1
|
Zhu Y, Lee WCC, Zhang XP. Catalytic Metalloradical System for Radical 1,6-C(sp 3)-H Amination with Concurrent Control of Site-, Chemo-, and Enantio-selectivity. J Am Chem Soc 2025; 147:15755-15766. [PMID: 40263670 DOI: 10.1021/jacs.5c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
A catalytic radical process has been developed via metalloradical catalysis (MRC) for 1,6-C(sp3)-H amination with concurrent control of site-, chemo-, and enantioselectivity. Supported by an optimal D2-symmetric chiral amidoporphyrin ligand, the Co(II)-based metalloradical system effectively catalyzes chemoselective amination of propargylic, allylic, and benzylic C-H bonds at 1,6- over 1,5-positions of alkoxysulfonyl azides, achieving high enantioselectivity. This Co(II)-catalyzed process, which operates at room temperature, is applicable to a broad range of alkoxysulfonyl azides with a high tolerance of functional groups, enabling the efficient construction of six-membered sulfamidates in high yields with excellent enantioselectivities. Comprehensive experimental investigations, complemented by computational studies, elucidate the stepwise radical mechanism underlying this transformation. The resulting six-membered cyclic sulfamidates from the enantioselective radical process can undergo stereospecific ring-opening reactions with various nucleophiles, affording γ-functionalized α-chiral amines in high yields while retaining the original enantiopurity. Since alkoxysulfonyl azides are readily synthesized from widely available alcohols through a nucleophilic azide transfer, this union of the radical and ionic processes constitutes a versatile 1,3-difunctionalization of alcohols.
Collapse
Affiliation(s)
- Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
2
|
Zeng QX, Zheng CY, Ge ZP, Zhao JX, Yue JM. Visible-light-mediated site-selective C(sp 2)-H alkylation of tropones facilitates semi-synthesis of cephafortunoids A and B. Chem Sci 2025:d5sc01006c. [PMID: 40255962 PMCID: PMC12004080 DOI: 10.1039/d5sc01006c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 04/09/2025] [Indexed: 04/22/2025] Open
Abstract
The synthesis of functionalized tropones constitutes an underexplored chemical space, primarily due to the intrinsic structural properties of the aromatic nucleus. This predicament has impeded extensive investigation into their potential applications in organic and medicinal chemistry. Here, we report a mild and straightforward visible-light-mediated protocol for the α-site-selective C(sp2)-H alkylation of tropones, employing unactivated secondary amines as alkylating agents. This method yields up to 89% in 48 examples, and is significantly amenable to late-stage functionalization. The utility is showcased by the effective chemical transformation of fortunolide A into cephafortunoids A and B, representing the first synthetic entry to this unique class of C20 Cephalotaxus troponoids. Significantly, this achievement reinforces the chemical feasibility of the newly hypothesized biosynthesis involving direct methylation via radical S-adenosylmethionine (SAM)-dependent methyltransferases.
Collapse
Affiliation(s)
- Qi-Xiang Zeng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Cheng-Yu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Zhan-Peng Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
| | - Jin-Xin Zhao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| | - Jian-Min Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences 555 Zuchongzhi Road Shanghai 201203 China
- University of Chinese Academy of Sciences No. 19A Yuquan Road Beijing 100049 China
| |
Collapse
|
3
|
Song H, Chen N, Cao B, Hou M, Qiu G. A Metal-Catalyzed Tunable Reaction of Ylides with Hydroxylamine Derivatives. Org Lett 2025; 27:3261-3266. [PMID: 40130600 DOI: 10.1021/acs.orglett.5c00576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
In this work, a tunable reaction of metal acyl nitrene with ylides is reported for the divergent synthesis of enamides and α,α-dicarbonyl phosphorus ylides. The reaction is featured with mild conditions, good reaction efficiency, and broad reaction generality. In particular, the resulting enamides could be structurally elaborated into potential useful scaffolds. Mechanism investigation suggests that the formation of enamides was ascribed to the nucleophilic substitution of ferric nitrene with sulfur ylides. It is believed that this reaction represents an initial example of preparing enamides from iron-catalyzed nitrene transfer.
