1
|
Shaon PH, Poudel H, Leitner DM. Tuning Vibrational Lifetimes by Chemical Substitution and Impact on Plasmon-Assisted Catalysis. J Phys Chem A 2025; 129:2006-2015. [PMID: 39960465 DOI: 10.1021/acs.jpca.4c08207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Recent experiments indicate that the NO stretch of 4-nitrobenzenethiol (NBT) attached to gold can be selectively excited via plasmonic excitation, catalyzing the decomposition of NBT. However, the effectiveness of catalysis is limited by intramolecular vibrational redistribution, which depletes the population of the excited NO stretch in a few picoseconds. In this study, vibrational lifetimes of the NO stretch are computed quantum mechanically for 20 substituted NBTs, including 10 chemical groups in the meta and ortho positions, attached to plasmonic nanoparticles. Variation in the lifetime of the NO stretch with chemical substitution arises from the tuning of resonances as well as systematic changes in values of anharmonic constants. The lifetime of the NO stretch of NBT depends largely on resonances involving three other modes. Upon substitution, one of those modes shifts far enough in frequency that it no longer affects the NO stretch lifetime. For substituents in the ortho position, new resonances appear that can shorten the lifetime, but most are detuned, and the coupling is weaker for the same substituents in the meta position. The impact of the longer NO stretch lifetimes found, particularly for substituents in the meta position, on enhancing the population of the NO stretch and catalysis is discussed.
Collapse
Affiliation(s)
- Pathick Halder Shaon
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| | - Humanath Poudel
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
- Briar Cliff University, Sioux City, Iowa 51104, United States
| | - David M Leitner
- Department of Chemistry, University of Nevada, Reno, Nevada 89557, United States
| |
Collapse
|
2
|
Pérez-Sánchez JB, Koner A, Raghavan-Chitra S, Yuen-Zhou J. CUT-E as a 1/N expansion for multiscale molecular polariton dynamics. J Chem Phys 2025; 162:064101. [PMID: 39927531 DOI: 10.1063/5.0244452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/06/2025] [Indexed: 02/11/2025] Open
Abstract
Molecular polaritons arise when the collective coupling between an ensemble of N molecules and an optical mode exceeds individual photon and molecular linewidths. The complexity of their description stems from their multiscale nature, where the local dynamics of each molecule can, in principle, be influenced by the collective behavior of the entire ensemble. To address this, we previously introduced a formalism called collective dynamics using truncated equations (CUT-E). CUT-E approaches the problem in two stages. First, it exploits permutational symmetries to obtain a substantial simplification of the problem. However, this is often insufficient for parameter regimes relevant to most experiments. Second, it takes the exact solution of the problem in the N → ∞ limit as a reference and derives systematic finite-N corrections. Here, we provide a novel derivation of CUT-E based on recently developed bosonization techniques. We lay down its connections with 1/N expansions that are ubiquitous in other fields of physics and present previously unexplored key aspects of this formalism, including various types of approximations and extensions to high-excitation manifolds.
Collapse
Affiliation(s)
- Juan B Pérez-Sánchez
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| | - Arghadip Koner
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| | | | - Joel Yuen-Zhou
- Department of Chemistry, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
3
|
Shen CE, Tsai HS, Hsu LY. Non-adiabatic quantum electrodynamic effects on electron-nucleus-photon systems: Single photonic mode vs infinite photonic modes. J Chem Phys 2025; 162:034107. [PMID: 39812271 DOI: 10.1063/5.0238657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 11/08/2024] [Indexed: 01/16/2025] Open
Abstract
The quantum-electrodynamic non-adiabatic emission (QED-NAE) is a type of radiatively assisted vibronic de-excitation due to electromagnetic vacuum fluctuations on non-adiabatic processes. Building on our previous work [Tsai et al., J. Phys. Chem. Lett. 14, 5924 (2023)], we extend the theory of the QED-NAE rate from a single cavity photonic mode to infinite photonic modes and calculate the QED-NAE rates of 9-cyanoanthracene at the first-principles level. To avoid the confusion, the quantum electrodynamic internal conversion process is renamed as "QED-NAE" in our present work. According to our theory, we identify three key factors influencing the QED-NAE processes: light-matter coupling strength (mode volume), mass-weighted orientation factor, and photonic density of states. The mode volume is the primary factor causing rate differences between the two scenarios. In a single cavity with a small mode volume, strong light-matter coupling strength boosts QED-NAE rates. In contrast, in free space with infinite photonic modes, weak coupling strength significantly reduces these rates. From a single cavity photonic mode to infinite photonic modes, the mass-weighted orientation factor only causes an 8π/3-fold increase in the QED-NAE rate. In free space, the photonic density of state exhibits a flat and quadratic distribution, which slightly reduces the QED-NAE rate. Our study shows that cavities can significantly enhance non-adiabatic QED effects while providing a robust analysis demonstrating that QED vibronic effects can be safely ignored in free space.
