1
|
Qi Q, Liu Y, Puranik V, Patra S, Svindrych Z, Gong X, She Z, Zhang Y, Aprahamian I. Photoswitchable Fluorescent Hydrazone for Super-Resolution Cell Membrane Imaging. J Am Chem Soc 2025; 147:16404-16411. [PMID: 40315017 DOI: 10.1021/jacs.5c02669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Advancing the field of super-resolution microscopy will require the design and optimization of new molecular probes whose emission can be toggled "ON" and "OFF" using light. Recently, we reported on a hydrazone photochrome (1) whose emission can be photoswitched on demand, although its low brightness and UV light-dependent back isomerization limited its use in such applications. Here, we report on the optimization of this parent fluorophore by replacing its dimethylamine electron-donating group with conformationally more rigid groups, namely, azetidine (2), 3,3-difluoroazetidine (3), and julolidine (4). This structural change resulted in enhanced brightness (i.e., extinction coefficient multiplied by fluorescence quantum yield), specifically in 4 because of its rigidity and ED capability. Next, three electron push-pull hydrazones (5-7) were designed based on the scaffold of 4, using cyano, nitro, or dicyanovinyl, respectively, as the electron-withdrawing groups, resulting in the progressive red-shifting of the photoswitching wavelengths into the visible region and further enhancement in brightness. Finally, fluorogenic probe 8 was developed based on parent compound 7, which could be activated solely with visible light and used in the super-resolution imaging of fixed-cell and live-cell plasma membranes with average localization precisions of 17 and 25 nm, respectively.
Collapse
Affiliation(s)
- Qingkai Qi
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yunshu Liu
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Vedang Puranik
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Shefali Patra
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Zdenek Svindrych
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Xiayi Gong
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Ziwei She
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Yang Zhang
- Molecular Analytics and Photonics (MAP) Laboratory, Department of Textile Engineering, Chemistry and Science, North Carolina State University, Raleigh, North Carolina 27606, United States
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Ivan Aprahamian
- Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
2
|
Yan C, Zhu W, Li R, Xu Q, Li D, Zhang W, Leng L, Shao A, Guo Z. Mapping Dynamic Protein Clustering with AIEgen-Active Chemigenetic Probe. Angew Chem Int Ed Engl 2025; 64:e202422996. [PMID: 39831846 DOI: 10.1002/anie.202422996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/22/2025]
Abstract
Protein clustering/disassembling is a fundamental process in biomolecular condensates, playing a crucial role in cell fate decision and cellular homeostasis. However, the inherent features of protein clustering, especially for its reversible behavior and subtle microenvironment variation, present significant hurdles in probe chemistry for tracking protein clustering dynamics. Herein, we report a bilateral-tailored chemigenetic probe, in which an "amphiphilic" aggregate-induced emission luminogen (AIEgen) QMSO3Cl is covalently conjugated to a protein tag that is genetically fused to protein-of-interest (POI). Prior to target POI, the "amphiphilic" AIE-active QMSO3Cl achieves a completely dark state in both aqueous biological environment and lipophilic organelles, thereby ensuring an ultra-low intrinsic background interference. Upon reaching POI, the combination of synthetic molecule and genetically encoded protein allows for protein clustering-dependent ultra-sensitive response, with a substantial lighting-up fluorescence (67.5-fold) as protein transitions from disassembling to clustering state. Such ultra-high signal-to-noise ratio enables to monitor the dynamic and fate of inositol requiring enzyme 1 (IRE1) clustering/disassembling under both acute and chronic endoplasmic reticulum (ER) stress in living cells. For the first time, we have demonstrated the use of chemigenetic probe to reveal therapy-induced ER stress and screen drugs in a three-dimensional scenario: microviscosity change, clustering dynamic, and cluster morphology. This chemigenetic probe design strategy would greatly facilitate the advancement of mapping protein dynamics in cell homeostasis and medicine research.
