1
|
Liu D, He Z, Gao W, Shang J, Yang Y, Zhang X, Li X, Ma H, Shi W. Near-infrared II cyanine fluorophores with large stokes shift engineered by regulating respective absorption and emission. Nat Commun 2025; 16:4911. [PMID: 40425593 PMCID: PMC12117089 DOI: 10.1038/s41467-025-60241-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 05/20/2025] [Indexed: 05/29/2025] Open
Abstract
Fluorescence bioimaging in the near-infrared II window is a promising area due to its deep tissue penetration and high contrast. However, efficient design strategies for near-infrared II fluorophores with large Stokes shifts are still scarce. Here, we develop a series of near-infrared II fluorophores (termed VIPIs) with large Stokes shifts (167-260 nm in chloroform) by conjugating p-aminostyryl to hemicyanines. Time dependent density functional theory calculation and transient absorption spectra reveal that the excitation process is predominantly localized within the cyanine moiety, whereas the emission process involves the charge transfer from the cyanine to styryl moiety. We demonstrate the applications of VIPIs in multicolor imaging and conjugatable modification. Finally, we show that VIPI-4 liposomes can image the fine bone structure of knee joint of female mice over 1300 nm. This work provides insights into the excited-state photophysical processes in near-infrared II window, offering inspiration for designing fluorophores with extended emission and large Stokes shifts.
Collapse
Affiliation(s)
- Diankai Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zixu He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenjie Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jizhen Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Huzhou Key Laboratory of Medical and Environmental Applications Technologies, School of Life Sciences, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Yiqing Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaofan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Xiaohua Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huimin Ma
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wen Shi
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Guo Z, Liu P, Sha Y, Gao Y, Yu G, Lv HH, Wang Y, Han Y, Yang W, Wang XY, Ma X. Resolving the Vibronic Effect on Dark Processes of Conjugation Extended Diketopyrrolopyrrole with Red/NIR Emitting. J Phys Chem Lett 2025; 16:4615-4625. [PMID: 40312138 DOI: 10.1021/acs.jpclett.5c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The conjugation extended emitters with bright red/NIR emission are of high interest due to potential bioapplications, while they might be plagued from fluorescence quenching associated with the rapid dark decay channels of excited states. In this work, we employed diketopyrrolopyrrole (DPP) and conjugation extended derivatives as a model system and attempted to resolve the excited-state dynamics by using ultrafast spectroscopy. Further vibrational analysis on electronic states (S0, S1, T1, and T2) allowed us to evaluate vibronic effects on dark processes of the model system, including S1 state nonradiative decay (kNRS) and plausible ISC (kISC) channels. By identification of vibrational modes involved in corresponding dark processes, the relationship between excited-state structure relaxation, vibronic coupling, and the rate constant of dark processes was revealed. Our work indicated that the vibronic effect can greatly affect fluorescent emission by promoting dark processes and should be taken into consideration in molecular design of red/NIR emitters.
Collapse
Affiliation(s)
- Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Pengcai Liu
- State Key Laboratory of Elemento-Organic Chemistry, Frontier Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yulin Sha
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yixuan Gao
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Hao-Han Lv
- State Key Laboratory of Elemento-Organic Chemistry, Frontier Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Wensheng Yang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng 475004, P. R. China
| | - Xiao-Ye Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontier Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
3
|
Wang X, Li T, Yang X, Yang X, Ma Z, Wu X, Zhang Y, Chen G, Jiang J, Li C. Designing small organic molecular NIR-II fluorophores by ring strain modulation. Chem Commun (Camb) 2025; 61:4507-4510. [PMID: 39998555 DOI: 10.1039/d5cc00515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Developing small molecular organic fluorophores in the second near-infrared window (NIR-II, 1000-1700 nm) with excellent photophysical properties is an ongoing pursuit for in vivo bioimaging and biosensing. Herein, we report a strategy to modulate the optical properties of xanthene-based fluorophores by manipulating their ring strain through fine-tuning the ring size, which strongly influences the rigidity and planarity of the conjugated structure, thereby impacting their optical characteristics. Additionally, the ring strain imparts varying responsiveness to the fluorophores by affecting the pKcycl values through spirocyclization.
Collapse
Affiliation(s)
- Xingyu Wang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Tuanwei Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiaohu Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xingyu Yang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Zhiwei Ma
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Xiangyu Wu
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Yejun Zhang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Guangcun Chen
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Jiang Jiang
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| | - Chunyan Li
- CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China.
| |
Collapse
|
4
|
Li C, Yao M, Jiang G, Feng L, Wu Y, Sha R, Li Y, Tang BZ, Wang J. Side Chain Phenyl Isomerization-Induced Spatial Conjugation for Achieving Efficient Near-Infrared II Phototheranostic Agents. Angew Chem Int Ed Engl 2025; 64:e202419785. [PMID: 39520109 DOI: 10.1002/anie.202419785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
The contradiction of near-infrared II (NIR-II) emission and photothermal effects limits the development of phototheranostic agents (PTAs) in many emerging cutting-edge applications. Organic aggregates present a promising opportunity for the balance of competitive relaxation processes through the manipulation of molecular structure and packing. Herein, side chain phenyl isomerization-induced spatial conjugation was proposed for constructing A-D-A type NIR-II PTAs with simultaneous enhancement of fluorescence brightness and photothermal properties. Three pairs of mutually isomeric fluorophores, whose phenyls respectively located at the outside (o-series) and inside (i-series) of the side chain, were designed and synthesized. The positional isomerization of the phenyl endows the o-series crystals with strong spatial conjugation between the phenyl group on the side chain and the backbone, as well as interlocked planar network, which is different to that observed in the i-series. Thus, all o-series nanoparticles (NPs) exhibit red-shifted absorption, enhanced NIR-II emission, and superior photothermal properties than their i-series counterparts. A prominent member of the o-series, o-ITNP NPs, demonstrated efficacy in facilitating NIR-II angiography, tumor localization, and NIR-II imaging-guided tumor photothermal therapy. The success of this side chain phenyl isomerization strategy paves the way for precise control of the aggregation behavior and for further development of efficient NIR-II PTAs.