Collapse
Affiliation(s)
- Chih-En Shen
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Hung-Sheng Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Liang-Yan Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Physics Division, National Center for Theoretical Sciences, Taipei 10617, Taiwan
| |
Collapse
|
4
|
Mondal S, Keshavamurthy S. Cavity induced modulation of intramolecular vibrational energy flow pathways. J Chem Phys 2024; 161:194302. [PMID: 39545667 DOI: 10.1063/5.0236437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 10/29/2024] [Indexed: 11/17/2024] Open
Abstract
Recent experiments in polariton chemistry indicate that reaction rates can be significantly enhanced or suppressed inside an optical cavity. One possible explanation for the rate modulation involves the cavity mode altering the intramolecular vibrational energy redistribution (IVR) pathways by coupling to specific molecular vibrations in the vibrational strong coupling (VSC) regime. However, the mechanism for such a cavity-mediated modulation of IVR is yet to be understood. In a recent study, Ahn et al. [Science 380, 1165 (2023)] observed that the rate of alcoholysis of phenyl isocyanate (PHI) is considerably suppressed when the cavity mode is tuned to be resonant with the isocyanate (NCO) stretching mode of PHI. Here, we analyze the quantum and classical IVR dynamics of a model effective Hamiltonian for PHI involving the high-frequency NCO-stretch mode and two of the key low-frequency phenyl ring modes. We compute various indicators of the extent of IVR in the cavity-molecule system and show that tuning the cavity frequency to the NCO-stretching mode strongly perturbs the cavity-free IVR pathways. Subsequent IVR dynamics involving the cavity and the molecular anharmonic resonances lead to efficient scrambling of an initial NCO-stretching overtone state over the molecular quantum number space. We also show that the hybrid light-matter states of the effective Hamiltonian undergo a localization-delocalization transition in the VSC regime.
Collapse
Affiliation(s)
- Subhadip Mondal
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India
| | - Srihari Keshavamurthy
- Department of Chemistry, Indian Institute of Technology, Kanpur, Uttar Pradesh 208 016, India
| |
Collapse
|
5
|
de la Fuente Diez J, Spezia R, Vuilleumier R. Spectroscopic properties under vibrational strong coupling in disordered matter from path-integral Monte Carlo simulations. J Chem Phys 2024; 161:184114. [PMID: 39535103 DOI: 10.1063/5.0226938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Vibrational strong coupling (VSC), the strong coupling between a Fabry-Perrot cavity and molecular vibrations at mid-infrared frequencies, has received important attention in the last years due to its capacity of modifying both vibrational spectra and chemical reactivity. VSC is a collective effect, and in this work, we introduce Path Integral Monte Carlo (PIMC) simulations that not only take into account the quantum character of the molecular vibrations and of the optical resonance of the cavity but also reproduce this collective behavior by considering multiple replicas of the molecular system. Moreover, we show that it is possible to extract from the PIMC simulations the decomposition of the hybrid optical and molecular states in terms of the bare molecular modes. On a model system of an ensemble of disordered Morse oscillators coupled to a single cavity through the Pauli-Fierz Hamiltonian, PIMC can retrieve known features obtained from analytical modes such as the Tavis-Cummings model and obtain a very close agreement with exact diagonalization for a small number of Morse oscillators. We also find that notwithstanding the anhamonic character of the Morse oscillators, the collective mode coupled to the cavity behaves as a harmonic oscillator, following the quantum central limit theorem.
