting cyclopropyl carbene intermediates followed by rapid ring opening to form allenes.
Collapse
Affiliation(s)
- Gang Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Zhaoxin Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Chuning Guo
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
| | - Danyu Gu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou, 310024, Zhejiang Province, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou, 310030, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310030, Zhejiang Province, China
| |
Collapse
|
13
|
Zhang X, Song Q, Liu S, Sivaguru P, Liu Z, Yang Y, Ning Y, Anderson EA, de Ruiter G, Bi X. Asymmetric dearomative single-atom skeletal editing of indoles and pyrroles. Nat Chem 2025; 17:215-225. [PMID: 39609530 DOI: 10.1038/s41557-024-01680-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/23/2024] [Indexed: 11/30/2024]
Abstract
Heterocycle skeletal editing has recently emerged as a powerful tactic for achieving heterocycle-to-heterocycle transmutation without the need for multistep de novo heterocycle synthesis. However, the enantioselective skeletal editing of heteroarenes through single-atom logic remains challenging. Here we report the enantiodivergent dearomative skeletal editing of indoles and pyrroles via an asymmetric carbon-atom insertion, using trifluoromethyl N-triftosylhydrazones as carbene precursors. This strategy provides a straightforward methodology to access enantiomerically enriched six-membered N-heterocycles containing a trifluoromethylated quaternary stereocentre from planar N-heteroarenes. The synthetic utility of this enantiodivergent methodology was demonstrated by a broad evaluation of reaction scope, product derivatization and concise syntheses of drug analogues. Mechanistic studies reveal that the excellent asymmetric induction arises from the initial cyclopropanation step. The asymmetric single-atom insertion strategy is expected to have a broad impact on the field of single-atom skeletal editing and catalytic asymmetric dearomatization of aromatic compounds.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | | | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yongyue Ning
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Edward A Anderson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
14
|
Shen Y, Huang A, Lu X, Jia A, Luo S, Li XX, Tang S. Substituent-Controlled Regiodivergent Rearrangement of Gramine Ammonium Ylide. J Org Chem 2025. [PMID: 39882839 DOI: 10.1021/acs.joc.4c02698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The complicated mechanism makes the regiodivergent rearrangement of ammonium ylide seem to be out of reach. Herein, we reported a regiodivergent rearrangement of gramine ammonium ylide well controlled by the substituents. Density functional theory studies reveal that the ammonium ylide with a more steric hindrance substituent 2-diazo-2-arylacetate goes through a stepwise mechanism to yield both a kinetically and thermodynamically preferred [1,2]-rearrangement product. In contrast, the ammonium ylide with a less steric hindrance ethyl diazoacetate goes through a concerted mechanism to generate the [2,3]-rearrangement product, which is kinetically favored as a result of the release of the ring strain in the transition state. This study would open up avenues to grasp the rearrangement of ammonium ylide, which will promote application in the skeletal editing and synthesis of complex natural products.
Collapse
Affiliation(s)
- Yu Shen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P.R. China
| | - Ao Huang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P.R. China
| | - Xiyao Lu
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P.R. China
| | - Aiqun Jia
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, P.R. China
| | - Shuang Luo
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, P.R. China
| | - Xiao-Xi Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao 266237, P.R. China
| | - Shi Tang
- Key Laboratory of Tropical Biological Resources of Ministry of Education, School of Pharmaceutical Sciences, Hainan University, Haikou 570228, P.R. China
| |
Collapse
|
15
|
Ren Y, Song C, Hua M, Zhao J, Li P. Violet-Light-Induced Ring-Opening of Anthranils with Chlorodiazirines. Org Lett 2025. [PMID: 39883540 DOI: 10.1021/acs.orglett.5c00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
A violet-light-induced ring-opening of anthranils with chlorodiazirines has been developed. The metal-free protocol provides a rapid and efficient approach to N-(2-carbonylaryl)benzamides in moderate to good yields under mild conditions. The reaction appears to involve α-chlorocarbenes, which trigger the ring-opening of anthranils.
Collapse
Affiliation(s)
- Yikun Ren
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Chuanyang Song
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Mengna Hua
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Jingjing Zhao
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| | - Pan Li
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, P. R. China
| |
Collapse
|
16
|
Han J, Fan Y, Yang X, Zhu Y, Zhang X, Zhang F, Hao G, Jiang Y. Synthesis of Functionalized Cycloheptadienones Starting from Phenols and Using a Rhodium/Boron Asymmetric Catalytic System. Angew Chem Int Ed Engl 2025; 64:e202416468. [PMID: 39496563 DOI: 10.1002/anie.202416468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 11/06/2024]
Abstract
Skeletal editing offers a unique route to assemble complex architectures from simple feedstocks that are otherwise difficult to obtain. However, the asymmetric version of skeletal editing has not been widely studied. Herein, we present a modular rhodium/boron asymmetric catalytic system that enables ring-expansion of phenols with cyclopropenes to synthesize highly functionalized cycloheptadienones in excellent chemo- and regioselectivities. This unique protocol features with low-catalyst loading, atom and step-economies, and mild neutral reaction conditions. Isotope-labelling experiments and DFT calculations have been conducted to reveal that boron reagent plays a vital role in the whole catalytic cycle.
Collapse
Affiliation(s)
- Jiabin Han
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yaxin Fan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| | - Xiaoyan Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| | - Yuanhao Zhu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Xuheng Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Fukuan Zhang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| | - Gefei Hao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| | - Yaojia Jiang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University Guizhou University, Guiyang, 550025, China
| |
Collapse
|
17
|
Kim SF, Liles JP, Lux MC, Park H, Jurczyk J, Soda Y, Yeung CS, Sigman MS, Sarpong R. Interrogation of Enantioselectivity in the Photomediated Ring Contractions of Saturated Heterocycles. J Am Chem Soc 2025; 147:1851-1866. [PMID: 39746148 DOI: 10.1021/jacs.4c13999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
We recently reported a chiral phosphoric acid (CPA) catalyzed enantioselective photomediated ring contraction of piperidines and other saturated heterocycles. By extruding a single heteroatom from a ring, this transformation builds desirable C(sp3)-C(sp3) bonds in the ring contracted products; however, the origins of enantioselectivity remain poorly understood. In this work, enantioselectivity of the ring contraction has been explored across an expanded structurally diverse substrate scope, revealing a wide range of enantioselectivities (0-99%) using two distinct CPA catalysts. Mechanistic investigations support rate-determining excitation that generates short-lived achiral intermediates that are intercepted by the CPA in an enantiodetermining ring closure. The effects of competitive uncatalyzed reactivity and light-driven reversibility of the enantiodetermining ring closure on enantioselectivity have been elucidated. Statistical models were built by regressing the range of enantioselectivities from the substrate scope against key structural features of the products for both CPA catalysts. The resultant models suggested distinct factors that influence the enantioselectivity response for each catalyst and enabled rational modification of a pharmaceutically relevant target molecule to improve enantioselectivity. Finally, density functional theory (DFT)-based transition state analysis identified distinct noncovalent interactions with each catalyst that correlated with the unique selectivity-relevant features uncovered through statistical modeling. Our findings not only offer comprehensive insight into the origins of enantioselectivity in this system but should also aid future development of related photomediated CPA-catalyzed reactions.