Collapse
Affiliation(s)
- Chenxu Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wendi Zhu
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Runqi Li
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qin Xu
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weixu Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Translational Medicine Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Andong Shao
- Key Laboratory of Carbohydrate Vaccines and Drugs in Jiangsu Province, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Zhiqian Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Fritsch VN, Hensel M. Experimental Approaches to Visualize Effector Protein Translocation During Host-Pathogen Interactions. Bioessays 2025; 47:e202400188. [PMID: 40078034 PMCID: PMC11931682 DOI: 10.1002/bies.202400188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
Bacterial pathogens deliver effector proteins into host cells by deploying sophisticated secretion systems. This effector translocation during host-pathogen interactions is a prerequisite for the manipulation of host cells and organisms and is important for pathogenesis. Analyses of dynamics and kinetics of translocation, subcellular localization, and cellular targets of effector proteins lead to understanding the mode of action and function of effector proteins in host-pathogen interplay. This review provides an overview of biochemical and genetic tools that have been developed to study protein effector translocation qualitatively or quantitatively. After introducing the challenges of analyses of effector translocation during host-pathogen interaction, we describe various methods ranging from static visualization in fixed cells to dynamic live-cell imaging of effector protein translocation. We show the main findings enabled by the approaches, emphasize the advantages and limitations of the methods, describe recent approaches that allow real-time tracking of effector proteins in living cells on a single molecule level, and highlight open questions in the field to be addressed by application of new methods.
Collapse
Affiliation(s)
| | - Michael Hensel
- Abt. MikrobiologieUniversität OsnabrückOsnabrückGermany
- Center for Cellular Nanoananalytics (CellNanOs)Universität OsnabrückOsnabrückGermany
| |
Collapse
|
4
|
Yuan Q, Ma M, Wang M, Sun P, Xiao X, Chi W. Determining the Recruiting Rate of Spontaneously Blinking Rhodamines by Density Functional Calculations. J Phys Chem A 2025; 129:667-676. [PMID: 39792776 DOI: 10.1021/acs.jpca.4c06408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A recruiting rate (krc) of 0.1-5 s-1 has been proposed as the criterion for super-resolution spontaneously blinking rhodamines. Accurate prediction of the recruiting rate (krc) of rhodamines is very important for developing spontaneously blinking rhodamines. However, as far as we know, there is no reliable theoretical method to predict the krc. Herein, we meticulously investigated the effect of intermolecular hydrogen bonds on the spirocyclization reactions of rhodamines. Moreover, a theoretical descriptor (ΔEC-T) was proposed to reliably assess the krc. ΔEC-T quantified the ring-opening energy barrier of spirocyclization reactions. A robust linear correlation was established between theoretical ΔEC-T values and experimentally krc values. Based on this correlation, we designed and screened five spontaneously blinking sulfonamide rhodamine dyes with optimized krc values. We expected that these findings could enable the targeted design of spontaneously blinking rhodamines.
Collapse
Affiliation(s)
- Qinlin Yuan
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Mingyue Ma
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Mingyu Wang
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Pingping Sun
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Xingqing Xiao
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Weijie Chi
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
5
|
Qin KX, Su YS, Zhu MQ, Li C. Recent Progress of Photoswitchable Fluorescent Diarylethenes for Bioimaging. Chembiochem 2024; 25:e202400326. [PMID: 39235968 DOI: 10.1002/cbic.202400326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/16/2024] [Accepted: 09/05/2024] [Indexed: 09/07/2024]
Abstract
Photochromic diarylethene has attracted broad research interest in optical applications owing to its excellent fatigue resistance and unique bistability. Photoswitchable fluorescent diarylethene become a powerful molecular tool for fluorescence imaging recently. Herein, the recent progress on photoswitchable fluorescent diarylethenes in bioimaging is reviewed. We summarize the structures and properties of diarylethene fluorescence probes and emphatically introduce their applications in bioimaging as well as super-resolution imaging. Additionally, we highlight the current challenges in practical applications and provide the prospects of the future development directions of photoswitchable fluorescent diarylethene in the field of bioimaging. This comprehensive review aims to stimulate further research into higher-performance photoswitchable fluorescent molecules and advance their progress in biological application.