Collapse
Affiliation(s)
- Chunbin Li
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Mengfan Yao
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yifan Wu
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Renmanduhu Sha
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Yonghai Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, 518172, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, College of Biomedical Sciences, Inner Mongolia Key Laboratory of Synthesis and Application of Organic Functional Molecules, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
5
|
Gao X, Wang JY, Qin Y, Zhu Y, Liu YJ, Zhou K, Cui M. Design, Synthesis, and In Vivo Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm. Anal Chem 2025; 97:1827-1836. [PMID: 39813602 DOI: 10.1021/acs.analchem.4c05794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The development of long-wavelength near-infrared II (NIR-II, 900-1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior in vivo imaging capabilities, a donor-acceptor-donor (D-A-D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named VIX-1250 and VIX-1450 were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively. Among them, VIX-1450 demonstrated superior chemo- and photostability even at such long wavelengths. Fluorescent angiography using VIX-1450 micelles enabled high-clarity blood vessel imaging with a remarkable signal-to-noise ratio (SNR), underscoring that the dye's large Stokes shift (352 nm), good brightness (13 M-1 cm-1), and long wavelength served as key factors for high-quality in vivo biosensing. Additionally, VIX-1450 combined with ICG for dual-color imaging achieved near-zero optical cross talk, enabling different organ labeling. This study provides a new direction for the design of long-wavelength organic dyes.
Collapse
Affiliation(s)
- Xi Gao
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jin-Yu Wang
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Yufei Qin
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yiling Zhu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Ya-Jun Liu
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
| | - Kaixiang Zhou
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Mengchao Cui
- Center for Advanced Materials Research & Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, P. R. China
- Key Laboratory of Radiopharmaceuticals, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
6
|
You C, Tian L, Zhu J, Wang L, Tang BZ, Wang D. The Midas Touch by Iridium: A Second Near-Infrared Aggregation-Induced Emission-Active Metallo-Agent for Exceptional Phototheranostics of Breast Cancer. J Am Chem Soc 2025; 147:2010-2020. [PMID: 39763433 DOI: 10.1021/jacs.4c15150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Developing small organic molecular phototheranostic agents with second near-infrared (NIR-II) aggregation-induced emission (AIE) is paramount for the phototriggered diagnostic imaging and synchronous in situ therapy of cancer via an excellent balance of the excited states energy dissipations. In this study, a multifunctional iridium(III) complex is exploited by the coordination of an AIE-active N^N ancillary ligand with a trivalent iridium ion. The resultant complex DPTPzIr significantly outperforms its parent ligand in terms of absorption/emission wavelengths, reactive oxygen species (ROS) production, and photothermal conversion, which simultaneously endow DPTPzIr nanoparticles with matched absorption peak to commercial 808 nm laser, the longest NIR-II emission peak (above 1100 nm) among those previously reported AIE iridium(III) complexes, potentiated type-I ROS generation, and as high as 60.5% of photothermal conversion efficiency. Consequently, DPTPzIr nanoparticles perform well in multimodal image-guided photodynamic therapy-photothermal therapy for breast cancer in tumor-bearing mice, enabling precise tumor diagnosis and complete ablation with high biocompatibility. Our present work provides a simple, feasible, and effective paradigm for the development of advanced phototheranostic agents.
Collapse
Affiliation(s)
- Caifa You
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Leyuan Tian
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Jun Zhu
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Lei Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, P. R. China
| | - Dong Wang
- Center for AIE Research, Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| |
Collapse
|
7
|
Ma F, Gao Z, Jia Q, Yang Y, Wang B, Zhang J, Deng Z, Mo R, Ding Z, Xing G, Liu Y, Wang Z, Wang K, Lam JWY, Ding D, Zhao Z, Tang BZ. Intramolecular Repulsive Interactions Enable High Efficiency of NIR-II Aggregation-Induced Emission Luminogens for High-Contrast Glioblastoma Imaging. ACS NANO 2025; 19:1676-1688. [PMID: 39749539 DOI: 10.1021/acsnano.4c15387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Strategies to acquire high-efficiency luminogens that emit in the second near-infrared (NIR-II, 1000-1700 nm) range are still rare due to the impediment of the energy gap law. Herein, a feasible strategy is pioneered by installing large-volume encumbrances in a confined space to intensify the repulsive interactions arising from overlapping electron densities. The experimental results, including smaller coordinate displacement, reduced reorganization energy, and suppressed internal conversion, demonstrate that the repulsive interactions assist in the inhibition of radiationless deactivation. Meanwhile, the configuration and hybridization form of the donor units are transformed along with the repulsive interactions, bringing about improved oscillator strength. A 3.8-fold higher luminescence efficiency is realized via the synergistic effect. Furthermore, the repulsive interactions endow the NIR-II fluorophores with a highly twisted conformation, superior AIE activity, and cascaded improvement of fluorescence emission from isolated molecules to aggregates. By utilizing a brain-targeting peptide to functionalize the NIR-II nanoparticles, accurate detection and high-contrast imaging of orthotopic glioblastoma are realized. This work not only explores a fundamental principle to handle the intractable energy gap law but also provides potential applications of NIR-II luminogens in high-contrast bioimaging and glioblastoma detection.