Collapse
Affiliation(s)
- Sojung F Kim
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Jordan P Liles
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michaelyn C Lux
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Hojoon Park
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Justin Jurczyk
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Yasuki Soda
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| | - Charles S Yeung
- Department of Discovery Chemistry, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Matthew S Sigman
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Zhou Y, Lei SG, Abudureheman B, Wang LS, Yu ZC, Xiang JC, Wu AX. Transforming an azaarene into the spine of fusedbicyclics via cycloaddition-induced scaffold hopping of 5-Hydroxypyrazoles. Nat Commun 2024; 15:10907. [PMID: 39738133 DOI: 10.1038/s41467-024-55312-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Skeleton editing for heteroarenes, especially pyrazoles, is challenging and remains scarce because these non-strained aromatics exhibit inert reactivities, making them relatively inactive for performing a dearomatization/cleavage sequence. Here, we disclose a cycloaddition-induced scaffold hopping of 5-hydroxypyrazoles to access the pyrazolopyridopyridazin-6-one skeleton through a single-operation protocol. By converting a five-membered aza-arene into a five-unit spine of a 6/6 fused-bicyclic, this work unlocks a ring-opening reactivity of the pyrazole core that involves a formal C = N bond cleavage while retaining the highly reactive N-N bond in the resulting product. A [4 + 2] cycloaddition of a temporarily dearomatized 5-hydroxypyrrole with an in situ generated aza-1,3-diene, followed by oxidative C-N bond cleavage, constitutes the domino pathway. A library of pyrazolopyridopyridazin-6-ones, which are medicinally relevant nitrogen-atom-rich tricyclics, is obtained efficiently from readily available materials.
Collapse
Affiliation(s)
- You Zhou
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Shuang-Gui Lei
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Baihetiguli Abudureheman
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Li-Sheng Wang
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Zhi-Cheng Yu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China
| | - Jia-Chen Xiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, P.R. China.
| | - An-Xin Wu
- National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University, Wuhan, P.R. China.
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, P. R. China.
| |
Collapse
|
19
|
Wang X, Yuan F, Szostak M. Quinazolinone-to-Isoquinoline Metamorphosis by Ruthenium-Catalyzed [4+2] Annulation with Sulfoxonium Ylides. Org Lett 2024; 26:10951-10957. [PMID: 39655661 DOI: 10.1021/acs.orglett.4c04103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Molecular editing of quinazolinones to isoquinolines by a novel ruthenium-catalyzed [4+2] annulation with sulfoxonium ylides has been developed. The method permits the precise and rapid assembly of multisubstituted aminoisoquinolines, a class of heterocycles that play a privileged role in organic synthesis and pharmaceutical development. This new catalytic process exhibits novel programmability, including directed C-H acetylation, nucleophilic cyclization, and alcoholysis. Remarkably, various 2-arylquinazolinones and sulfoxonium ylides could be employed in excellent yields with broad functional group tolerance. This heterocycle-to-heterocycle protocol is compatible with green chemistry using an EtOH solvent and releasing H2O and dimethyl sulfoxide as byproducts.
Collapse
Affiliation(s)
- Xiaogang Wang
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Fei Yuan
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, Shaanxi Engineering Research Center for Mineral Resources Clean and Efficient Conversion and New Materials, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
20
|
Liu Z, Zhang X, Sivaguru P, Bi X. Triftosylhydrazone in Single-Atom Skeletal Editing. Acc Chem Res 2024. [PMID: 39680057 DOI: 10.1021/acs.accounts.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
ConspectusIn the past decade, single-atom skeletal editing, which involves the precise insertion, deletion, or exchange of single atoms in the core skeleton of a molecule, has emerged as a promising synthetic strategy for the rapid construction or diversification of complex molecules without laborious de novo synthetic processes. Among them, carbene-initiated skeletal editing is particularly appealing due to the ready availability and diverse reactivities of carbene species. The initial endeavors to modify the core skeleton of heteroarenes through carbon-atom insertion could date back to 1881, when Ciamician and Denstedt described the conversion of pyrroles to pyridines by trapping haloform-derived free carbene. Despite its potential synthetic value, the general applicability of this one-carbon insertion has seen limited progress due to poor yields and harsh reaction conditions. Significant advances in skeletal editing via carbene insertion were achieved only in the past 3 years by Levin, Ball, Xu, Song, Glorius, and others. The hallmark of these approaches is facile halocyclopropanation followed by regioselective ring opening facilitated by the expulsion of the halide ion. Consequently, only specially designed α-halocarbene precursors, such as haloform derivatives, α-halodiazoacetates, chlorodiazirines, and α-chlorodiazo oxime esters, can be employed to achieve Ciamician-Denstedt-type skeletal editing. This not only limits the types of functional groups installed on the ring expansion products but also prevents their widespread adoption, especially in late-stage contexts. The enduring quest to develop environmentally friendly and versatile carbene precursors, superior functional group compatibility, and potential application in late-stage diversifications and the investigation of mechanistic insights into carbon insertion reactions remain a fundamental objective.In our endeavors over the past 5 years, we have developed o-trifluoromethylbenzenesulfonylhydrazones (named Triftosylhydrazones) as operationally safe and easily decomposable diazo surrogates and explored their application in various challenging catalytic carbene transfer reactions. Recently, our group has put great efforts into expanding the application scope and unlocking the potential of triftosylhydrazones as carbene precursors in single-atom skeletal editing reactions. Since 2018, we have realized a range of skeletal editing of acyclic 1,3-dicarbonyls with silver carbenes to access 1,4-dicarbonyls, proceeding through a cyclopropanation/ring-opening process. Inspired by these results, we recently demonstrated a series of transition-metal-catalyzed highly selective single-atom skeletal editing of medicinally interesting heteroarenes like pyrroles, indoles, and 1,2-diazoles via carbenic carbon insertion. We then achieved the skeletal editing of strained three-membered nitrogen- and oxygen-containing heterocycles through the insertion or exchange of single-carbon atoms. In this Account, we present an overview of our achievements in the single-atom skeletal editing of heterocycles, organized based on three types of in situ-generated key intermediates, such as cyclopropane, N-ylide, and O-ylide from triftosylhydrazones and heterocycles, with a focus on reaction scopes, mechanistic features, and synthetic applications. We hope that this Account will provide valuable insights and contribute to the development of new methodologies in both the skeletal editing and carbene chemistry fields.