Collapse
Affiliation(s)
- Honglin Song
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Niuhai Chen
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Banpeng Cao
- Jiangxi Province Key Laboratory of Organic Functional Molecules, Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Ming Hou
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| | - Guanyinsheng Qiu
- College of Biological and Chemical Engineering, Jiaxing University, Jiaxing 314001, Zhejiang, China
| |
Collapse
|
4
|
Yang W, Zhao Z, Lan Y, Dong Z, Chang R, Bai Y, Liu S, Li SJ, Niu L. Heterocoupling Two Similar Benzyl Radicals by Dual Photoredox/Cobalt Catalysis. Angew Chem Int Ed Engl 2025; 64:e202421256. [PMID: 39718362 DOI: 10.1002/anie.202421256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Transition-metal-regulated radical cross coupling enables the selective bonding of two distinct transient radicals, whereas the catalytic method for sorting two almost identical transient radicals, especially similar benzyl radicals, is still rare. Herein, we show that leveraging dual photoredox/cobalt catalysis can selectively couple two similar benzyl radicals. Using easily accessible methylarenes and phenylacetates (benzyl N-hydroxyphthalimide (NHPI) esters) as benzyl radical sources, a range of unsymmetrical 1,2-diarylethane classes via the 1°-1°, 1°-2°, 1°-3°, 2°-2°, 2°-3° and 3°-3° couplings were obtained with broad functional group tolerance. Besides the photochemical continuous flow synthesis, the one-pot procedure that directly uses phenylacetic acids and NHPI as the starting materials to avoid the pre-preparation of benzyl NHPI esters for the gram-scale synthesis is also feasible and affords good yields, showcasing the synthetic utility of our protocol.
Collapse
Affiliation(s)
- Wei Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yu Lan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
| | - Zhou Dong
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Ruiying Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yihang Bai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Shihan Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Shi-Jun Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
| | - Linbin Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
| |
Collapse
|
5
|
Li HH, Liu Y, Kramer S. Benzylic C(sp 3)-H Phosphonylation via Dual Photo and Copper Catalysis. Angew Chem Int Ed Engl 2025; 64:e202420613. [PMID: 39579061 DOI: 10.1002/anie.202420613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/25/2024]
Abstract
Alkyl phosphonates are important motifs in medicinal chemistry, yet their efficient synthesis by direct C(sp3)-H functionalization remains a challenge. Here, we report straightforward access to benzylic phosphonates by direct C(sp3)-H functionalization in a cross-dehydrogenative-coupling reaction between non-specialized alkylarenes and unfunctionalized phosphites. Notably, the C-H substrates are used as the limiting reagents. The scope of benzylic C-H substrates is broad, and the mild reaction conditions allow for good functional group tolerance. Mechanistic studies indicate that the reaction proceeds via a radical pathway rather than the cationic pathway followed for specialized benzylic C-H substrates in previous methods.
Collapse
Affiliation(s)
- Heng-Hui Li
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Yuwen Liu
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| | - Søren Kramer
- Department of Chemistry, Technical University of Denmark, 2800 Kgs., Lyngby, Denmark
| |
Collapse
|
6
|
Geraci A, Baudoin O. Fe-Catalyzed α-C(sp 3)-H Amination of N-Heterocycles. Angew Chem Int Ed Engl 2025; 64:e202417414. [PMID: 39410815 DOI: 10.1002/anie.202417414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/12/2024]
Abstract
Nitrogen-heterocycles are privileged structures in both marketed drugs and natural products. On the other hand, C-H amination reactions furnish unconventional and straightforward approaches for the construction of C-N bonds. Yet, most of the known methods rely on precious metal catalysts. Herein we report a site-selective intermolecular C(sp3)-H amination of N-heterocycles, catalyzed by inexpensive FeCl2, which allows the functionalization of a wide range of pharmaceutically relevant cyclic amines. The C-H amination occurs site-selectively in α-position to the nitrogen atom, even when weaker C-H bonds are present, and furnishes Troc-protected aminals or amidines. The method employs the N-heterocycle as limiting reagent and is applicable to the late-stage functionalization of complex molecules. Its synthetic potential was further illustrated through the derivatization of α-aminated products and the application to a concise total synthesis of the reported structure for senobtusin. Mechanistic studies allowed to propose a plausible reaction mechanism involving a turnover-limiting Fe-nitrene generation followed by fast H atom transfer and radical rebound.