Collapse
Affiliation(s)
- Kai-Xuan Qin
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yun-Shu Su
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
6
|
Zheng Y, Ye Z, Zhang X, Xiao Y. Photo-uncaging Triggers on Self-Blinking to Control Single-Molecule Fluorescence Kinetics for Super-resolution Imaging. ACS NANO 2024; 18:18477-18484. [PMID: 38941491 DOI: 10.1021/acsnano.4c03809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Super-resolution imaging, especially a single-molecule localization approach, has raised a fluorophore engineering revolution chasing sparse single-molecule dark-bright blinking transforms. Yet, it is a challenge to structurally devise fluorophores manipulating the single-molecule blinking kinetics. In this pursuit, we have developed a triggering strategy by innovatively integrating the photoactivatable nitroso-caging strategy into self-blinking sulfonamide to form a nitroso-caged sulfonamide rhodamine (NOSR). Our fluorophore demonstrated controllable self-blinking events upon phototriggered caging unit release. This exceptional blink kinetics improved the super-resolution imaging integrity on microtubules compared to self-blinking analogues. With the aid of paramount single-molecule fluorescence kinetics, we successfully reconstructed the ring structure of nuclear pores and the axial morphology of mitochondrial outer membranes. We foresee that our synthetic approach of photoactivation and self-blinking would facilitate rhodamine devising for super-resolution imaging.
Collapse
Affiliation(s)
- Ying Zheng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
- College of Medical Laboratory, Dalian Medical University, Dalian 116044, China
| | - Zhiwei Ye
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
7
|
Lai JZ, Lin CY, Chen SJ, Cheng YM, Abe M, Lin TC, Chien FC. Temporal-Focusing Multiphoton Excitation Single-Molecule Localization Microscopy Using Spontaneously Blinking Fluorophores. Angew Chem Int Ed Engl 2024; 63:e202404942. [PMID: 38641901 DOI: 10.1002/anie.202404942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Single-molecule localization microscopy (SMLM) based on temporal-focusing multiphoton excitation (TFMPE) and single-wavelength excitation is used to visualize the three-dimensional (3D) distribution of spontaneously blinking fluorophore-labeled subcellular structures in a thick specimen with a nanoscale-level spatial resolution. To eliminate the photobleaching effect of unlocalized molecules in out-of-focus regions for improving the utilization rate of the photon budget in 3D SMLM imaging, SMLM with single-wavelength TFMPE achieves wide-field and axially confined two-photon excitation (TPE) of spontaneously blinking fluorophores. TPE spectral measurement of blinking fluorophores is then conducted through TFMPE imaging at a tunable excitation wavelength, yielding the optimal TPE wavelength for increasing the number of detected photons from a single blinking event during SMLM. Subsequently, the TPE fluorescence of blinking fluorophores is recorded to obtain a two-dimensional TFMPE-SMLM image of the microtubules in cancer cells with a localization precision of 18±6 nm and an overall imaging resolution of approximately 51 nm, which is estimated based on the contribution of Nyquist resolution and localization precision. Combined with astigmatic imaging, the system is capable of 3D TFMPE-SMLM imaging of brain tissue section of a 5XFAD transgenic mouse with the pathological features of Alzheimer's disease, revealing the distribution of neurotoxic amyloid-beta peptide deposits.
Collapse
Affiliation(s)
- Jian-Zong Lai
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Chun-Yu Lin
- College of Photonics, National Yang Ming Chiao Tung University, No.301, Sec.2, Gaofa 3rd Rd., Guiren Dist., Tainan City, 71150, Taiwan
| | - Shean-Jen Chen
- College of Photonics, National Yang Ming Chiao Tung University, No.301, Sec.2, Gaofa 3rd Rd., Guiren Dist., Tainan City, 71150, Taiwan
| | - Yu-Min Cheng
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Manabu Abe
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima, 739-8526, Japan
| | - Tzu-Chau Lin
- Department of Chemistry, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, No. 300, Zhongda Rd., Zhongli Dist., Taoyuan City, 32001, Taiwan
| |
Collapse
|
8
|
Wang C, Yuan R, Ma S, Miao Q, Zhao X, Liu Y, Bi S, Chen G. Developing NIR xanthene-chalcone fluorophores with large Stokes shifts for fluorescence imaging. Analyst 2024; 149:3372-3379. [PMID: 38712551 DOI: 10.1039/d4an00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A series of novel near-infrared (NIR) xanthene-chalcone fluorophores were constructed through a modular synthesis with the electron-donating xanthene moiety and the electron-withdrawing chalcone moiety. These fluorophores are convenient for fluorescence imaging in living cells, benefiting from their NIR emissions (650-710 nm), large Stokes shifts (>100 nm), moderate quantum yields and low cytotoxicity. The substituted hydroxyl group of the xanthene-chalcone fluorophore HCA-E facilitates the development of multifunctional fluorescent probes. As an example, a highly sensitive and selective probe N-HCA-E for glutathione (GSH) detection was developed based on the fluorophore HCA-E. A 4-nitrobenzenesulfonyl (4-Ns) group was introduced to cage the hydroxyl group of HCA-E, which was used as a selective recognition site for the thiol of GSH and an effective fluorescence quencher. Probe N-HCA-E revealed NIR "turn-on" fluorescence (709 nm) for endogenous and exogenous GSH detection in lysosomes with a large Stokes shift (129 nm) and high anti-interference ability.