Collapse
Affiliation(s)
- Fulong Ma
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zhiyuan Gao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Qian Jia
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Ying Yang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Rufan Mo
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Zeyang Ding
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Yong Liu
- AIE Institute, Guangzhou 510530, China
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, China
| | - Kaikai Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education and College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| |
Collapse
|
8
|
Zhang LN, Ran XY, Zhang H, Zhao Y, Zhou Q, Chen SY, Yang C, Yu XQ, Li K. Molecular Engineering of Xanthene Dyes with 3D Multimodal-Imaging Ability to Guide Photothermal Therapy. Adv Healthc Mater 2025; 14:e2402295. [PMID: 39473279 DOI: 10.1002/adhm.202402295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/28/2024] [Indexed: 01/03/2025]
Abstract
Phototheranostics integrates light-based diagnostic techniques with therapeutic interventions, offering a non-invasive, precise, and swift approach for both disease detection and treatment. The efficacy of this approach hinges on the multimodal imaging potential and photothermal conversion efficiency (PCE) of phototheranostic agents (PTAs). Despite the promise, crafting multifunctional phototheranostic organic small molecules brims with challenges. In this research, four innovative xanthene-derived PTAs are synthesized by fine-tuning the donor-π-acceptor (D-π-A) system to strike a balance between radiative and nonradiative decay. The inherent robust photostability and intense fluorescence of the traditional xanthene core are preserved, meanwhile the addition of highly electron-withdrawing groups boosts the non-radiative decay rate to enhance PCE and photoacoustic imaging capabilities. Remarkably, one of the PTAs, DMBA, demonstrates an exceptional absolute fluorescence quantum yield of 2.46% in PBS, and when encapsulated into nanoparticles, it achieves a high PCE of 79.5%. Consequently, DMBA nanoparticles (DMBA-NPs) are effectively employed in fluorescence, 3D photoacoustic, and photothermal imaging-guiding tumor photothermal therapy. This represents the first instance of a multimodal phototheranostic xanthene agent achieving synergistic fluorescence and photoacoustic imaging for diagnostic purposes. Furthermore, this work paves the way for leveraging xanthene fluorophores as versatile tools in the development of multifunctional reagents.
Collapse
Affiliation(s)
- Li-Na Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiao-Yun Ran
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Hong Zhang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yu Zhao
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Qian Zhou
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, 610039, Sichuan, China
| | - Shan-Yong Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Cheng Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiao-Qi Yu
- Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Department of Chemistry, Xihua University, Chengdu, 610039, Sichuan, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
9
|
Xuan J, Yu J, Huang C. Research Progress of Cyanine-Based Near-Infrared Fluorescent Probes for Biological Application. Chembiochem 2024; 25:e202400467. [PMID: 39039605 DOI: 10.1002/cbic.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Cyanine-based near-infrared (NIR) fluorescent probes have played vital roles in biological application due to their low interference from background fluorescence, deep tissue penetration, high sensitivity, and minimal photodamage to biological samples. They are widely utilized in molecular recognition, medical diagnosis, biomolecular detection, and biological imaging. Herein, we provide a review of recent advancements in cyanine-based NIR fluorescent probes for the detection of pH, cells, tumor as well as their application in photothermal therapy (PTT) and photodynamic therapy (PDT).
Collapse
Affiliation(s)
- Jigao Xuan
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jiajun Yu
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Chusen Huang
- The Education Ministry Key Laboratory of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors, Shanghai Frontiers Science Research Base of Biomimetic Catalysis, Department of Chemistry, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| |
Collapse
|
10
|
Yu J, Rong J, Yuan S, He X, Chu X, Chen L, Liu Q, Hu S, Wang Z. Extending the emission peak tail of indole cyanine for deep-near-infrared bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124798. [PMID: 39008931 DOI: 10.1016/j.saa.2024.124798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/25/2024] [Accepted: 07/07/2024] [Indexed: 07/17/2024]
Abstract
We propose a novel strategy for tailoring the structure of fluorescent molecules to achieve emission at the tail end of the NIR-II window. The favorable spectroscopic properties and low cytotoxicity of YNs make them powerful tools for bioimaging. Notably, YN-4 exhibits a brightness 2.5 times greater than YN-3, 6 times that of IR-783, and 5 times that of ICG. This enhanced brightness enabled high-resolution imaging of mouse thoracic and abdominal cavities, tumor vasculature, and real-time monitoring of gastrointestinal motility using YN-4. Furthermore, covalent grafting of glucose onto the YN-Glu scaffold significantly improved tumor-targeting capability and facilitated tracking of glucose metabolism. This work aims to extend the application of fluorescent molecule imaging beyond the NIR-IIa window.
Collapse
Affiliation(s)
- Jiaying Yu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Jie Rong
- State Key Laboratory of Organic Electronics and Information, Displays & Institute of Advanced Materials (IAM), Jiangsu Key, Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing 210023, PR China
| | - Shen Yuan
- School of Medicine, Nantong University, Nantong 226019, PR China
| | - Xiaofan He
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Xianfeng Chu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Lucheng Chen
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Shaojun Hu
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China
| | - Zhifei Wang
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, PR China.