Collapse
Affiliation(s)
- Andrea Geraci
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| | - Olivier Baudoin
- University of Basel, Department of Chemistry, St. Johanns-Ring 19, 4056, Basel, Switzerland
| |
Collapse
|
7
|
Guan Y, Xu X, Xu X. Reactions of a geminal Sc/P Lewis pair with pyridotetrazole and beyond. Dalton Trans 2024; 54:222-230. [PMID: 39530258 DOI: 10.1039/d4dt02838d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Frustrated Lewis pair (FLP) chemistry has undergone remarkable growth, among which rare-earth metal-based Lewis pairs have exhibited unique reactivity in recent years. Herein, treatment of the intramolecular Sc/P Lewis pair, i.e., (ArO)2ScN(tBu)PPh2 (1, Ar = 2,6-tBu2-C6H3), with pyridotetrazole resulted in the formation of an FLP nitrene adduct with N2 elimination, offering additional insights into the mechanism of transition-metal-catalyzed denitrogenative annulation of pyridotetrazole. Reactions of complex 1 with 1,3,5-triazine and benzo[c]cinnoline generated FLP-type products via Sc/P 1,2-addition to the CN bond and the NN bond, respectively. Furthermore, treatments of 1 with phenylacetylene, diazo, and azide compounds were also investigated, leading to the formation of a variety of metallacyclic complexes displaying typical FLP behaviors.
Collapse
Affiliation(s)
- Yiwen Guan
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Xian Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Xin Xu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
8
|
Nong ZS, Wang PS, Zhou QL, Gong LZ. Palladium-Catalyzed Branch-Selective Allylic C-H Amination Enabled by Nucleophile Coordination. Org Lett 2024; 26:8481-8485. [PMID: 39331493 DOI: 10.1021/acs.orglett.4c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2024]
Abstract
Regiochemical control is a central subject in the field of synthetic chemistry. Here we unveil an innovative approach for the branch-selective allylic C-H amination of α-alkenes with amine nucleophiles facilitated by phosphoramidite-palladium catalysis. A diverse array of α-alkenes has been effectively utilized to produce a variety of structurally distinct allylamines with moderate to excellent regioselectivity. Furthermore, the asymmetric version of this reaction is feasible through the use of chiral phosphoramidite ligands, albeit with currently modest enantioselectivity.
Collapse
Affiliation(s)
- Zhong-Sheng Nong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Pu-Sheng Wang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Qi-Lin Zhou
- Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin 300071, China
| | - Liu-Zhu Gong
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
10
|
Ahmed H, Ghosh B, Breitenlechner S, Feßner M, Merten C, Bach T. Intermolecular Enantioselective Amination Reactions Mediated by Visible Light and a Chiral Iron Porphyrin Complex. Angew Chem Int Ed Engl 2024; 63:e202407003. [PMID: 38695376 DOI: 10.1002/anie.202407003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Indexed: 06/15/2024]
Abstract
In the presence of 1 mol % of a chiral iron porphyrin catalyst, various 3-arylmethyl-substituted 2-quinolones and 2-pyridones underwent an enantioselective amination reaction (20 examples; 93-99 % ee). The substrates were used as the limiting reagents, and fluorinated aryl azides (1.5 equivalents) served as nitrene precursors. The reaction is triggered by visible light which allows a facile dediazotation at ambient temperature. The selectivity of the reaction is governed by a two-point hydrogen bond interaction between the ligand of the iron catalyst and the substrate. Hydrogen bonding directs the amination to a specific hydrogen atom within the substrate that is displaced by the nitrogen substituent either in a concerted fashion or by a rebound mechanism.