Collapse
Affiliation(s)
- Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
21
|
Liu C, Zhang Y, Gu X, Huang N, Zhang M, Jiang J. Ultraviolet-Light-Induced P-H Insertion of α-Halocarbenes. Org Lett 2024; 26:10594-10599. [PMID: 39612226 DOI: 10.1021/acs.orglett.4c04049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
An intriguing P-H insertion of arylhalodiazirines with H-phosphorus oxides under ultraviolet-light irradiation is described. This methodology provides an efficient and straightforward route to the construction of a variety of α-halophosphorus oxides in good yields (≤95%), which represents a unique example of P-H insertion of α-halocarbenes for C-P bond formation. The metal-free protocol features the advantages of mild reaction conditions, high atom economy, and environmental friendliness.
Collapse
Affiliation(s)
- Chenyu Liu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Yifei Zhang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Xiu Gu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Nan Huang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Min Zhang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| | - Jun Jiang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, China
| |
Collapse
|
22
|
To HM, Mirakhorli S, Ollevier T. Synthesis of aryl fluorocyclopropanes from aryl fluorodiazirines and alkenes in continuous flow. Chem Commun (Camb) 2024; 60:14625-14628. [PMID: 39565166 DOI: 10.1039/d4cc01881h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Photochemically induced generation of aryl fluorocarbenes from aryl fluorodiazirines and their subsequent [2+1] cycloaddition with alkenes was developed in continuous flow. The in situ generated electrophilic aryl fluorocarbene reacted with a range of alkenes enabling the synthesis of the corresponding 3-fluoro-3-aryl-cyclopropanes in a 5-minute residence time under 380-nm LED irradiation in continuous flow (20 examples). The scaled-up reaction of 3-fluoro-3-(4-chlorophenyl)-3H-diazirine with styrene under irradiation at 380 nm led to the fluorocyclopropane with a 77% yield, providing a throughput yield of 0.945 g h-1.
Collapse
Affiliation(s)
- Hoang-Minh To
- Département de Chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Shima Mirakhorli
- Département de Chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| | - Thierry Ollevier
- Département de Chimie, Université Laval, 1045 avenue de la Médecine, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
23
|
Baró EL, Catti F, Estarellas C, Ghashghaei O, Lavilla R. Drugs from drugs: New chemical insights into a mature concept. Drug Discov Today 2024; 29:104212. [PMID: 39442750 DOI: 10.1016/j.drudis.2024.104212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Developing new drugs from marketed ones is a well-established and successful approach in drug discovery. We offer a unified view of this field, focusing on the new chemical aspects of the involved approaches: (a) chemical transformation of the original drugs (late-stage modifications, molecular editing), (b) prodrug strategies, and (c) repurposing as a tool to develop new hits/leads. Special focus is placed on the molecular structure of the drugs and their synthetic feasibility. The combination of experimental advances and new computational approaches, including artificial intelligence methods, paves the way for the evolution of the drugs from drugs concept.
Collapse
Affiliation(s)
- Eloy Lozano Baró
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Federica Catti
- Faculty of Science and Mathematics, Arkansas State University Campus Querétaro, Carretera Estatal 100, km 17.5. C.P. 76270, Municipio de Colón, Estado de Querétaro, Mexico
| | - Carolina Estarellas
- Departament de Nutrició, Ciències de l'Alimentació i Gastronomia, Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, Spain
| | - Ouldouz Ghashghaei
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| | - Rodolfo Lavilla
- Laboratory of Medicinal Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona and Institute of Biomedicine UB (IBUB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain.
| |
Collapse
|
24
|
Ren C, Han B, Guo H, Yang W, Xia C, Jin XH, Wang F, Wu L. Skeletal Editing of Aromatic N-Heterocycles via Hydroborative Cleavage of C-N Bonds-Scope, Mechanism, and Property. Angew Chem Int Ed Engl 2024; 63:e202407222. [PMID: 39166361 DOI: 10.1002/anie.202407222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Skeletal editing of the core structure of heterocycles offers new opportunities for chemical construction and is a promising yet challenging research topic that has recently gained increasing interest. However, several limitations of the reported systems remain to be addressed. For example, the reagents employed are generally in high-energy, such as chlorocarbene precursors, nitrene species, and metal carbenes, which are also associated with low atomic efficiencies. Thus, the development of simple systems for the skeletal editing of heterocycles is still desired. Herein, a straightforward and facile BH3-mediated skeletal editing of readily available indoles, benzimidazoles, and several other aromatic heterocycles is reported. Structurally diverse products were readily obtained, including tetrahydrobenzo azaborinines, diazaboroles, O-anilinophenylethyl alcohols, benzene-1,2-diamines, and more. Density functional theory (DFT) calculations and natural bond orbital (NBO) analysis revealed a BH3-induced C-N bond cleavage reaction pathway. An exciting and counterintuitive indole hydroboration phenomenon of -BH2 shift from C3-position to C2-position was disclosed. Moreover, the photophysical properties of the synthesized diazaboroles were studied, and an interestingly and pronounced aggregation-induced emission (AIE) behavior was disclosed.
Collapse
Affiliation(s)
- Chunping Ren
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Bo Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Hui Guo
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China
| | - Wendi Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Chungu Xia
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Xu-Hui Jin
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 100081, Beijing, P. R. China
| | - Fang Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, 730000, Lanzhou, P. R. China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, 311121, Hangzhou, P. R. China
| |
Collapse
|
25
|
Liu S, Yang Y, Song Q, Liu Z, Sivaguru P, Zhang Y, de Ruiter G, Anderson EA, Bi X. Halogencarbene-free Ciamician-Dennstedt single-atom skeletal editing. Nat Commun 2024; 15:9998. [PMID: 39557879 PMCID: PMC11574194 DOI: 10.1038/s41467-024-54379-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/10/2024] [Indexed: 11/20/2024] Open
Abstract
Single-atom skeletal editing is an increasingly powerful tool for scaffold hopping-based drug discovery. However, the insertion of a functionalized carbon atom into heteroarenes remains rare, especially when performed in complex chemical settings. Despite more than a century of research, Ciamician-Dennstedt (C-D) rearrangement remains limited to halocarbene precursors. Herein, we report a general methodology for the Ciamician-Dennstedt reaction using α-halogen-free carbenes generated in situ from N-triftosylhydrazones. This one-pot, two-step protocol enables the insertion of various carbenes, including those previously unexplored in C-D skeletal editing chemistry, into indoles/pyrroles scaffolds to access 3-functionalized quinolines/pyridines. Mechanistic studies reveal a pathway involving the intermediacy of a 1,4-dihydroquinoline intermediate, which could undergo oxidative aromatization or defluorinative aromatization to form different carbon-atom insertion products.
Collapse
Affiliation(s)
- Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | | | - Yifan Zhang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa, Israel
| | - Edward A Anderson
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford, UK.