Collapse
Affiliation(s)
- Jaime de la Fuente Diez
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Riccardo Spezia
- Sorbonne Université, Laboratoire de Chimie Théorique, UMR 7616 CNRS, 4 Place Jussieu, 75005 Paris, France
| | - Rodolphe Vuilleumier
- PASTEUR, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
6
|
Litman Y, Kapil V, Feldman YMY, Tisi D, Begušić T, Fidanyan K, Fraux G, Higer J, Kellner M, Li TE, Pós ES, Stocco E, Trenins G, Hirshberg B, Rossi M, Ceriotti M. i-PI 3.0: A flexible and efficient framework for advanced atomistic simulations. J Chem Phys 2024; 161:062504. [PMID: 39140447 DOI: 10.1063/5.0215869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/11/2024] [Indexed: 08/15/2024] Open
Abstract
Atomic-scale simulations have progressed tremendously over the past decade, largely thanks to the availability of machine-learning interatomic potentials. These potentials combine the accuracy of electronic structure calculations with the ability to reach extensive length and time scales. The i-PI package facilitates integrating the latest developments in this field with advanced modeling techniques thanks to a modular software architecture based on inter-process communication through a socket interface. The choice of Python for implementation facilitates rapid prototyping but can add computational overhead. In this new release, we carefully benchmarked and optimized i-PI for several common simulation scenarios, making such overhead negligible when i-PI is used to model systems up to tens of thousands of atoms using widely adopted machine learning interatomic potentials, such as Behler-Parinello, DeePMD, and MACE neural networks. We also present the implementation of several new features, including an efficient algorithm to model bosonic and fermionic exchange, a framework for uncertainty quantification to be used in conjunction with machine-learning potentials, a communication infrastructure that allows for deeper integration with electronic-driven simulations, and an approach to simulate coupled photon-nuclear dynamics in optical or plasmonic cavities.
Collapse
Affiliation(s)
- Yair Litman
- Y. Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Venkat Kapil
- Y. Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
- Department of Physics and Astronomy, University College London, 17-19 Gordon St, London WC1H 0AH, United Kingdom
- Thomas Young Centre and London Centre for Nanotechnology, 19 Gordon St, London WC1H 0AH, United Kingdom
| | | | - Davide Tisi
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Tomislav Begušić
- Div. of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Karen Fidanyan
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Guillaume Fraux
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jacob Higer
- School of Physics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Matthias Kellner
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, USA
| | - Eszter S Pós
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Elia Stocco
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - George Trenins
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Barak Hirshberg
- School of Chemistry, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Mariana Rossi
- MPI for the Structure and Dynamics of Matter, Hamburg, Germany
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institut des Matériaux, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Li TE. Mesoscale Molecular Simulations of Fabry-Pérot Vibrational Strong Coupling. J Chem Theory Comput 2024. [PMID: 38912683 DOI: 10.1021/acs.jctc.4c00349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Developing theoretical frameworks for vibrational strong coupling (VSC) beyond the single-mode approximation is crucial for a comprehensive understanding of experiments with planar Fabry-Pérot cavities. Herein, a generalized cavity molecular dynamics (CavMD) scheme is developed to simulate VSC of a large ensemble of realistic molecules coupled to an arbitrary 1D or 2D photonic environment. This approach is built upon the Power-Zienau-Woolley Hamiltonian in the normal mode basis and uses a grid representation of the molecular ensembles to reduce the computational cost. When simulating the polariton dispersion relation for a homogeneous distribution of molecules in planar Fabry-Pérot cavities, our data highlight the importance of preserving the in-plane translational symmetry of the molecular distribution. In this homogeneous limit, CavMD yields the consistent polariton dispersion relation as an analytic theory, i.e., incorporating many cavity modes with varying in-plane wave vectors (k∥) produces the same spectrum as the system with a single cavity mode. Furthermore, CavMD reveals that the validity of the single-mode approximation is challenged when nonequilibrium polariton dynamics are considered, as polariton-polariton scattering occurs between modes with the nearest neighbor k∥. The procedure for numerically approaching the macroscopic limit is also demonstrated with CavMD by increasing the system size. Looking forward, our generalized CavMD approach may facilitate understanding vibrational polariton transport and condensation.