Collapse
Affiliation(s)
- Hussayn Ahmed
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Biki Ghosh
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Stefan Breitenlechner
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| | - Malte Feßner
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Christian Merten
- Ruhr-Universität Bochum, Faculty for Chemistry and Biochemistry, Universitätsstraße 150, D-44801, Bochum
| | - Thorsten Bach
- Technische Universität München, School of Natural Sciences, Department of Chemistry and Catalysis Research Center, Lichtenbergstraße 4, 85747, Garching, Germany
| |
Collapse
|
11
|
Dey J, Kaltenberger S, van Gemmeren M. Palladium(II)-Catalyzed Nondirected Late-Stage C(sp 2)-H Deuteration of Heteroarenes Enabled Through a Multi-Substrate Screening Approach. Angew Chem Int Ed Engl 2024; 63:e202404421. [PMID: 38512005 DOI: 10.1002/anie.202404421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/22/2024]
Abstract
The importance of deuterium labelling in a variety of applications, ranging from mechanistic studies to drug-discovery, has spurred immense interest in the development of new methods for its efficient incorporation in organic, and especially in bioactive molecules. The five-membered heteroarenes at the center of this work are ubiquitous motifs in bioactive molecules and efficient methods for the deuterium labelling of these compounds are therefore highly desirable. However, the profound differences in chemical properties encountered between different heteroarenes hamper the development of a single set of broadly applicable reaction conditions, often necessitating a separate optimization campaign for a given type of heteroarene. In this study we describe the use of a multi-substrate screening approach to identify optimal reaction conditions for different classes of heteroarenes from a minimal number of screening reactions. Using this approach, four sets of complementary reaction conditions derived from our dual ligand-based palladium catalysts for nondirected C(sp2)-H activation were identified, that together enable the deuteration of structurally diverse heteroarenes, including bioactive molecules.
Collapse
Affiliation(s)
- Jyotirmoy Dey
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| | - Simon Kaltenberger
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| | - Manuel van Gemmeren
- Otto-Diels-Institut für Organische Chemie, Christian-Albrechts-Universität zu Kiel, Otto-Hahn-Platz 4, 24098, Kiel, Germany
| |
Collapse
|
12
|
Wang G, Yuan JL, Zhou R, Zou HB. Iron(II) Phthalocyanine-Catalyzed Homodimerization and Tandem Diamination of Diazo Compounds with Primary Amines: Access to Construct Substituted 2,3-Diaminosuccinonitriles in One-Pot. J Org Chem 2024. [PMID: 38783702 DOI: 10.1021/acs.joc.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
We herein first report the homodimerization and tandem diamination of diazo compounds with primary amines catalyzed by the iron(II) phthalocyanine (PcFe(II)), which can construct one C-C bond and two C-N bonds within 20 min in one-pot. Compared to the traditional metal-catalyzed N-H insertion reaction between amines with diazo reagents, the developed reaction almost does not generate the N-H insertion product, but the homodimerization/tandem diamination product. The proposed mechanism studies indicate that primary amines play a crucial role in the homocoupling of diazo compounds via dimerization of iron(III)-acetonitrile radical generated from the reaction between diazoacetonitrile with PcFe(II) coordinated by bis(amines); the β-hydride elimination is involved, and then, the attack of primary amines toward the carbon atoms on the formed C-C bond is followed. Moreover, this novel reaction can be used to effectively prepare substituted 2,3-diaminosuccinonitriles with high yields and even up to >99:1 d.r., encouragingly these products contain both 1,2-diamines and succinonitrile motifs, which are two classes of important organic compounds with significant applications in many yields. This reaction is also suitable for the gram-scale preparation of 2,3-bis(phenylamino)succinonitrile (2a) with a yield of 84%. Therefore, the developed reaction represents a new type of transformation.