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
26
|
Zhou X, Zhuo Q, Shima T, Kang X, Hou Z. Denitrogenative Ring-Contraction of Pyridines to a Cyclopentadienyl Skeleton at a Dititanium Hydride Framework. J Am Chem Soc 2024; 146:31348-31355. [PMID: 39481038 DOI: 10.1021/jacs.4c13439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Selective removal of the nitrogen atom from an aromatic N-heterocycle, such as pyridine, is of significant interest and importance, yet it remains highly challenging. Here, we report an unprecedented denitrogenative ring-contraction reaction of pyridines at a dititanium hydride framework, yielding cyclopentadienyl and nitride species under mild conditions. The reaction of pyridine with a dititanium tetrahydride complex (1) bearing rigid acridane-based PNP-pincer ligands at room temperature produced a cyclopentadienyl/nitride complex (2), in which the two Ti atoms are bridged by a nitride atom and one Ti atom is bonded to a cyclopentadienyl group formed by pyridine denitrogenation and ring-contraction. The reactions of 2-, 3-, and 4-methylpyridines with 1 under similar conditions yielded the same product (3), a methylcyclopentadienyl-ligated analog of 2. When 2,4- or 3,5-dimethylpyridine reacted with 1 at 60 °C, the 1,3-dimethylcyclopentadienyl-ligated analog (5) formed almost quantitatively. The mechanistic details have been elucidated by isolation of key intermediates and density functional theory calculations. It was revealed that the reaction proceeded via coordination of the N atom of a pyridine unit to a Ti atom in 1 followed by H2 release, C═N reduction, two C-N bond cleavage (ring-opening and denitrogenation), and C-C coupling (ring closing). The involvement of C-H activation in an isopropyl group of a PNP ligand at the later stages of the reaction significantly contributed to the stabilization of the denitrogenative ring-contraction product. This work not only provides unprecedented mechanistic insights into denitrogenation of aromatic N-heterocycles but also represents a novel example of skeletal editing of aromatic N-heterocycles.
Collapse
Affiliation(s)
- Xiaoxi Zhou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Qingde Zhuo
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takanori Shima
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaohui Kang
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Zhaomin Hou
- Organometallic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Advanced Catalysis Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
27
|
Islam S, Das D, Mandal RD, Dhara S, Das AR. Skeletal Reorganization Emanated via the Course of Heterocyclic N 1-N 2 Bond Cleavage: Electrosynthetic Approach. J Org Chem 2024; 89:15686-15693. [PMID: 39428633 DOI: 10.1021/acs.joc.4c01820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
A unified method toward the synthesis of functionalized diazepines and quinazolines through reorganization of the molecular skeleton has been devised. The process is indulged by electrical energy via a domino N1-N2 bond cleavage followed by concomitant ring closing, initiating from cinnolines and indazoles as designed precursors. Additionally, an intermolecular ring homologation has also been established to synthesize densely functionalized dihydroquinazolines from 2,3-diaryl-indazoles and acetonitrile involving the same electrochemical strategy.
Collapse
Affiliation(s)
- Saiful Islam
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, W B, India
| | - Dwaipayan Das
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, W B, India
| | - Rahul Dev Mandal
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, W B, India
| | - Samiran Dhara
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, W B, India
| | - Asish R Das
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, W B, India
| |
Collapse
|
28
|
Xiao WJ, Li CX, Lv JY, Xu S, Shi WX, Su XC, Xue JY, Huang BQ, Zou Y, Yan M, Zhang XJ. Molecular Editing of Pyrroles to Benzenes/Naphthalenes by N 2O Deletion. Angew Chem Int Ed Engl 2024; 63:e202411166. [PMID: 39008335 DOI: 10.1002/anie.202411166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/16/2024]
Abstract
A molecular editing reaction for converting pyrrole rings into benzene rings through a sequential pathway of Diels-Alder and cheletropic reactions was developed. The nitrogen atom in a N-bridged intermediate is eliminated in the form of N2O by a strain-releasing pathway, ultimately leading to the formation of substituted benzene and naphthalene derivatives.
Collapse
Affiliation(s)
- Wen-Jie Xiao
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Cheng-Xin Li
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jing-Yi Lv
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Shan Xu
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Wen-Xia Shi
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xiao-Can Su
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Jia-Ying Xue
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Bao-Qin Huang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yong Zou
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ming Yan
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue-Jing Zhang
- Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
29
|
Qin Q, Zhang L, Wei J, Qiu X, Hao S, An XD, Jiao N. Direct oxygen insertion into C-C bond of styrenes with air. Nat Commun 2024; 15:9015. [PMID: 39424824 PMCID: PMC11489579 DOI: 10.1038/s41467-024-53266-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Skeletal editing of single-atom insertion to basic chemicals has been demonstrated as an efficient strategy for the discovery of structurally diversified compounds. Previous endeavors in skeletal editing have successfully facilitated the insertion of boron, nitrogen, and carbon atoms. Given the prevalence of oxygen atoms in biologically active molecules, the direct oxygenation of C-C bonds through single-oxygen-atom insertion like Baeyer-Villiger reaction is of particular significance. Herein, we present an approach for the skeletal modification of styrenes using O2 via oxygen insertion, resulting in the formation of aryl ether frameworks under mild reaction conditions. The broad functional-group tolerance and the excellent chemo- and regioselectivity are demonstrated in this protocol. A preliminary mechanistic study indicates the potential involvement of 1,2-aryl radical migration in this reaction.
Collapse
Affiliation(s)
- Qixue Qin
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China.
| | - Liang Zhang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China
| | - Shuanghong Hao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Xiao-De An
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Chang Cheng Rd. 700, Qingdao, Shandong, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Chemical Biology Center, Peking University, Beijing, China.
| |
Collapse
|
30
|
Li FS, Zou XY, Hu TQ, Sun Q, Xu Z, Zhou B, Ye LW. Asymmetric one-carbon ring expansion of diverse N-heterocycles via copper-catalyzed diyne cyclization. SCIENCE ADVANCES 2024; 10:eadq7767. [PMID: 39383216 PMCID: PMC11463259 DOI: 10.1126/sciadv.adq7767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
One-carbon ring expansion reaction of N-heterocycles has gained particular attention in the past decade because this method allows for the conversion of readily available N-heterocycles into potentially useful complex ring-expanded N-heterocycles, which are inaccessible by traditional methods. However, the catalytic asymmetric variant of this reaction has been rarely reported to date. Herein, we disclose an enantioselective one-carbon ring expansion reaction through chiral copper-catalyzed diyne cyclization, leading to the practical, atom-economic and divergent assembly of an array of valuable chiral N-heterocycles bearing a quaternary stereocenter in generally good to excellent yields with excellent enantioselectivities (up to >99% ee). This protocol represents the first example of asymmetric one-carbon ring expansion reaction of N-heterocycles based on alkynes.