Collapse
Affiliation(s)
- Tao E Li
- Department of Physics and Astronomy, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
8
|
Xiang B, Xiong W. Molecular Polaritons for Chemistry, Photonics and Quantum Technologies. Chem Rev 2024; 124:2512-2552. [PMID: 38416701 PMCID: PMC10941193 DOI: 10.1021/acs.chemrev.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/22/2024] [Accepted: 02/08/2024] [Indexed: 03/01/2024]
Abstract
Molecular polaritons are quasiparticles resulting from the hybridization between molecular and photonic modes. These composite entities, bearing characteristics inherited from both constituents, exhibit modified energy levels and wave functions, thereby capturing the attention of chemists in the past decade. The potential to modify chemical reactions has spurred many investigations, alongside efforts to enhance and manipulate optical responses for photonic and quantum applications. This Review centers on the experimental advances in this burgeoning field. Commencing with an introduction of the fundamentals, including theoretical foundations and various cavity architectures, we discuss outcomes of polariton-modified chemical reactions. Furthermore, we navigate through the ongoing debates and uncertainties surrounding the underpinning mechanism of this innovative method of controlling chemistry. Emphasis is placed on gaining a comprehensive understanding of the energy dynamics of molecular polaritons, in particular, vibrational molecular polaritons─a pivotal facet in steering chemical reactions. Additionally, we discuss the unique capability of coherent two-dimensional spectroscopy to dissect polariton and dark mode dynamics, offering insights into the critical components within the cavity that alter chemical reactions. We further expand to the potential utility of molecular polaritons in quantum applications as well as precise manipulation of molecular and photonic polarizations, notably in the context of chiral phenomena. This discussion aspires to ignite deeper curiosity and engagement in revealing the physics underpinning polariton-modified molecular properties, and a broad fascination with harnessing photonic environments to control chemistry.
Collapse
Affiliation(s)
- Bo Xiang
- Department
of Chemistry, School of Science and Research Center for Industries
of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Wei Xiong
- Department
of Chemistry and Biochemistry, University
of California, San Diego, California 92126, United States
- Materials
Science and Engineering Program, University
of California, San Diego, California 92126, United States
- Department
of Electrical and Computer Engineering, University of California, San
Diego, California 92126, United States
| |
Collapse
|
9
|
Sokolovskii I, Groenhof G. Non-Hermitian molecular dynamics simulations of exciton-polaritons in lossy cavities. J Chem Phys 2024; 160:092501. [PMID: 38426514 DOI: 10.1063/5.0188613] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The observation that materials can change their properties when placed inside or near an optical resonator has sparked a fervid interest in understanding the effects of strong light-matter coupling on molecular dynamics, and several approaches have been proposed to extend the methods of computational chemistry into this regime. Whereas the majority of these approaches have focused on modeling a single molecule coupled to a single cavity mode, changes to chemistry have so far only been observed experimentally when very many molecules are coupled collectively to multiple modes with short lifetimes. While atomistic simulations of many molecules coupled to multiple cavity modes have been performed with semi-classical molecular dynamics, an explicit description of cavity losses has so far been restricted to simulations in which only a very few molecular degrees of freedom were considered. Here, we have implemented an effective non-Hermitian Hamiltonian to explicitly treat cavity losses in large-scale semi-classical molecular dynamics simulations of organic polaritons and used it to perform both mean-field and surface hopping simulations of polariton relaxation, propagation, and energy transfer.