| |
Collapse
|
11
|
Gao Y, Sun Y, Guo Z, Yu G, Wang Y, Wan Y, Han Y, Yang W, Zhao D, Ma X. Facilitating intrinsic delayed fluorescence of conjugated emitters by inter-chromophore interaction. Chem Sci 2024:d4sc05494f. [PMID: 39430944 PMCID: PMC11484929 DOI: 10.1039/d4sc05494f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/19/2024] [Indexed: 10/22/2024] Open
Abstract
Delayed fluorescence (DF) is a unique emitting phenomenon of great interest for important applications in organic optoelectronics. In general, DF requires well-separated frontier orbitals, inherently corresponding to charge transfer (CT)-type emitters. However, facilitating intrinsic DF for local excited (LE)-type conjugated emitters remains very challenging. Aiming to overcome this obstacle, we demonstrate a new molecular design strategy with a DF-inactive B,N-multiple resonance (MR) emitter as a model system. Without the necessity of doping with heavy atoms, we synthesized a co-facial dimer in which an excimer-like state (Sexc) was expected to facilitate efficient reverse intersystem crossing (RISC, T1 → Sexc) and intrinsic DF. Benefiting from greatly enhanced SOC and reduced ΔE ST, the proof-of-concept emitter Np-2CzB exhibited k RISC up to 6.5 × 105 s-1 and intrinsic DF with >35% contribution (Φ DF/Φ F) in dilute solution. Further investigation indicated that Sexc state formation relies on an optimized co-facial distance (d = ∼4.7 Å), strong inter-chromophore interaction (J coul > 450 cm-1) and a rigid structure (Γ S1→S0 < 350 cm-1). Although our strategy was demonstrated with a B,N-MR emitter, it can be applicable to many LE-type conjugated emitters without intrinsic DF. By triggering potential DF emission, many classic emitters might play a more important role in optoelectronics.
Collapse
Affiliation(s)
- Yixuan Gao
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yingman Sun
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Guo Yu
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Wensheng Yang
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Dongbing Zhao
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
12
|
Chowdhury P, Lu ZY, Su SP, Liu MH, Lin CY, Wang MW, Luo YC, Lee YJ, Chiang HK, Chan YH. Ultrabright Dibenzofluoran-Based Polymer Dots with NIR-IIa Emission Maxima and Unusual Large Stokes Shifts for 3D Rotational Stereo Imaging. Adv Healthc Mater 2024; 13:e2400606. [PMID: 38683681 DOI: 10.1002/adhm.202400606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/23/2024] [Indexed: 05/02/2024]
Abstract
Emerging organic molecules with emissions in the second near-infrared (NIR-II) region are garnering significant attention. Unfortunately, achieving accountable organic emission intensity over the NIR-IIa (1300 nm) region faces challenges due to the intrinsic energy gap law. Up to the current stage, all reported organic NIR-IIa emitters belong to polymethine-based dyes with small Stokes shifts (<50 nm) and low quantum yield (QY; ≤0.015%). However, such polymethines have proved to cause self-absorption with constrained emission brightness, limiting advanced development in deep-tissue imaging. Here a new NIR-IIa scaffold based on rigid and highly conjugated dibenzofluoran core terminated by amino-containing moieties that reveal emission peaks of 1230-1305 nm is designed. The QY is at least 10 times higher than all synthesized or reported NIR-IIa polymethines with extraordinarily large Stokes shifts of 370-446 nm. DBF-BJ is further prepared as a polymer dot to demonstrate its in vivo 3D stereo imaging of mouse vasculature with a 1400 nm long-pass filter.
Collapse
Affiliation(s)
- Partha Chowdhury
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Zhao-Yu Lu
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Shih-Po Su
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Meng-Huan Liu
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Chun-Yi Lin
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Man-Wen Wang
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yi-Chi Luo
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
| | - Yi-Jang Lee
- Department of Biomedical Imaging and Radiological Sciences, School of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Huihua Kenny Chiang
- Institute of Biomedical Engineering, National Yang Ming Chiao Tung University, Taipei, 11221, Taiwan
| | - Yang-Hsiang Chan
- Department of Applied Chemistry/Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30050, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| |
Collapse
|
13
|
Wan Y, Chen W, Liu Y, Lee KW, Gao Y, Zhang D, Li Y, Huang Z, Luo J, Lee CS, Li S. Neutral Cyanine: Ultra-Stable NIR-II Merocyanines for Highly Efficient Bioimaging and Tumor-Targeted Phototheranostics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405966. [PMID: 38771978 DOI: 10.1002/adma.202405966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/16/2024] [Indexed: 05/23/2024]
Abstract
Fluorescence imaging (FLI)-guided phototheranostics using emission from the second near-infrared (NIR-II) window show significant potential for cancer diagnosis and treatment. Clinical imaging-used polymethine ionic indocyanine green (ICG) dye is widely adopted for NIR fluorescence imaging-guided photothermal therapy (PTT) research due to its exceptional photophysical properties. However, ICG has limitations such as poor photostability, low photothermal conversion efficiency (PCE), short-wavelength emission peak, and liver-targeting issues, which restrict its wider use. In this study, two ionic ICG derivatives are transformed into neutral merocyanines (mCy) to achieve much-enhanced performance for NIR-II cancer phototheranostics. Initial designs of two ionic dyes show similar drawbacks as ICG in terms of poor photostability and low photothermal performance. One of the modified neutral molecules, mCy890, shows significantly improved stability, an emission peak over 1000 nm, and a high photothermal PCE of 51%, all considerably outperform ICG. In vivo studies demonstrate that nanoparticles of the mCy890 can effectively accumulate at the tumor sites for cancer photothermal therapy guided by NIR-II fluorescence imaging. This research provides valuable insights into the development of neutral merocyanines for enhanced cancer phototheranostics.