Collapse
Affiliation(s)
- Fu-Shuai Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiu-Yuan Zou
- Key Laboratory of of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Tian-Qi Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qing Sun
- Key Laboratory of of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhou Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Bo Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Long-Wu Ye
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
31
|
Koronatov A, Sakharov P, Ranolia D, Kaushansky A, Fridman N, Gandelman M. Triazenolysis of alkenes as an aza version of ozonolysis. Nat Chem 2024:10.1038/s41557-024-01653-3. [PMID: 39394263 DOI: 10.1038/s41557-024-01653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
Alkenes are broadly used in synthetic applications, thanks to their abundance and versatility. Ozonolysis is one of the most canonical transformations that converts alkenes into molecules bearing carbon-oxygen motifs via C=C bond cleavage. Despite its extensive use in both industrial and laboratory settings, the aza version-cleavage of alkenes to form carbon-nitrogen bonds-remains elusive. Here we report the conversion of alkenes into valuable amines via complete C=C bond disconnection. This process, which we have termed 'triazenolysis', is initiated by a (3 + 2) cycloaddition of triazadienium cation to an alkene. The triazolinium salt formed accepts hydride from borohydride anion and spontaneously decomposes to create new C-N motifs upon further reduction. The developed reaction is applicable to a broad range of cyclic alkenes to produce diamines, while various acyclic C=C bonds may be broken to generate two separate amine units. Computational analysis provides insights into the mechanism, including identification of the key step and elucidating the significance of Lewis acid catalysis.
Collapse
Affiliation(s)
- Aleksandr Koronatov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Pavel Sakharov
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Deepak Ranolia
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Alexander Kaushansky
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Natalia Fridman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel
| | - Mark Gandelman
- Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Technion City, Israel.
| |
Collapse
|
32
|
Zhang BS, Homölle SL, Bauch T, Oliveira JCA, Warratz S, Yuan B, Gou XY, Ackermann L. Electrochemical Skeletal Indole Editing via Nitrogen Atom Insertion by Sustainable Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202407384. [PMID: 38959168 DOI: 10.1002/anie.202407384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/01/2024] [Indexed: 07/05/2024]
Abstract
Skeletal molecular editing gained considerable recent momentum and emerged as a uniquely powerful tool for late-stage diversifications. Thus far, superstoichiometric amounts of costly hypervalent iodine(III) reagents were largely required for skeletal indole editing. In contrast, we herein show that electricity enables sustainable nitrogen atom insertion reactions to give bio-relevant quinazoline scaffolds without stoichiometric chemical redox-waste product. The transition metal-free electro-editing was enabled by the oxygen reduction reaction (ORR) and proved robust on scale, while tolerating a variety of valuable functional groups.
Collapse
Affiliation(s)
- Bo-Sheng Zhang
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Simon L Homölle
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Tristan Bauch
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - João C A Oliveira
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Svenja Warratz
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Binbin Yuan
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Xue-Ya Gou
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Wöhler-Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität, Tammannstrasse 2, 37077, Göttingen, Germany
| |
Collapse
|
33
|
Liu Y, Liu Q, Liu R, Liu X, Guo H, Yang W, Zhou R. Phosphine-Mediated Reductive Insertion of α-Keto Esters and Isatins into Phthalic Anhydride Derivatives. Org Lett 2024; 26:7902-7907. [PMID: 39248606 DOI: 10.1021/acs.orglett.4c02824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Herein, we report an unprecedented P(NMe2)3-mediated reductive insertion of 1,2-dicarbonyl compounds including α-keto esters and isatins into phthalic anhydride-derived alkenes and phthalic anhydrides, which furnishes the corresponding isochroman-1-ones and isochroman-1,4-diones, respectively, in moderate to excellent yields with high chemo- and regioselectivity. Furthermore, the asymmetric version of the ring expansion reaction could be realized by using a chiral auxiliary strategy. Mechanistically, the nucleophilic attack of the Kukhtin-Ramirez adduct, generated from P(NMe2)3 and 1,2-dicarbonyl compound, to the anhydride derivative, followed by a cascade ring-opening and ring-closure process, affords the ring expansion product. The reaction represents a novel metal-free carbon insertion ring expansion of aliphatic rings and also the first [1 + 5] annulation involving the Kukhtin-Ramirez adducts.
Collapse
Affiliation(s)
- Yuefei Liu
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Qian Liu
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Rongfang Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong 030619, P. R. China
| | - Xiaoqi Liu
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Hongyu Guo
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Wenjing Yang
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Rong Zhou
- College of Chemistry, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
34
|
Baidya M, De Sarkar S. Electrosynthesis of 1,2,3-Benzotriazines through an Iodide-Catalyzed Skeletal Editing of 3-Aminoindazoles. Chemistry 2024; 30:e202401900. [PMID: 38932565 DOI: 10.1002/chem.202401900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
This report describes an environmentally benign synthesis of 1,2,3-benzotriazines through an iodide-catalyzed electro-oxidative N-centered [1,2]-rearrangement of 3-aminoindazoles. The developed method demonstrates the activation of heteroatoms via electrochemically generated reactive iodide species without using any metal catalysts and peroxides. The protocol features practical and mild reaction conditions and displays a wide substrate scope. Various mechanistic experiments and cyclic voltammetric studies have been instrumental in elucidating the reaction mechanism, operating via a skeletal rearrangement of 3-aminoindazoles.
Collapse
Affiliation(s)
- Mrinmay Baidya
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| | - Suman De Sarkar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, 741246, Mohanpur, India
| |
Collapse
|
35
|
Wu FP, Lenz M, Suresh A, Gogoi AR, Tyler JL, Daniliuc CG, Gutierrez O, Glorius F. Nitrogen-to-functionalized carbon atom transmutation of pyridine. Chem Sci 2024; 15:d4sc04413d. [PMID: 39246332 PMCID: PMC11372446 DOI: 10.1039/d4sc04413d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/25/2024] [Indexed: 09/10/2024] Open
Abstract
The targeted and selective replacement of a single atom in an aromatic system represents a powerful strategy for the rapid interconversion of molecular scaffolds. Herein, we report a pyridine-to-benzene transformation via nitrogen-to-carbon skeletal editing. This approach proceeds via a sequence of pyridine ring-opening, imine hydrolysis, olefination, electrocyclization, and aromatization to achieve the desired transmutation. The most notable features of this transformation are the ability to directly install a wide variety of versatile functional groups in the benzene scaffolding, including ester, ketone, amide, nitrile, and phosphate ester fragments, as well as the inclusion of meta-substituted pyridines which have thus far been elusive for related strategies.
Collapse
Affiliation(s)
- Fu-Peng Wu
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Madina Lenz
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Adhya Suresh
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Achyut R Gogoi
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Jasper L Tyler
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Constantin G Daniliuc
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University 3255 TAMU, 580 Ross St 77843 College Station TX USA
| | - Frank Glorius
- Organisch-Chemisches Institut, Universität Münster Corrensstraße 40 48149 Münster Germany
| |
Collapse
|
36
|
Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective nitrogen insertion into aryl alkanes. Nat Commun 2024; 15:6016. [PMID: 39019881 PMCID: PMC11255249 DOI: 10.1038/s41467-024-50383-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Molecular structure-editing through nitrogen insertion offers more efficient and ingenious pathways for the synthesis of nitrogen-containing compounds, which could benefit the development of synthetic chemistry, pharmaceutical research, and materials science. Substituted amines, especially nitrogen-containing alkyl heterocyclic compounds, are widely found in nature products and drugs. Generally, accessing these compounds requires multiple steps, which could result in low efficiency. In this work, a molecular editing strategy is used to realize the synthesis of nitrogen-containing compounds using aryl alkanes as starting materials. Using derivatives of O-tosylhydroxylamine as the nitrogen source, this method enables precise nitrogen insertion into the Csp2-Csp3 bond of aryl alkanes. Notably, further synthetic applications demonstrate that this method could be used to prepare bioactive molecules with good efficiency and modify the molecular skeleton of drugs. Furthermore, a plausible reaction mechanism involving the transformation of carbocation and imine intermediates has been proposed based on the results of control experiments.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Qi Li
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| | - Chun Zhang
- Department of Chemistry, Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.