Collapse
Affiliation(s)
- Ilia Sokolovskii
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| | - Gerrit Groenhof
- Nanoscience Center and Department of Chemistry, University of Jyväskylä, P.O. Box 35, 40014 Jyväskylä, Finland
| |
Collapse
|
10
|
Fidler AP, Chen L, McKillop AM, Weichman ML. Ultrafast dynamics of CN radical reactions with chloroform solvent under vibrational strong coupling. J Chem Phys 2023; 159:164302. [PMID: 37870135 DOI: 10.1063/5.0167410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/21/2023] [Indexed: 10/24/2023] Open
Abstract
Polariton chemistry may provide a new means to control molecular reactivity, permitting remote, reversible modification of reaction energetics, kinetics, and product yields. A considerable body of experimental and theoretical work has already demonstrated that strong coupling between a molecular vibrational mode and the confined electromagnetic field of an optical cavity can alter chemical reactivity without external illumination. However, the mechanisms underlying cavity-altered chemistry remain unclear in large part because the experimental systems examined previously are too complex for detailed analysis of their reaction dynamics. Here, we experimentally investigate photolysis-induced reactions of cyanide radicals with strongly-coupled chloroform (CHCl3) solvent molecules and examine the intracavity rates of photofragment recombination, solvent complexation, and hydrogen abstraction. We use a microfluidic optical cavity fitted with dichroic mirrors to facilitate vibrational strong coupling (VSC) of the C-H stretching mode of CHCl3 while simultaneously permitting optical access at visible wavelengths. Ultrafast transient absorption experiments performed with cavities tuned on- and off-resonance reveal that VSC of the CHCl3 C-H stretching transition does not significantly modify any measured rate constants, including those associated with the hydrogen abstraction reaction. This work represents, to the best of our knowledge, the first experimental study of an elementary bimolecular reaction under VSC. We discuss how the conspicuous absence of cavity-altered effects in this system may provide insights into the mechanisms of modified ground state reactivity under VSC and help bridge the divide between experimental results and theoretical predictions in vibrational polariton chemistry.
Collapse
Affiliation(s)
- Ashley P Fidler
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | - Liying Chen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| | | | - Marissa L Weichman
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
11
|
Severi M, Zerbetto F. Polaritonic Chemistry: Hindering and Easing Ground State Polyenic Isomerization via Breakdown of σ-π Separation. J Phys Chem Lett 2023; 14:9145-9149. [PMID: 37796008 PMCID: PMC10577679 DOI: 10.1021/acs.jpclett.3c02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/06/2023] [Indexed: 10/06/2023]
Abstract
The ground state conformational isomerization in polyenes is a symmetry allowed process. Its low energy barrier is governed by electron density transfer from the formal single bond that is rotated to the nearby formal double bonds. Along the reaction pathway, the transition state is therefore destabilized. The rules of polaritonic chemistry, i.e., chemistry in a nanocavity with reflecting windows, are barely beginning to be laid out. The standing electric field of the nanocavity couples strongly with the molecular wave function and modifies the potential energy curve in unexpected ways. A quantum electrodynamics approach, applied to the torsional degree of freedom of the central bond of butadiene, shows that formation of the polariton mixes the σ-π frameworks thereby stabilizing/destabilizing the planar, reactant-like conformations. The values of the fundamental mode of the cavity field used in the absence of the cavity do not trigger this mechanism.