Collapse
Affiliation(s)
- Yingpeng Wan
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Weilong Chen
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Ying Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Ka-Wai Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Di Zhang
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yuqing Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhongming Huang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Jingdong Luo
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, P. R. China
- Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, P. R. China
- Hong Kong Institute for Clean Energy (HKICE), City University of Hong Kong, Hong Kong, SAR, 999077, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
14
|
Wang H, Liu H, Li W, Li S, Zhang J, Zang J, Liu L, Wang P. Supramolecular engineering cascade regulates NIR-II J-aggregates to improve photodynamic therapy. Chem Sci 2024; 15:11347-11357. [PMID: 39055007 PMCID: PMC11268488 DOI: 10.1039/d4sc03020f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/24/2024] [Indexed: 07/27/2024] Open
Abstract
Rational design of small organic molecule-based NIR-II photosensitizers (PSs) with high singlet oxygen quantum yield in aqueous solution for deep tissue imaging and cancer therapy still presents challenges. Herein, we devised a general synthesis strategy to obtain six NIR-II region PSs with tunable aggregation states by adjusting the steric effect, and all PSs possess longer NIR absorption/emission wavelengths with tails extending beyond 1200 nm. Notably, ATX-6 possessed a singlet oxygen quantum yield of 38.2% and exhibited concentration-dependent J-aggregation properties upon self-assembly in an aqueous solution. What's more, supramolecular engineering with DSPE-PEG2000 further enhanced its degree of J-aggregation, which was attributed to the dimer-excited reduction of the energy levels of the single-linear/triple-linear states and the facilitation of intersystem crossover processes. In addition, ATX-6 NPs showed superior photodynamic therapy effects and great potential in high-contrast in vivo bioimaging of the NIR-II region. These results provide valuable insights for achieving the diagnostic and therapeutic integration of tumors.
Collapse
Affiliation(s)
- Huizhe Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Huijia Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Wenqing Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Shuai Li
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Jingzhe Zang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Li Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University Nanjing 210009 China
| |
Collapse
|
15
|
Hung CM, Wang SF, Chao WC, Li JL, Chen BH, Lu CH, Tu KY, Yang SD, Hung WY, Chi Y, Chou PT. High-performance near-infrared OLEDs maximized at 925 nm and 1022 nm through interfacial energy transfer. Nat Commun 2024; 15:4664. [PMID: 38821968 PMCID: PMC11143248 DOI: 10.1038/s41467-024-49127-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 05/23/2024] [Indexed: 06/02/2024] Open
Abstract
Using a transfer printing technique, we imprint a layer of a designated near-infrared fluorescent dye BTP-eC9 onto a thin layer of Pt(II) complex, both of which are capable of self-assembly. Before integration, the Pt(II) complex layer gives intense deep-red phosphorescence maximized at ~740 nm, while the BTP-eC9 layer shows fluorescence at > 900 nm. Organic light emitting diodes fabricated under the imprinted bilayer architecture harvest most of Pt(II) complex phosphorescence, which undergoes triplet-to-singlet energy transfer to the BTP-eC9 dye, resulting in high-intensity hyperfluorescence at > 900 nm. As a result, devices achieve 925 nm emission with external quantum efficiencies of 2.24% (1.94 ± 0.18%) and maximum radiance of 39.97 W sr-1 m-2. Comprehensive morphology, spectroscopy and device analyses support the mechanism of interfacial energy transfer, which also is proved successful for BTPV-eC9 dye (1022 nm), making bright and far-reaching the prospective of hyperfluorescent OLEDs in the near-infrared region.
Collapse
Affiliation(s)
- Chieh-Ming Hung
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Sheng-Fu Wang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Wei-Chih Chao
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Jian-Liang Li
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Bo-Han Chen
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - Chih-Hsuan Lu
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - Kai-Yen Tu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Shang-Da Yang
- Institute of Photonics Technologies, National Tsing Hua University, Hsinchu, Taiwan
| | - Wen-Yi Hung
- Institute of Optoelectronic Sciences, National Taiwan Ocean University, Keelung, Taiwan
| | - Yun Chi
- Department of Materials Sciences and Engineering and Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China.
| | - Pi-Tai Chou
- Department of Chemistry, National Taiwan University, Taipei, Taiwan.
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Xu M, Sun Q, Wang X, Gao H, Liu Z. Near-Infrared Absorbing BODIPY-Xanthene Hybrids for Multiplexed Photoacoustic Imaging. Org Lett 2024; 26:3750-3755. [PMID: 38667340 DOI: 10.1021/acs.orglett.4c00842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
We report a series of ethenylene-bridged D-π-A BODIPY-xanthene hybrid dyes with precisely regulated absorption bands ranging from the far-red to the near-infrared region (NIR, 700-1000 nm) through rational molecular design. These dyes have excellent photoacoustic properties, and their biocompatibility can be significantly improved by facilely introducing water-soluble groups. In vivo two-channel multiplexed photoacoustic imaging demonstrated their high-resolution imaging capabilities, making them promising candidates for future NIR bioimaging applications.
Collapse
Affiliation(s)
- Mohan Xu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Qian Sun
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, People's Republic of China
| | - Xiaoqing Wang
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Hu Gao
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhipeng Liu
- College of Materials Science and Engineering, College of Science, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
17
|
Gao Y, Wang Y, Guo Z, Wan Y, Xue Z, Han Y, Yang W, Ma X. Ultrafast photophysics of an orange-red thermally activated delayed fluorescence emitter: the role of external structural restraint. Chem Sci 2024; 15:6410-6420. [PMID: 38699269 PMCID: PMC11062098 DOI: 10.1039/d4sc00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/21/2024] [Indexed: 05/05/2024] Open
Abstract
The application of thermally activated delay fluorescence (TADF) emitters in the orange-red regime usually suffers from the fast non-radiative decay of emissive singlet states (kSNR), leading to low emitting efficiency in corresponding organic light-emitting diode (OLED) devices. Although kSNR has been quantitatively described by energy gap law, how ultrafast molecular motions are associated with the kSNR of TADF emitters remains largely unknown, which limits the development of new strategies for improving the emitting efficiency of corresponding OLED devices. In this work, we employed two commercial TADF emitters (TDBA-Ac and PzTDBA) as a model system and attempted to clarify the relationship between ultrafast excited-state structural relaxation (ES-SR) and kSNR. Spectroscopic and theoretical investigations indicated that S1/S0 ES-SR is directly associated with promoting vibrational modes, which are considerably involved in electronic-vibrational coupling through the Huang-Rhys factor, while kSNR is largely affected by the reorganization energy of the promoting modes. By restraining S1/S0 ES-SR in doping films, the kSNR of TADF emitters can be greatly reduced, resulting in high emitting efficiency. Therefore, by establishing the connection among S1/S0 ES-SR, promoting modes and kSNR of TADF emitters, our work clarified the key role of external structural restraint for achieving high emitting efficiency in TADF-based OLED devices.