Collapse
Affiliation(s)
- Gang Wang
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Jia-Li Yuan
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Rong Zhou
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| | - Huai-Bo Zou
- Department of Chemistry & Bioengineering, Yichun Key Laboratory of Applied Chemistry, Key Laboratory of Jiangxi University for Applied Chemistry & Chemical Biology, Yichun University, Yichun 336000, China
| |
Collapse
|
13
|
Lee WCC, Zhang XP. Metalloradical Catalysis: General Approach for Controlling Reactivity and Selectivity of Homolytic Radical Reactions. Angew Chem Int Ed Engl 2024; 63:e202320243. [PMID: 38472114 PMCID: PMC11097140 DOI: 10.1002/anie.202320243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Since Friedrich Wöhler's groundbreaking synthesis of urea in 1828, organic synthesis over the past two centuries has predominantly relied on the exploration and utilization of chemical reactions rooted in two-electron heterolytic ionic chemistry. While one-electron homolytic radical chemistry is both rich in fundamental reactivities and attractive with practical advantages, the synthetic application of radical reactions has been long hampered by the formidable challenges associated with the control over reactivity and selectivity of high-energy radical intermediates. To fully harness the untapped potential of radical chemistry for organic synthesis, there is a pressing need to formulate radically different concepts and broadly applicable strategies to address these outstanding issues. In pursuit of this objective, researchers have been actively developing metalloradical catalysis (MRC) as a comprehensive framework to guide the design of general approaches for controlling over reactivity and stereoselectivity of homolytic radical reactions. Essentially, MRC exploits the metal-centered radicals present in open-shell metal complexes as one-electron catalysts for homolytic activation of substrates to generate metal-entangled organic radicals as the key intermediates to govern the reaction pathway and stereochemical course of subsequent catalytic radical processes. Different from the conventional two-electron catalysis by transition metal complexes, MRC operates through one-electron chemistry utilizing stepwise radical mechanisms.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| | - X. Peter Zhang
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| |
Collapse
|
14
|
Ren YF, Chen BH, Chen XY, Du HW, Li YL, Shu W. Direct synthesis of branched amines enabled by dual-catalyzed allylic C─H amination of alkenes with amines. SCIENCE ADVANCES 2024; 10:eadn1272. [PMID: 38578992 PMCID: PMC10997203 DOI: 10.1126/sciadv.adn1272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Direct conversion of hydrocarbons into amines represents an important and atom-economic goal in chemistry for decades. However, intermolecular cross-coupling of terminal alkenes with amines to form branched amines remains extremely challenging. Here, a visible-light and Co-dual catalyzed direct allylic C─H amination of alkenes with free amines to afford branched amines has been developed. Notably, challenging aliphatic amines with strong coordinating effect can be directly used as C─N coupling partner to couple with allylic C─H bond to form advanced amines with molecular complexity. Moreover, the reaction proceeds with exclusive regio- and chemoselectivity at more steric hinder position to deliver primary, secondary, and tertiary aliphatic amines with diverse substitution patterns that are difficult to access otherwise.
Collapse
Affiliation(s)
- Yu-Feng Ren
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
| | - Bi-Hong Chen
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
| | - Xiao-Yi Chen
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
| | - Hai-Wu Du
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000 Zigong, P. R. China
| | - Wei Shu
- Department of Chemistry, Guangming Advanced Research Institute and Shenzhen Grubbs Institute, Southern University of Science and Technology, 518055 Guangdong, P. R. China
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, 643000 Zigong, P. R. China
| |
Collapse
|
15
|
Ye W, Xiong H, Wang M, Chang J, Yu W. Iodine-Mediated δ-Amination of sp 3 C-H Bonds. J Org Chem 2024; 89:3481-3490. [PMID: 38381857 DOI: 10.1021/acs.joc.3c02901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
We present a direct δ-amination reaction of sp3 C-H bonds, employing molecular iodine (I2) as the sole oxidant under transition-metal-free conditions. This remote C-H functionalization approach is operationally simple and provides facile, efficient access to pyrrolidines and related heterocyclic derivatives from readily accessible substrates.
Collapse
Affiliation(s)
- Wenjun Ye
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Hanyu Xiong
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Manman Wang
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
16
|
Du Y, Tang JJ, Wang Y, Hu J, Chen C, Xiong Z, Li Y, Fan J, Bao M, Yu X. Visible-Light-Driven Iron-Catalyzed Intermolecular Benzylic C(sp 3)-H Amination with 1,2,3,4-Tetrazoles. Org Lett 2024; 26:664-669. [PMID: 38226908 DOI: 10.1021/acs.orglett.3c04048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A visible-light-driven iron-catalyzed C(sp3)-H amination of diphenylmethane derivatives with 1,2,3,4-tetrazoles under mild conditions has been developed. The reaction proceeds with photosensitizer-free conditions and features satisfactory to good yields. Mechanistic studies revealed that the reaction proceeded via an iron-nitrene intermediate, and H atom abstraction was the rate-determining step. Computational studies showed that the denitrogenation of 1,2,3,4-tetrazole depends on the conversion of the sextet ground state of 1,2,3,4-tetrazole-bounding iron species to the quartet spin state under visible-light irradiation.