| |
Collapse
|
37
|
Blackner JJ, Schneider OM, Wong WO, Hall DG. Removing Neighboring Ring Influence in Monocyclic B-OH Diazaborines: Properties and Reactivity as Phenolic Bioisosteres with Dynamic Hydroxy Exchange. J Am Chem Soc 2024; 146:19499-19508. [PMID: 38959009 DOI: 10.1021/jacs.4c06360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The design of small molecules with unique geometric profiles or molecular connectivity represents an intriguing yet neglected challenge in modern organic synthesis. This challenge is compounded when emphasis is placed on the preparation of new chemotypes that have distinct and practical functions. To expand the structural diversity of boron-containing heterocycles, we report herein the preparation of novel monocyclic hemiboronic acids, diazaborines. These compounds have enabled the study of a pseudoaromatic boranol-containing (B-OH) ring free of influence from an appended aromatic system. Synthetic and spectroscopic studies have provided insight into the aromatic character, Lewis acidic nature, chemical reactivity, and unique ability of the exocyclic B-OH unit to participate in hydroxy exchange, suggesting their use in organocatalysis and as reversible covalent inhibitors. Moreover, density functional theory and nucleus-independent chemical shift calculations reveal that the aromatic character of the boroheterocyclic ring is increased significantly in comparison to known bicyclic benzodiazaborines (naphthoid congeners), consequently leading to attenuated Lewis acidity. Direct structural comparison to a well-established biaryl isostere, 2-phenylphenol, through X-ray crystallographic analysis reveals that N-aryl derivatives are strikingly similar in size and conformation, with attenuated logP values underscoring the value of the polar BNN unit. Their potential application as low-molecular-weight scaffolds in drug discovery is demonstrated through orthogonal diversification and preliminary antifungal evaluation (Candida albicans), which unveiled analogs with low micromolar inhibitory concentration.
Collapse
Affiliation(s)
- Jake J Blackner
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Olivia M Schneider
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Warren O Wong
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| | - Dennis G Hall
- Department of Chemistry, University of Alberta, Centennial Centre for Interdisciplinary Science, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
38
|
Heilmann T, Lopez-Soria JM, Ulbrich J, Kircher J, Li Z, Worbs B, Golz C, Mata RA, Alcarazo M. N-(Sulfonio)Sulfilimine Reagents: Non-Oxidizing Sources of Electrophilic Nitrogen Atom for Skeletal Editing. Angew Chem Int Ed Engl 2024; 63:e202403826. [PMID: 38623698 DOI: 10.1002/anie.202403826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
The one-pot synthesis of λ4-dibenzothiophen-5-imino-N-dibenzothiophenium triflate (1) in multigram scale is reported. This compound reacts with Rh2(esp)2 (esp=α,α,α',α'-tetramethyl-1,3-benzenedipropionic acid) generating a Rh-coordinated sulfonitrene species, which is able to transfer the electrophilic nitrene moiety to olefins. When indenes are used as substrates, isoquinolines are obtained in good yields. We assumed that after formation of the corresponding N-sulfonio aziridine, a ring expansion occurs via selective C-C bond cleavage and concomitant elimination of dibenzothiophene. Unexpectedly, a similar protocol transforms 1-arylcyclobutenes into 1-cyano-1-arylcyclopropanes. Our calculations indicate that aziridination is not favored in this case; instead, sulfilimine-substituted cyclobutyl carbocations are initially formed, and these evolve to the isolated cyclopropanes via ring contraction. Both procedures are operationally simple, tolerate a range of functional groups, including oxidation-sensitive alcohols and aldehydes, and enable the convenient preparation of valuable 15N-labelled products. These results demonstrate the potential of 1 to provide alternative pathways for the selective transfer of N-atoms in organic molecules.
Collapse
Affiliation(s)
- Tobias Heilmann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, D-37077, Göttingen, Germany
| | - Juan M Lopez-Soria
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, D-37077, Göttingen, Germany
| | - Johannes Ulbrich
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, D-37077, Göttingen, Germany
| | - Johannes Kircher
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr. 6, D-37077, Göttingen, Germany
| | - Zhen Li
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai, 200444, P. R. China
| | - Brigitte Worbs
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, D-37077, Göttingen, Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, D-37077, Göttingen, Germany
| | - Ricardo A Mata
- Institut für Physikalische Chemie, Georg-August-Universität Göttingen, Tammannstr. 6, D-37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstr. 2, D-37077, Göttingen, Germany
| |
Collapse
|
39
|
Yang Y, Song Q, Sivaguru P, Liu Z, Shi D, Tian T, de Ruiter G, Bi X. Controllable Skeletal and Peripheral Editing of Pyrroles with Vinylcarbenes. Angew Chem Int Ed Engl 2024; 63:e202401359. [PMID: 38597885 DOI: 10.1002/anie.202401359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/14/2024] [Accepted: 04/09/2024] [Indexed: 04/11/2024]
Abstract
The skeletal editing of azaarenes through insertion, deletion, or swapping of single atoms has recently gained considerable momentum in chemical synthesis. Here, we describe a practical skeletal editing strategy using vinylcarbenes in situ generated from trifluoromethyl vinyl N-triftosylhydrazones, leading to the first dearomative skeletal editing of pyrroles through carbon-atom insertion. Furthermore, depending on the used catalyst and substrate, three types of peripheral editing reactions of pyrroles are also disclosed: α- or γ-selective C-H insertion, and [3+2] cycloaddition. These controllable molecular editing reactions provide a powerful platform for accessing medicinally relevant CF3-containing N-heterocyclic frameworks, such as 2,5-dihydropyridines, piperidines, azabicyclo[3.3.0]octadienes, and allylated pyrroles from readily available pyrroles. Mechanistic insights from experiments and density functional theory (DFT) calculations shed light on the origin of substrate- or catalyst-controlled chemo- and regioselectivity as well as the reaction mechanism.