Collapse
Affiliation(s)
- Chao Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Rongrong Yuan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Siyue Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Qing Miao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Xufang Zhao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| | - Yuxia Liu
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Siwei Bi
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, P. R. China
| | - Guang Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, P. R. China.
| |
Collapse
|
9
|
Zhao B, Guan D, Liu J, Zhang X, Xiao S, Zhang Y, Smith BD, Liu Q. Squaraine Dyes Exhibit Spontaneous Fluorescence Blinking That Enables Live-Cell Nanoscopy. NANO LETTERS 2024:10.1021/acs.nanolett.4c00595. [PMID: 38588010 PMCID: PMC11458821 DOI: 10.1021/acs.nanolett.4c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Hampered by their susceptibility to nucleophilic attack and chemical bleaching, electron-deficient squaraine dyes have long been considered unsuitable for biological imaging. This study unveils a surprising twist: in aqueous environments, bleaching is not irreversible but rather a reversible spontaneous quenching process. Leveraging this new discovery, we introduce a novel deep-red squaraine probe tailored for live-cell super-resolution imaging. This probe enables single-molecule localization microscopy (SMLM) under physiological conditions without harmful additives or intense lasers and exhibits spontaneous blinking orchestrated by biological nucleophiles, such as glutathione or hydroxide anion. With a low duty cycle (∼0.1%) and high-emission rate (∼6 × 104 photons/s under 400 W/cm2), the squaraine probe surpasses the benchmark Cy5 dye by 4-fold and Si-rhodamine by a factor of 1.7 times. Live-cell SMLM with the probe reveals intricate structural details of cell membranes, which demonstrates the high potential of squaraine dyes for next-generation super-resolution imaging.
Collapse
Affiliation(s)
- Bingjie Zhao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Daoming Guan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Jinyang Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Xuebo Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Shuzhang Xiao
- Hubei Key Laboratory of Natural Products Research and Development, College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, Hubei, P. R. China
| | - Yunxiang Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| | - Bradley D. Smith
- Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Qian Liu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200438, China
| |
Collapse
|
10
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
11
|
Torii K, Benson S, Hori Y, Vendrell M, Kikuchi K. No-wash fluorogenic labeling of proteins for reversible photoswitching in live cells. Chem Sci 2024; 15:1393-1401. [PMID: 38274070 PMCID: PMC10806661 DOI: 10.1039/d3sc04953a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Photoswitchable fluorescent molecules (PSFMs) are positioned as valuable tools for biomolecule localization tracking and super-resolution imaging technologies due to their unique ability to reversibly control fluorescence intensity upon light irradiation. Despite the high demand for PSFMs that are suitable for live-cell imaging, no general method has been reported that enables reversible fluorescence control on proteins of interest in living cells. Herein, we have established a platform to realize reversible fluorescence switching in living cells by adapting a protein labeling system. We have developed a new PSFM, named HTL-Trp-BODIPY-FF, which exhibits strong fluorogenicity upon recognition of Halo-tag protein and reversible fluorescence photoswitching in living cells. This is the first example of a PSFM that can be applicable to a general-purpose Halo-tag protein labeling system for no-wash live-cell imaging.