Collapse
Affiliation(s)
- Yan Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Jing-Jing Tang
- Faculty of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116023, China
| | - Yarong Wang
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Junhao Hu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Changhua Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Zhonggui Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yang Li
- School of Chemical Engineering, Dalian University of Technology, Panjin 124221, China
| | - Jiangli Fan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
17
|
Kanta Das K, Kumar Ghosh A, Hajra A. One-Pot Manganese (I)-Catalyzed Oxidant-Controlled Divergent Functionalization of 2-Arylindazoles. Chemistry 2024; 30:e202302849. [PMID: 37870380 DOI: 10.1002/chem.202302849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 10/24/2023]
Abstract
The oxidant-controlled divergent synthesis of C-2' formyl 2H-indazoles and indazoloindazolediones has been developed through Mn(I)- catalyzed ortho C-H functionalization of 2H-indazoles with para-formaldehyde to afford C-2' hydroxymethylated 2H-indazoles and subsequently oxidation with varying the amount of DDQ in one-pot. By employing selectfluor as the oxidant instead of DDQ, this reaction exclusively provided indazolebenzoxazine derivatives. This strategy delivered unsymmetrical indazoloindazoledione and indazolobenzoxazine with varied functional group tolerance in moderate to good yields.
Collapse
Affiliation(s)
- Krishna Kanta Das
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| | - Asim Kumar Ghosh
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati, A Central University), 731235, Santiniketanm, West Bengal, India
| |
Collapse
|
18
|
Xu H, Wang DS, Zhu Z, Deb A, Zhang XP. New Mode of Asymmetric Induction for Enantioselective Radical N-Heterobicyclization via Kinetically Stable Chiral Radical Center. Chem 2024; 10:283-298. [PMID: 38313041 PMCID: PMC10836202 DOI: 10.1016/j.chempr.2023.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Enantioselective radical N-heterobicyclization of N-allylsulfamoyl azides have been developed via metalloradical catalysis (MRC). The Co(II)-based catalytic system can homolytically activate the organic azides with varied electronic and steric properties for asymmetric radical N-heterobicyclization under mild conditions without the need of oxidants, allowing for stereoselective construction of chiral [3.1.0]-bicyclic sulfamoyl aziridines in excellent yields with high diastereoselectivities and enantioselectivities. The key to achieving the enantioselective radical process relies on catalyst development through ligand design. We demonstrate that the use of new-generation D2-symmetric chiral bridged amidoporphyrin ligand HuPhyrin with judicious variation of the alkyl bridge length can dictate both reactivity and selectivity of Co(II)-based MRC. We present both experimental and computational studies that shed light on the working details of the unprecedented mode of asymmetric induction consisting of enantioface-selective radical addition and stereospecific radical substitution. We showcase the synthetic applications of the resulting enantioenriched bicyclic aziridines through a number of stereospecific transformations.
Collapse
Affiliation(s)
- Hao Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Zhenyu Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Arghya Deb
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
19
|
Bhavyesh D, Soliya S, Konakanchi R, Begari E, Ashalu KC, Naveen T. The Recent Advances in Iron-Catalyzed C(sp 3 )-H Functionalization. Chem Asian J 2023:e202301056. [PMID: 38149480 DOI: 10.1002/asia.202301056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023]
Abstract
The use of iron as a core metal in catalysis has become a research topic of interest over the last few decades. The reasons are clear. Iron is the most abundant transition metal on Earth's crust and it is widely distributed across the world. It has been extracted and processed since the dawn of civilization. All these features render iron a noncontaminant, biocompatible, nontoxic, and inexpensive metal and therefore it constitutes the perfect candidate to replace noble metals (rhodium, palladium, platinum, iridium, etc.). Moreover, direct C-H functionalization is one of the most efficient strategies by which to introduce new functional groups into small organic molecules. The majority of organic compounds contain C(sp3 )-H bonds. Given the enormous importance of organic molecules in so many aspects of existence, the utilization and bioactivity of C(sp3 )-H bonds are of the utmost importance. This review sheds light on the substrate scope, selectivity, benefits, and limitations of iron catalysts for direct C(sp3 )-H bond activations. An overview of the use of iron catalysis in C(sp3 )-H activation protocols is summarized herein up to 2022.