Collapse
Affiliation(s)
- Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | | | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Dan Shi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Tian Tian
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technol-ogy Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
40
|
Liu S, Yang Y, Song Q, Liu Z, Lu Y, Wang Z, Sivaguru P, Bi X. Tunable molecular editing of indoles with fluoroalkyl carbenes. Nat Chem 2024; 16:988-997. [PMID: 38443494 DOI: 10.1038/s41557-024-01468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/31/2024] [Indexed: 03/07/2024]
Abstract
Building molecular complexity from simple feedstocks through precise peripheral and skeletal modifications is central to modern organic synthesis. Nevertheless, a controllable strategy through which both the core skeleton and the periphery of an aromatic heterocycle can be modified with a common substrate remains elusive, despite its potential to maximize structural diversity and applications. Here we report a carbene-initiated chemodivergent molecular editing of indoles that allows both skeletal and peripheral editing by trapping an electrophilic fluoroalkyl carbene generated in situ from fluoroalkyl N-triftosylhydrazones. A variety of fluorine-containing N-heterocyclic scaffolds have been efficiently achieved through tunable chemoselective editing reactions at the skeleton or periphery of indoles, including one-carbon insertion, C3 gem-difluoroolefination, tandem cyclopropanation and N1 gem-difluoroolefination, and cyclopropanation. The power of this chemodivergent molecular editing strategy has been highlighted through the modification of the skeleton or periphery of natural products in a controllable and chemoselective manner. The reaction mechanism and origins of the chemo- and regioselectivity have been probed by both experimental and theoretical methods.
Collapse
Affiliation(s)
- Shaopeng Liu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Yong Yang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Qingmin Song
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Zhaohong Liu
- Department of Chemistry, Northeast Normal University, Changchun, China.
| | - Ying Lu
- Department of Chemistry, Northeast Normal University, Changchun, China
| | - Zhanjing Wang
- Department of Chemistry, Northeast Normal University, Changchun, China
| | | | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
| |
Collapse
|
41
|
Falcone NA, He S, Hoskin JF, Mangat S, Sorensen EJ. N-Oxide-to-Carbon Transmutations of Azaarene N-Oxides. Org Lett 2024; 26:4280-4285. [PMID: 38739528 DOI: 10.1021/acs.orglett.4c01263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Reactions that change the identity of an atom within a ring system are emerging as valuable tools for the site-selective editing of molecular structures. Herein, we describe the expansion of an underdeveloped transformation that directly converts azaarene-derived N-oxides to all-carbon arenes. This ring transmutation exhibits good functional group tolerance and replaces the N-oxide moiety with either unsubstituted, substituted, or isotopically labeled carbon atoms in a single laboratory operation.
Collapse
Affiliation(s)
- Nicholas A Falcone
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sam He
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - John F Hoskin
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Sandeep Mangat
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Erik J Sorensen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
42
|
Tran R, Brownsey DK, O'Sullivan L, Brandow CMJ, Chang ES, Zhou W, Patel KV, Gorobets E, Derksen DJ. Leveraging Pyrazolium Ylide Reactivity to Access Indolizine and 1,2-Dihydropyrimidine Derivatives. Chemistry 2024; 30:e202400421. [PMID: 38478466 DOI: 10.1002/chem.202400421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Indexed: 04/06/2024]
Abstract
N-Heterocyclic ylides are important synthetic precursors to rapidly build molecular complexity. Pyrazolium ylides have largely been unexplored, and we demonstrate their diverse utility in this report. We show that these readily accessible building blocks can be used to construct different heterocyclic skeletons by varying the coupling partner. Indolizines can be formed via an N-deletion type mechanism when reacting pyrazolium salts with electron deficient alkynes. 1,2-Dihydropyrimidines can be formed via a rearrangement mechanism when reacting pyrazolium ylides with isocyanates. These reactions enable access to valuable heteroarenes without the need for transition metal catalysis, high temperatures, or strong bases.
Collapse
Affiliation(s)
- Ricky Tran
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Duncan K Brownsey
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Leonie O'Sullivan
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Connor M J Brandow
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Emily S Chang
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Wen Zhou
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Ketul V Patel
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Evgueni Gorobets
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| | - Darren J Derksen
- Faculty of Science, University of Calgary, 2500 University Drive NW, Calgary AB, Canada
| |
Collapse
|
43
|
Wootton JM, Tam JKF, Unsworth WP. Cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Chem Commun (Camb) 2024; 60:4999-5009. [PMID: 38655659 DOI: 10.1039/d4cc01303d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
This Feature Article discusses recent advances in the development of cascade ring expansion reactions for the synthesis of medium-sized rings and macrocycles. Cascade ring expansion reactions have much potential for use in the synthesis of biologically important medium-sized rings and macrocycles, most notably as they don't require high dilution conditions, which are commonly used in established end-to-end macrocyclisation methods. Operation by cascade ring expansion method can allow large ring products to be accessed via rearrangements that proceed exclusively by normal-sized ring cyclisation steps. Ensuring that there is adequate thermodynamic driving force for ring expansion is a key challenge when designing such methods, especially for the expansion of normal-sized rings into medium-sized rings. This Article is predominantly focused on methods developed in our own laboratory, with selected works by other groups also discussed. Thermodynamic considerations, mechanism, reaction design, route planning and future perspective for this field are all covered.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Jerry K F Tam
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
44
|
Cheng Q, Bhattacharya D, Haring M, Cao H, Mück-Lichtenfeld C, Studer A. Skeletal editing of pyridines through atom-pair swap from CN to CC. Nat Chem 2024; 16:741-748. [PMID: 38238464 PMCID: PMC11087273 DOI: 10.1038/s41557-023-01428-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 12/15/2023] [Indexed: 05/12/2024]
Abstract
Skeletal editing is a straightforward synthetic strategy for precise substitution or rearrangement of atoms in core ring structures of complex molecules; it enables quick diversification of compounds that is not possible by applying peripheral editing strategies. Previously reported skeletal editing of common arenes mainly relies on carbene- or nitrene-type insertion reactions or rearrangements. Although powerful, efficient and applicable to late-stage heteroarene core structure modification, these strategies cannot be used for skeletal editing of pyridines. Here we report the direct skeletal editing of pyridines through atom-pair swap from CN to CC to generate benzenes and naphthalenes in a modular fashion. Specifically, we use sequential dearomatization, cycloaddition and rearomatizing retrocycloaddition reactions in a one-pot sequence to transform the parent pyridines into benzenes and naphthalenes bearing diversified substituents at specific sites, as defined by the cycloaddition reaction components. Applications to late-stage skeletal diversification of pyridine cores in several drugs are demonstrated.