Collapse
Affiliation(s)
- Yixuan Gao
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yaxin Wang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University Beijing 100875 P. R. China
| | - Zheng Xue
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Yandong Han
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Wensheng Yang
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
- Engineering Research Center for Nanomaterials, Henan University Kaifeng 475004 P. R. China
| | - Xiaonan Ma
- Institute of Molecular Plus, Tianjin University Tianjin 300072 P. R. China
| |
Collapse
|
18
|
Zeng Y, Qu J, Wu G, Zhao Y, Hao J, Dong Y, Li Z, Shi J, Francisco JS, Zheng X. Two Key Descriptors for Designing Second Near-Infrared Dyes and Experimental Validation. J Am Chem Soc 2024; 146:9888-9896. [PMID: 38546165 DOI: 10.1021/jacs.3c14805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Second near-infrared (NIR-II) optical imaging technology has emerged as a powerful tool for diagnostic and image-guided surgery due to its higher imaging contrast. However, a general strategy for efficiently designing NIR-II organic molecules is still lacking, because NIR-II dyes are usually difficult to synthesize, which has impeded the rapid development of NIR-II bioprobes. Herein, based on the theoretical calculations on 62 multiaryl-pyrrole (MAP) systems with spectra ranging from the visible to the NIR-II region, a continuous red shift of the spectra toward the NIR-II region could be achieved by adjusting the type and site of substituents on the MAPs. Two descriptors (ΔEgs and μgs) were identified as exhibiting strong correlations with the maximum absorption/emission wavelengths, and the descriptors could be used to predict the emission spectrum in the NIR-II region only if ΔEgs ≤ 2.5 eV and μgs ≤ 22.55 D. The experimental absorption and emission spectra of ten MAPs fully confirmed the theoretical predictions, and biological imaging in vivo of newly designed MAP23-BBT showed high spatial resolution in the NIR-II region in deep tissue angiography. More importantly, both descriptors of ΔEgs and μgs have shown general applicability to most of the reported donor-acceptor-donor-type non-MAP NIR-II dyes. These results have broad implications for the efficient design of NIR-II dyes.
Collapse
Affiliation(s)
- Yi Zeng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiamin Qu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guanghao Wu
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yeyun Zhao
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiaman Hao
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zesheng Li
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6316, United States
| | - Xiaoyan Zheng
- Key Laboratory of Cluster Science of Ministry of Education, Key Laboratory of Medicinal Molecule Science and Pharmaceutics Engineering of Ministry of Industry and Information Technology, Beijing Key Laboratory of Photoelectroic/Electro-Photonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
19
|
Ma F, Jia Q, Deng Z, Wang B, Zhang S, Jiang J, Xing G, Wang Z, Qiu Z, Zhao Z, Tang BZ. Boosting Luminescence Efficiency of Near-Infrared-II Aggregation-Induced Emission Luminogens via a Mash-Up Strategy of π-Extension and Deuteration for Dual-Model Image-Guided Surgery. ACS NANO 2024; 18:9431-9442. [PMID: 38507745 DOI: 10.1021/acsnano.3c11078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The simultaneous pursuit of accelerative radiative and restricted nonradiative decay is of tremendous significance to construct high-luminescence-efficiency fluorophores in the second near-infrared wavelength window (NIR-II), which is seriously hindered by the energy gap laws. Herein, a mash-up strategy of π-extension and deuteration is proposed to efficaciously ameliorate the knotty problem. By extending the π-conjugation of the aromatic fragment and introducing an isotope effect to the aggregation-induced emission luminogen (AIEgen), an improved oscillator strength (f), coupled with suppressed deformation and high-frequency oscillation in the excited state, are successively implemented. In this case, a faster rate of radiative decay (kr) and restricted nonradiative decay (knr) are simultaneously achieved. Moreover, the preeminent emissive property of AIEgen in the molecular state could be commendably inherited by the aggregates. The corresponding NIR-II emissive AIEgen-based nanoparticles display high brightness, large Stokes shift, and superior photostability simultaneously, which can be applied for image-guided cancer and sentinel lymph node (SLN) surgery. This work thus provides a rational roadmap to improve the luminescence efficiency of NIR-II fluorophores for biomedical applications.