Collapse
Affiliation(s)
- Kenji Torii
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
| | - Sam Benson
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Yuichiro Hori
- Faculty of Science, Kyushu University Fukuoka Fukuoka 819-0395 Japan
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh Edinburgh EH16 4UU UK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh Edinburgh EH16 4UU UK
| | - Kazuya Kikuchi
- Graduate School of Engineering, Osaka University Suita Osaka 565-0871 Japan
- Immunology Frontier Research Center, Osaka University Suita Osaka 565-0871 Japan
| |
Collapse
|
12
|
Liu M, Zhu H, Fang Y, Liu C, Wang K, Zhang X, Li X, Ma L, Yu M, Sheng W, Zhu B. 3D-printed colorimetric copper ion detection kit and portable fluorescent sensing device using smartphone based on ratiometric fluorescent probes. Anal Chim Acta 2024; 1286:341980. [PMID: 38049232 DOI: 10.1016/j.aca.2023.341980] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/25/2023] [Accepted: 10/28/2023] [Indexed: 12/06/2023]
Abstract
Copper ion (Cu2+) is not only a transition metal ion but also a significant environmental pollutant. The imbalance of Cu2+ content will threaten the safety of the environment and even life. The portable detection devices based on ratiometric fluorescent probes have garnered increasing attention and acclaim because of their reliable analysis parameters. Therefore, two Cu2+ ratiometric fluorescent probes (RH-1 and RH-2) were developed, which exhibit pronounced fluorescence changes, high sensitivity, excellent selectivity, and large Stokes shift. Both probes are capable of detecting Cu2+ in water and milk samples. It is worth noting that a 3D-printed fluorescence sensing device was constructed using RH-1, and a new 3D-printed copper ion detection kit was developed based on RH-2, enabling on-the-spot estimation of Cu2+ concentration. These devices significantly facilitate Cu2+ detection in daily life. RH-2 has been successfully employed for imaging Cu2+ in living cells and zebrafish. In conclusion, this work provides, for the first time, the 3D-printed ideal tools for detecting Cu2+. It also provides valuable insights for the establishment of on-site portable detection methods for other important substances.
Collapse
Affiliation(s)
- Mengyuan Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hanchuang Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Yikun Fang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Caiyun Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Kun Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaohui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xinke Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Lixue Ma
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Miaohui Yu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China
| | - Baocun Zhu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
13
|
Laine RF, Heil HS, Coelho S, Nixon-Abell J, Jimenez A, Wiesner T, Martínez D, Galgani T, Régnier L, Stubb A, Follain G, Webster S, Goyette J, Dauphin A, Salles A, Culley S, Jacquemet G, Hajj B, Leterrier C, Henriques R. High-fidelity 3D live-cell nanoscopy through data-driven enhanced super-resolution radial fluctuation. Nat Methods 2023; 20:1949-1956. [PMID: 37957430 PMCID: PMC10703683 DOI: 10.1038/s41592-023-02057-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
Live-cell super-resolution microscopy enables the imaging of biological structure dynamics below the diffraction limit. Here we present enhanced super-resolution radial fluctuations (eSRRF), substantially improving image fidelity and resolution compared to the original SRRF method. eSRRF incorporates automated parameter optimization based on the data itself, giving insight into the trade-off between resolution and fidelity. We demonstrate eSRRF across a range of imaging modalities and biological systems. Notably, we extend eSRRF to three dimensions by combining it with multifocus microscopy. This realizes live-cell volumetric super-resolution imaging with an acquisition speed of ~1 volume per second. eSRRF provides an accessible super-resolution approach, maximizing information extraction across varied experimental conditions while minimizing artifacts. Its optimal parameter prediction strategy is generalizable, moving toward unbiased and optimized analyses in super-resolution microscopy.
Collapse
Affiliation(s)
- Romain F Laine
- Laboratory for Molecular Cell Biology, University College London, London, UK
- The Francis Crick Institute, London, UK
- Micrographia Bio, Translation and Innovation Hub, London, UK
| | - Hannah S Heil
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Simao Coelho
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Jonathon Nixon-Abell
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
- Cambridge Institute for Medical Research, Cambridge Univeristy, Cambridge, UK
| | - Angélique Jimenez
- Aix-Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Theresa Wiesner
- Aix-Marseille Université, CNRS, INP UMR7051, NeuroCyto, Marseille, France
| | - Damián Martínez
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - Tommaso Galgani
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France
- Revvity Signals, Tres Cantos, Madrid, Spain
| | - Louise Régnier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France
| | - Aki Stubb
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Munster, Germany
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
| | - Samantha Webster
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Aurelien Dauphin
- Unite Genetique et Biologie du Développement U934, PICT-IBiSA, Institut Curie, INSERM, CNRS, PSL Research University, Paris, France
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Paris, France
| | - Siân Culley
- Laboratory for Molecular Cell Biology, University College London, London, UK
- Randall Centre for Cell and Molecular Biophysics, King's College London, Guy's Campus, London, UK
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, Turku, Finland
| | - Bassam Hajj
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne Université, CNRS UMR168, Paris, France.
| | | | - Ricardo Henriques
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- The Francis Crick Institute, London, UK.