Collapse
Affiliation(s)
- Desai Bhavyesh
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Sudha Soliya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| | - Ramaiah Konakanchi
- Department of Chemistry, VNR Vignana Jyoti Institute of Engineering and Technology, Hyderabad, 500090, India
| | - Eeshwaraiah Begari
- School of Applied Material Sciences, Central University of Gujarat, Gandhinagar, 382030, India
| | - Kashamalla Chinna Ashalu
- Department of Chemistry, School of Science, Indrashil University, Rajpur, Kadi, Gujarat, 382715, India
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology Surat, Gujarat, 395 007, India
| |
Collapse
|
20
|
Zars E, Pick L, Swain A, Bhunia M, Carroll PJ, Munz D, Meyer K, Mindiola DJ. Iron-Catalyzed Intermolecular C-H Amination Assisted by an Isolated Iron-Imido Radical Intermediate. Angew Chem Int Ed Engl 2023:e202311749. [PMID: 37815099 DOI: 10.1002/anie.202311749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/11/2023]
Abstract
Here we report the use of a base metal complex [(tBu pyrpyrr2 )Fe(OEt2 )] (1-OEt2 ) (tBu pyrpyrr2 2- =3,5-tBu2 -bis(pyrrolyl)pyridine) as a catalyst for intermolecular amination of Csp3 -H bonds of 9,10-dihydroanthracene (2 a) using 2,4,6-trimethyl phenyl azide (3 a) as the nitrene source. The reaction is complete within one hour at 80 °C using as low as 2 mol % 1-OEt2 with control in selectivity for single C-H amination versus double C-H amination. Catalytic C-H amination reactions can be extended to other substrates such as cyclohexadiene and xanthene derivatives and can tolerate a variety of aryl azides having methyl groups in both ortho positions. Under stoichiometric conditions the imido radical species [(tBu pyrpyrr2 )Fe{=N(2,6-Me2 -4-tBu-C6 H2 )] (1-imido) can be isolated in 56 % yield, and spectroscopic, magnetometric, and computational studies confirmed it to be an S = 1 FeIV complex. Complex 1-imido reacts with 2 a to produce the ferrous aniline adduct [(tBu pyrpyrr2 )Fe{NH(2,6-Me2 -4-tBu-C6 H2 )(C14 H11 )}] (1-aniline) in 45 % yield. Lastly, it was found that complexes 1-imido and 1-aniline are both competent intermediates in catalytic intermolecular C-H amination.
Collapse
Affiliation(s)
- Ethan Zars
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Lisa Pick
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058, Erlangen, Germany
| | - Abinash Swain
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany
| | - Mrinal Bhunia
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Patrick J Carroll
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| | - Dominik Munz
- Inorganic Chemistry: Coordination Chemistry, Saarland University, Campus C4 1, 66123, Saarbrücken, Germany
| | - Karsten Meyer
- Department of Chemistry & Pharmacy, Inorganic Chemistry, Friedrich-Alexander-Universität Erlangen - Nürnberg (FAU), 91058, Erlangen, Germany
| | - Daniel J Mindiola
- Department of Chemistry, University of Pennsylvania, 231 S 34th St, Philadelphia, PA-19104, USA
| |
Collapse
|
21
|
Wang C, Yang N, Li C, He J, Li H. Tuning Benzylic C-H Functionalization of (Thio)xanthenes with Electrochemistry. Molecules 2023; 28:6139. [PMID: 37630392 PMCID: PMC10459638 DOI: 10.3390/molecules28166139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Here, we report a tunable electrochemical benzylic C-H functionalization of (thio)xanthenes with terminal alkynes and nitriles in the absence of any catalyst or external chemical oxidant. The benzylic C-H functionalization can be well controlled by varying the electrochemical conditions, affording the specific coupling products via C-C and C-N bond formation.