Collapse
Affiliation(s)
- Marco Severi
- Department
of Chemistry G. Ciamician, University of
Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| | - Francesco Zerbetto
- Department
of Chemistry G. Ciamician, University of
Bologna, Via F. Selmi 2, 40126 Bologna, Italy
| |
Collapse
|
12
|
Dou B, Zhu Z, Merkurjev E, Ke L, Chen L, Jiang J, Zhu Y, Liu J, Zhang B, Wei GW. Machine Learning Methods for Small Data Challenges in Molecular Science. Chem Rev 2023; 123:8736-8780. [PMID: 37384816 PMCID: PMC10999174 DOI: 10.1021/acs.chemrev.3c00189] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Small data are often used in scientific and engineering research due to the presence of various constraints, such as time, cost, ethics, privacy, security, and technical limitations in data acquisition. However, big data have been the focus for the past decade, small data and their challenges have received little attention, even though they are technically more severe in machine learning (ML) and deep learning (DL) studies. Overall, the small data challenge is often compounded by issues, such as data diversity, imputation, noise, imbalance, and high-dimensionality. Fortunately, the current big data era is characterized by technological breakthroughs in ML, DL, and artificial intelligence (AI), which enable data-driven scientific discovery, and many advanced ML and DL technologies developed for big data have inadvertently provided solutions for small data problems. As a result, significant progress has been made in ML and DL for small data challenges in the past decade. In this review, we summarize and analyze several emerging potential solutions to small data challenges in molecular science, including chemical and biological sciences. We review both basic machine learning algorithms, such as linear regression, logistic regression (LR), k-nearest neighbor (KNN), support vector machine (SVM), kernel learning (KL), random forest (RF), and gradient boosting trees (GBT), and more advanced techniques, including artificial neural network (ANN), convolutional neural network (CNN), U-Net, graph neural network (GNN), Generative Adversarial Network (GAN), long short-term memory (LSTM), autoencoder, transformer, transfer learning, active learning, graph-based semi-supervised learning, combining deep learning with traditional machine learning, and physical model-based data augmentation. We also briefly discuss the latest advances in these methods. Finally, we conclude the survey with a discussion of promising trends in small data challenges in molecular science.
Collapse
Affiliation(s)
- Bozheng Dou
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Zailiang Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Ekaterina Merkurjev
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Lu Ke
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Long Chen
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jian Jiang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yueying Zhu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Jie Liu
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Bengong Zhang
- Research Center of Nonlinear Science, School of Mathematical and Physical Sciences,Wuhan Textile University, Wuhan 430200, P, R. China
| | - Guo-Wei Wei
- Department of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
13
|
Abstract
ConspectusWhen molecular vibrational modes strongly couple to virtual states of photonic modes, new molecular vibrational polariton states are formed, along with a large population of dark reservoir modes. The polaritons are much like the bonding and antibonding molecular orbitals when atomic orbitals form molecular bonds, while the dark modes are like nonbonding orbitals. Because the polariton states are half-matter and half-light, whose energy is shifted from the parental states, polaritons are predicted to modify chemistry under thermally activated conditions, leading to an exciting and emerging field known as polariton chemistry that could potentially shift paradigms in chemistry. Despite several published results supporting this concept, the chemical physics and mechanism of polariton chemistry remain elusive. One reason for this challenge is that previous works cannot differentiate polaritons from dark modes. This limitation makes delineating the contributions to chemistry from polaritons and dark states difficult. However, this level of insight is critical for developing a solid mechanism for polariton chemistry to design and predict the outcome of strong coupling with any given reaction. My group addressed the challenge of differentiating the dynamics of polaritons and dark modes by ultrafast two-dimensional infrared (2D IR) spectroscopy. Specifically, (1) we found that polaritons can facilitate intra- and intermolecular vibrational energy transfer, opening a pathway to control vibrational energy flow in liquid-phase molecular systems, and (2) by studying a single-step isomerization event, we verified that indeed polaritons can modify chemical dynamics under strong coupling conditions, but in contrast, the dark modes behave like uncoupled molecules and do not change the dynamics. This finding confirmed the central concept of polariton chemistry: polaritons modify the potential energy landscape of reactions. The result also clarified the role of dark modes, which lays a critical foundation for designing cavities for future polariton chemistry. Aside from using 2D IR spectroscopy to study polariton chemistry, we also used the same technique to develop molecular polaritons into a potential quantum simulation platform. We demonstrated that polaritons have Rabi oscillations, and using a checkerboard cavity design, we showed that polaritons could have large nonlinearity across space. We further used the checkerboard polaritons to simulate coherence transfer and visualize it. A unidirectional coherence transfer was observed, indicating non-Hermitian dynamics. The highlighted efforts in this Account provide a solid understanding of the capability of polaritons for chemistry and quantum information science. I conclude this Account by discussing a few challenges for moving polariton chemistry toward being predictable and making the polariton quantum platform a complement to existing systems.
Collapse
Affiliation(s)
- Wei Xiong
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, United States
| |
Collapse
|