Collapse
Affiliation(s)
- Fulong Ma
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Qian Jia
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Ziwei Deng
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Bingzhe Wang
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, People's Republic of China
| | - Siwei Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| | - Jinhui Jiang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Guichuan Xing
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, People's Republic of China
| | - Zhongliang Wang
- Laboratory of Molecular Imaging and Translational Medicine (MITM), Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an 710126, People's Republic of China
| | - Zijie Qiu
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province 518057, People's Republic of China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, School of Medicine, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, People's Republic of China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999077, People's Republic of China
| |
Collapse
|
20
|
Zhou X, Fan Y, Li S, Zhang K, Pei Y, Zeng Y, Kang X, Zhao L, Chen H, Qin Y, Feng W, Liu L, Wu L. Molecular Engineering of Bright NIR-I/NIR-II Nanofluorophores for High-Resolution Bioimaging and Tumor Detection in Vivo. NANO LETTERS 2024; 24:1792-1800. [PMID: 38278136 DOI: 10.1021/acs.nanolett.3c04976] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2024]
Abstract
A comprehensive approach for the construction of NIR-I/NIR-II nanofluorophores with exceptional brightness and excellent chemo- and photostability has been developed. This study first confirmed that the amphiphilic molecules with stronger hydrophobic moieties and weaker hydrophilic moieties are superior candidates for constructing brighter nanofluorophores, which are attributed to its higher efficiency in suppressing the intramolecular charge transfer/aggregation-caused fluorescence quenching of donor-acceptor-donor type fluorophores. The prepared nanofluorophore demonstrates a fluorescence quantum yield exceeding 4.5% in aqueous solution and exhibits a strong NIR-II tail emission up to 1300 nm. The superior performance of the nanofluorophore enabled the achievement of high-resolution whole-body vessel imaging and brain vessel imaging, as well as high-contrast fluorescence imaging of the lymphatic system in vivo. Furthermore, their potential for highly sensitive fluorescence detection of tiny tumors in vivo has been successfully confirmed, thus supporting their future applications in precise fluorescence imaging-guided surgery in the early stages of cancer.
Collapse
Affiliation(s)
- Xiaobo Zhou
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, Jiangsu, China
| | - Yiwei Fan
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Shijie Li
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, Jiangsu, China
| | - Ke Zhang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, Jiangsu, China
| | - Yuetian Pei
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Yuhan Zeng
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, Jiangsu, China
| | - Xiaoxia Kang
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, Jiangsu, China
| | - Lingfeng Zhao
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, Jiangsu, China
| | - Hao Chen
- Molecular Imaging Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuling Qin
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, Jiangsu, China
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers & Academy for Engineering and Technology, Fudan University, Shanghai 200433, China
| | - Lingxiao Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Li Wu
- School of Public Health, Nantong Key Laboratory of Public Health and Medical Analysis, Nantong University, Nantong 226019, Jiangsu, China
| |
Collapse
|
21
|
Zhou X, Zeng Y, Li S, Zhang K, Zhao L, Li G, Wang Q, Ji H, Wu M, Liu J, Qin Y, Feng W, Li F, Wu L. Polymeric engineering of AIEgens for NIR-II fluorescence imaging and detection of abdominal metastases of ovarian cancer in vivo. J Mater Chem B 2023; 11:11217-11221. [PMID: 37843833 DOI: 10.1039/d3tb01750h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
A polymeric engineering design principle is proposed for the construction of small-sized (∼20 nm) NIR-II AIEgen-doped nanodots (AIEdots) with high brightness and prolonged circulation time in blood vessels. With the utilization of the as-designed NIR-II AIEdots, the successful achievement of high-resolution NIR-II fluorescence imaging of tumor vessels and precise detection of abdominal metastases of ovarian cancer has been attained.
Collapse
Affiliation(s)
- Xiaobo Zhou
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Yuhan Zeng
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Shijie Li
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Ke Zhang
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Lingfeng Zhao
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Guo Li
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Qi Wang
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Mingmin Wu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Jinxia Liu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Yuling Qin
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| | - Wei Feng
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
| | - Fuyou Li
- Department of Chemistry & State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China.
- Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Wu
- School of Public Health, Nantong University, Nantong 226019, Jiangsu, China.
| |
Collapse
|
22
|
Yang N, Song S, Akhtar MH, Liu C, Yao L, Yu J, Li Y, Li Q, He D, Yu C. J-Aggregation induced NIR-II fluorescence: an aza-BODIPY luminogen for efficient phototheranostics. J Mater Chem B 2023; 11:9712-9720. [PMID: 37791404 DOI: 10.1039/d3tb01280h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The development of organic dyes with emission peaks in the second near-infrared window (NIR-II 1000-1700 nm) is highly desirable for in vivo imaging and imaging-guided phototheranostics. However, the lack of appropriate molecular frameworks and the challenges associated with complex synthesis critically hinder the development of new candidate fluorophores. J-Aggregation is considered as a smart and straightforward way to construct such a therapeutic agent with NIR-II fluorescence imaging properties. Here, we present the design and synthesis of an aza-BODIPY probe (TA). Upon encapsulation within the amphiphilic polymer DSPEG-PEG2000-NH2, TA underwent self-assembly and formed J-aggregates (TAJ NPs), which showed emission at 1020 nm. High spatial resolution and adequate signal-to-noise ratio of the TAJ NPs are demonstrated for noninvasive bioimaging of the vasculature, lymph nodes and bones of mice in the NIR-II region. Moreover, the TAJ NPs exhibited good tumor enrichment efficiency with reduced liver accumulation and significant imaging-guided phototherapy performance against lung cancer cells. Taken together, this work not only introduces a new NIR-II imaging and phototheranostic agent based on J-aggregates, but also provides insight into the development of versatile organic dyes for future clinical implementation.