Collapse
Affiliation(s)
- Changji Wang
- School of Chemical Engineering, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, China
| | - Na Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| | - Chao Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| | - Jian He
- Hefei New Online Technology Co., Ltd., Hefei 235000, China;
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| |
Collapse
|
22
|
Das S, Ehlers AW, Patra S, de Bruin B, Chattopadhyay B. Iron-Catalyzed Intermolecular C-N Cross-Coupling Reactions via Radical Activation Mechanism. J Am Chem Soc 2023. [PMID: 37390369 DOI: 10.1021/jacs.3c05627] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
A concept for intermolecular C-N cross-coupling amination has been discovered using tetrazoles and aromatic and aliphatic azides with boronic acids under iron-catalyzed conditions. The amination follows an unprecedented metalloradical activation mechanism that is different from traditional metal-catalyzed C-N cross-coupling reactions. The scope of the reaction has been demonstrated by the employment of a large number of tetrazoles, azides, and boronic acids. Moreover, several late-stage aminations and a short synthesis of a drug candidate have been showcased for further synthetic utility. Collectively, this iron-catalyzed C-N cross-coupling should have wide applications in the context of medicinal chemistry, drug discovery, and pharmaceutical industries.
Collapse
Affiliation(s)
- Subrata Das
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Andreas W Ehlers
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Sima Patra
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| | - Bas de Bruin
- Van't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Buddhadeb Chattopadhyay
- Department of Biological & Synthetic Chemistry, Center of Biomedical Research, SGPGIMS Campus, Raebareli Road, Lucknow, 226014 Uttar Pradesh, India
| |
Collapse
|
23
|
Xu Y, Li Q, Ye R, Xu B, Zhou X. Electrochemical Oxidative C-H Amination through a Ritter-Type Reaction. J Org Chem 2023. [PMID: 37262003 DOI: 10.1021/acs.joc.3c00609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A straightforward strategy for direct benzylic C-H bond amination via an electrochemical Ritter-type reaction is developed. The reaction demonstrates simpler and milder reaction conditions over the existing methods without extra mediator. Moderate to excellent yields up to 94% of the desired amide products were obtained with a broad substrate scope. The removal of the Ac group by a simple step can afford NH-free benzylic amines, providing a suitable approach for the late-stage functionalization of bioactive molecules.
Collapse
Affiliation(s)
- Yiwen Xu
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Qiang Li
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Runyou Ye
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| | - Buyi Xu
- National Anti-Drug Laboratory Sichuan Regional Center, 36 Yunling Road, Chengdu, Sichuan 610200, P.R. China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu, Sichuan 610064, China
| |
Collapse
|
24
|
Lee WCC, Wang J, Zhu Y, Zhang XP. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J Am Chem Soc 2023; 145:11622-11632. [PMID: 37129381 PMCID: PMC10249947 DOI: 10.1021/jacs.3c01618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Asymmetric radical bicyclization processes have been developed via metalloradical catalysis (MRC) to stereoselectively construct chiral chromanones and chromanes bearing fused cyclopropanes. Through optimization of a versatile D2-symmetric chiral amidoporphyrin ligand platform, a Co(II)-metalloradical system can homolytically activate both diazomalonates and α-aryldiazomethanes containing different alkene functionalities under mild conditions for effective radical bicyclization, delivering cyclopropane-fused tricyclic chromanones and chromanes, respectively, in high yields with excellent control of both diastereoselectivities and enantioselectivities. Combined computational and experimental studies, including the electron paramagnetic resonance (EPR) detection and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) trapping of key radical intermediates, shed light on the working details of the underlying stepwise radical mechanisms of the Co(II)-catalyzed bicyclization processes. The two catalytic radical processes provide effective synthetic tools for stereoselective construction of valuable cyclopropane-fused chromanones and chromanes with newly generated contiguous stereogenic centers. As a specific demonstration of synthetic application, the Co(II)-catalyzed radical bicyclization has been employed as a key step for the first asymmetric total synthesis of the natural product (+)-Radulanin J.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|