Collapse
Affiliation(s)
- Qiang Cheng
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| | | | - Malte Haring
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | - Hui Cao
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany
| | | | - Armido Studer
- Organisch-Chemisches Institut, Universität Münster, Münster, Germany.
| |
Collapse
|
45
|
Timmann S, Wu TH, Golz C, Alcarazo M. Reactivity of α-diazo sulfonium salts: rhodium-catalysed ring expansion of indenes to naphthalenes. Chem Sci 2024; 15:5938-5943. [PMID: 38665534 PMCID: PMC11040645 DOI: 10.1039/d4sc01138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the presence of catalytic amounts of the paddlewheel dirhodium complex Rh2(esp)2, α-diazo dibenzothiophenium salts generate highly electrophilic Rh-coordinated carbenes, which evolve differently depending on their substitution pattern. Keto-moieties directly attached to the azomethinic carbon promote carbene insertion into one of the adjacent C-S bonds, giving rise to highly electrophilic dibenzothiopyrilium salts. This intramolecular pathway is not operative when the carbene carbon bears ester or trifluoromethyl substituents; in fact, these species react with olefins delivering easy to handle cyclopropyl-substituted sulfonium salts. When indenes are the olefins of choice, the initially formed cyclopropyl rings smoothly open with concomitant departure of dibenzothiophene, enabling access to a series of 2-functionalized naphthalenes.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Tun-Hui Wu
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
46
|
Niu C, Zhang Z, Li Q, Cheng Z, Jiao N, Zhang C. Selective Ring-Opening Amination of Isochromans and Tetrahydroisoquinolines. Angew Chem Int Ed Engl 2024; 63:e202401318. [PMID: 38459760 DOI: 10.1002/anie.202401318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/29/2024] [Accepted: 03/04/2024] [Indexed: 03/10/2024]
Abstract
The molecular structure-editing through selective C-C bond cleavage allows for the precise modification of molecular structures and opens up new possibilities in chemical synthesis. By strategically cleaving C-C bonds and editing the molecular structure, more efficient and versatile pathways for the synthesis of complex compounds could be designed, which brings significant implications for drug development and materials science. o-Aminophenethyl alcohols and amines are the essential key motifs in bioactive and functional material molecules. The traditional synthesis of these compounds usually requires multiple steps which could generate inseparable isomers and induce low efficiencies. By leveraging a molecular editing strategy, we herein reported a selective ring-opening amination of isochromans and tetrahydroisoquinolines for the efficient synthesis of o-aminophenethyl alcohols and amines. This innovative chemistry allows for the precise cleavage of C-C bonds under mild transition metal-free conditions. Notably, further synthetic application demonstrated that our method could provide an efficient approach to essential components of diverse bioactive molecules.
Collapse
Affiliation(s)
- Changhao Niu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zheng Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Qi Li
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| | - Zengrui Cheng
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, Chemical Biology Center, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, 100191, Beijing, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072, Tianjin, China
| |
Collapse
|
47
|
Nan J, Huang Q, Men X, Yang S, Wang J, Ma Y. Palladium-catalyzed denitrogenation/vinylation of benzotriazinones with vinylene carbonate. Chem Commun (Camb) 2024; 60:3571-3574. [PMID: 38469678 DOI: 10.1039/d4cc00059e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Herein, a novel Pd-catalyzed denitrogenation/vinylation of benzotriazinones using vinylene carbonate as the vinylation reagent is reported. This transformation demonstrates an unprecedented skeletal editing approach, effectively converting NN to CC fragments in situ and synthesizing a collection of isoquinolinones with broad-spectrum functional group tolerance. Moreover, the quite concise reaction system and late-stage modification of bioactive molecules comprehensively underscore the practical potential of this protocol.
Collapse
Affiliation(s)
- Jiang Nan
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, Xi'an, 710021, China
| | - Qiong Huang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xinran Men
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuai Yang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jing Wang
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Yangmin Ma
- Key Laboratory of Chemical Additives for China National Light Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
48
|
Ning Y, Chen H, Ning Y, Zhang J, Bi X. Rhodium-Catalyzed One-Carbon Ring Expansion of Aziridines with Vinyl-N-triftosylhydrazones for the Synthesis of 2-Vinyl Azetidines. Angew Chem Int Ed Engl 2024; 63:e202318072. [PMID: 38282137 DOI: 10.1002/anie.202318072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/25/2023] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
Azetidines, being four-membered N-heterocycles, possess significant potential in contemporary medicinal chemistry owing to their favorable pharmacokinetic properties. Regrettably, the incorporation of functionalized azetidines into pharmaceutical lead structures has been impeded by the absence of efficient synthetic methods for their synthesis. In this study, a Rh-catalyzed one-carbon ring expansion of aziridines with vinyl-N-triftosylhydrazones is presented, which facilitates the synthesis of high value-added 2-alkenyl azetidine products. This research represents the first example of ring expansion of aziridines enabled by vinyl carbenes. Additionally, a one-pot two-step protocol, initiated from cinnamaldehyde, was successfully achieved, offering a step-economical and facile approach for the synthesis of these compounds. The pivotal aspect of this successful transformation lies in the in situ formation of an alkenyl aziridinium ylide intermediate. Experimental investigations, coupled with computational studies, suggest that a diradical pathway is involved in the reaction mechanism.
Collapse
Affiliation(s)
- Yongquan Ning
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Yongyue Ning
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Jin Zhang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
49
|
Li L, Chen H, Liu M, Zhu Q, Zhang H, de Ruiter G, Bi X. Silver-Catalyzed Dearomative Skeletal Editing of Indazoles by Donor Carbene Insertion. Chemistry 2024; 30:e202304227. [PMID: 38199953 DOI: 10.1002/chem.202304227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/12/2024]
Abstract
Given the prevalence of heterocyclic scaffolds in drug-related molecules, converting these highly modular heterocyclic scaffolds into structural diversified and dearomatized analogs is an ideal strategy for improving their physicochemical and pharmacokinetic properties. Here, we described an efficient method for silver carbene-mediated dearomative N-N bond cleavage leading to skeletal hopping between indazole and 1,2-dihydroquinazoline via a highly selective single-carbon insertion procedure. Using this methodology, a series of dihydroquinazoline analogues with diarylmethylene-substituted quaternary carbon centers were constructed with excellent yields and good functional group compatibility, which was further illustrated by the late-stage diversification of important pharmaceutically active ingredients. DFT calculations indicated that the silver catalyst not only induces the formation of the silver carbene, but also activates the diazahexatriene intermediate, which plays a crucial role in the formation of the C-N bond.
Collapse
Affiliation(s)
- Linxuan Li
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Hongzhu Chen
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Menglin Liu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Qingwen Zhu
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Hongru Zhang
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
| | - Graham de Ruiter
- Schulich Faculty of Chemistry, Technion Israel Institute of Technology, Technion City, 3200008, Haifa, Israel
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, 130024, Changchun, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
50
|
Zhang X, Su W, Guo H, Fang P, Yang K, Song Q. N-Heterocycle-Editing to Access Fused-BN-Heterocycles via Ring-Opening/C-H Borylation/Reductive C-B Bond Formation. Angew Chem Int Ed Engl 2024; 63:e202318613. [PMID: 38196396 DOI: 10.1002/anie.202318613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/11/2024]
Abstract
Skeletal editing of N-heterocycles has recently received considerable attention, and the introduction of boron atom into heterocycles often results in positive property changes. However, direct enlargement of N-heterocycles through boron atom insertion is rarely reported in the literature. Here, we report a N-heterocyclic editing reaction through the combination boron atom insertion and C-H borylation, accessing the fused-BN-heterocycles. The synthetic potential of this chemistry was demonstrated by substrate scope and late-stage diversification of products.
Collapse
Affiliation(s)
- Xu Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Wanlan Su
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Huosheng Guo
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Pengyuan Fang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kai Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian, 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|