Collapse
Affiliation(s)
- Na Yang
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Shuang Song
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Mahmood Hassan Akhtar
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Chang Liu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Lang Yao
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Jiayuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Ying Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Qianxue Li
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun 130122, P. R. China
| | - Di He
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Cong Yu
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
23
|
Xu J, Zhang Y, Liu J, Wang L. NIR-II Absorbing Monodispersed Oligomers Based on N-B←N Unit. Angew Chem Int Ed Engl 2023; 62:e202310838. [PMID: 37635075 DOI: 10.1002/anie.202310838] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/25/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Organic molecules with near-infrared II (NIR II) light absorption are essential for many biological and opto-electronic applications. Herein, we report monodispersed oligomers as NIR II light absorber using a new molecular design strategy of resonant N-B←N unit, i.e. balanced resonant boron-nitrogen covalent bond (B-N) and boron-nitrogen coordination bond (B←N). We synthesize a series of monodispersed oligomers with thiophene-fused 4,4-difluoro-4-bora-3a,4a-diaza-s-indacene (TB), which contains resonant N-B←N unit, as the repeating unit. The TB pentamer exhibits the maximum absorption wavelength of 1169 nm, which is the longest for oligomers reported so far. Organic photodetectors (OPDs) with the TB tetramer as the electron acceptor shows the specific detectivity of 2.98×1011 Jones at 1180 nm under zero bias. This performance is among the best for NIR II OPDs. These results indicate a new kind of NIR II absorbing molecules as excellent opto-electronic materials.
Collapse
Affiliation(s)
- Jin Xu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Yingze Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
24
|
Li DH, Gamage RS, Oliver AG, Patel NL, Muhammad Usama S, Kalen JD, Schnermann MJ, Smith BD. Doubly Strapped Zwitterionic NIR-I and NIR-II Heptamethine Cyanine Dyes for Bioconjugation and Fluorescence Imaging. Angew Chem Int Ed Engl 2023; 62:e202305062. [PMID: 37163228 PMCID: PMC10330731 DOI: 10.1002/anie.202305062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/11/2023]
Abstract
Heptamethine cyanine dyes enable deep tissue fluorescence imaging in the near infrared (NIR) window. Small molecule conjugates of the benchmark dye ZW800-1 have been tested in humans. However, long-term imaging protocols using ZW800-1 conjugates are limited by their instability, primarily because the chemically labile C4'-O-aryl linker is susceptible to cleavage by biological nucleophiles. Here, we report a modular synthetic method that produces novel doubly strapped zwitterionic heptamethine cyanine dyes, including a structural analogue of ZW800-1, with greatly enhanced dye stability. NIR-I and NIR-II versions of these doubly strapped dyes can be conjugated to proteins, including monoclonal antibodies, without causing undesired fluorophore degradation or dye stacking on the protein surface. The fluorescent antibody conjugates show excellent tumor-targeting specificity in a xenograft mouse tumor model. The enhanced stability provided by doubly strapped molecular design will enable new classes of in vivo NIR fluorescence imaging experiments with possible translation to humans.
Collapse
Affiliation(s)
- Dong-Hao Li
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Rananjaya S Gamage
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| | - Nimit L Patel
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Syed Muhammad Usama
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Joseph D Kalen
- Small Animal Imaging Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research Inc., Frederick, MD 21702, USA
| | - Martin J Schnermann
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bradley D Smith
- Department of Chemistry and Biochemistry, University of Notre Dame, 251 Nieuwland Science Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
25
|
Chen L, Jiang Y, Xu S, Zhang J, Jung SR, Yu J, Zhang X, Chiu DT. BODIPY-based near-infrared semiconducting polymer dot for selective yellow laser-excited cell imaging. RSC Adv 2023; 13:15121-15125. [PMID: 37223645 PMCID: PMC10201341 DOI: 10.1039/d3ra01083j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/25/2023] [Indexed: 05/25/2023] Open
Abstract
Semiconducting polymer dots (Pdots) with both narrow-band absorption and emission are desirable for multiplexed bioassay applications, but such Pdots with absorption peaks beyond 400 nm are difficult to achieve. Here we describe a donor-energy transfer unit-acceptor (D-ETU-A) design strategy to produce a BODIPY-based Pdot that exhibits simultaneously narrow absorption and emission bands. A green BODIPY (GBDP) unit was employed as the main building block of the polymer backbone, conferring a strong, narrow-band absorption around 551 nm. An NIR720 acceptor provides narrow-band NIR emission. The small Stokes shift of the GBDP donor allows introduction of a benzofurazan-based ETU, resulting in a ternary Pdot with a fluorescence quantum yield of 23.2%, the most efficient yellow-laser excitable Pdot. Due to the strong absorbance band centered at 551 nm and weak absorbance at 405 nm and 488 nm, the Pdot showed high single-particle brightness when excited by a 561 nm (yellow) laser, and selective yellow laser excitation when used to label MCF cells, with much greater brightness when excited at 561 nm than at 405 nm or 488 nm.
Collapse
Affiliation(s)
- Lei Chen
- Department of Biomedical Engineering, Sun Yat-Sen University Shenzhen 518107 China
- Department of Chemistry and Bioengineering, University of Washington Seattle Washington 98195 USA
| | - Yifei Jiang
- Department of Chemistry and Bioengineering, University of Washington Seattle Washington 98195 USA
| | - Shihan Xu
- Department of Chemistry and Bioengineering, University of Washington Seattle Washington 98195 USA
| | - Jicheng Zhang
- Department of Chemistry and Bioengineering, University of Washington Seattle Washington 98195 USA
| | - Seung-Ryoung Jung
- Department of Chemistry and Bioengineering, University of Washington Seattle Washington 98195 USA
| | - Jiangbo Yu
- Department of Chemistry and Bioengineering, University of Washington Seattle Washington 98195 USA
| | - Xuanjun Zhang
- Department of Health Sciences, University of Macau Taipa Macau SAR 999078 China
| | - Daniel T Chiu
- Department of Chemistry and Bioengineering, University of Washington Seattle Washington 98195 USA
| |
Collapse
|