- Optical Cell Biology, Instituto Gulbenkian de Ciência, Oeiras, Portugal.
| |
Collapse
|
14
|
Duan X, Zhang M, Zhang YH. Organic fluorescent probes for live-cell super-resolution imaging. FRONTIERS OF OPTOELECTRONICS 2023; 16:34. [PMID: 37946039 PMCID: PMC10635970 DOI: 10.1007/s12200-023-00090-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/12/2023]
Abstract
The development of super-resolution technology has made it possible to investigate the ultrastructure of intracellular organelles by fluorescence microscopy, which has greatly facilitated the development of life sciences and biomedicine. To realize super-resolution imaging of living cells, both advanced imaging systems and excellent fluorescent probes are required. Traditional fluorescent probes have good availability, but that is not the case for probes for live-cell super-resolution imaging. In this review, we first introduce the principles of various super-resolution technologies and their probe requirements, then summarize the existing designs and delivery strategies of super-resolution probes for live-cell imaging, and finally provide a brief conclusion and overview of the future.
Collapse
Affiliation(s)
- Xinxin Duan
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Meng Zhang
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yu-Hui Zhang
- Britton Chance Center for Biomedical Photonics, MoE Key Laboratory for Biomedical Photonics, Advanced Biomedical Imaging Facility-Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
15
|
Chi W, Tan D, Qiao Q, Xu Z, Liu X. Spontaneously Blinking Rhodamine Dyes for Single-Molecule Localization Microscopy. Angew Chem Int Ed Engl 2023; 62:e202306061. [PMID: 37246144 DOI: 10.1002/anie.202306061] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 05/30/2023]
Abstract
Single-molecule localization microscopy (SMLM) has found extensive applications in various fields of biology and chemistry. As a vital component of SMLM, fluorophores play an essential role in obtaining super-resolution fluorescence images. Recent research on spontaneously blinking fluorophores has greatly simplified the experimental setups and extended the imaging duration of SMLM. To support this crucial development, this review provides a comprehensive overview of the development of spontaneously blinking rhodamines from 2014 to 2023, as well as the key mechanistic aspects of intramolecular spirocyclization reactions. We hope that by offering insightful design guidelines, this review will contribute to accelerating the advancement of super-resolution imaging technologies.
Collapse
Affiliation(s)
- Weijie Chi
- Collaborative Innovation Center of One Health, School of Science, Hainan University, Renmin Road 58, Haikou, 570228, P. R. China
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Davin Tan
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Xiaogang Liu
- Fluorescence Research Group, Singapore University of Technology and Design, 8 Somapah Road, 487372, Singapore, Singapore
| |
Collapse
|
16
|
Ghorpade M, Regar R, Soppina V, Kanvah S. N-Functionalized fluorophores: detecting urinary albumin and imaging lipid droplets. Org Biomol Chem 2023; 21:6995-7004. [PMID: 37584648 DOI: 10.1039/d3ob01010d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
A series of novel N-sulfonyl pyridinium fluorophores were designed, synthesized, and explored in terms of their ability to bind with serum albumins. Upon binding the fluorophores with BSA, noticeable emission wavelength or intensity changes accompanied by color changes were observed. Competitive binding studies revealed that the fluorophore selectively binds to the warfarin site, but the binding affinity also depends on the nature of the scaffold. Additionally, the fluorophores were employed to detect spiked serum albumin in artificial urine. Cellular imaging experiments indicated that the fluorophores accumulate within lipid droplets (LDs), suggesting their potential as promising biomarkers for lipid droplets. Furthermore, the fluorescence intensity, number, and size of LDs increased upon serum starvation.
Collapse
Affiliation(s)
- Mohini Ghorpade
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| | - Ramprasad Regar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| | - Virupakshi Soppina
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar - 382055, India.
| | - Sriram Kanvah
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382055, India.
| |
Collapse
|
17
|
Aktalay A, Lincoln R, Heynck L, Lima MADBF, Butkevich AN, Bossi ML, Hell SW. Bioorthogonal Caging-Group-Free Photoactivatable Probes for Minimal-Linkage-Error Nanoscopy. ACS CENTRAL SCIENCE 2023; 9:1581-1590. [PMID: 37637742 PMCID: PMC10450876 DOI: 10.1021/acscentsci.3c00746] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Indexed: 08/29/2023]
Abstract
Here we describe highly compact, click compatible, and photoactivatable dyes for super-resolution fluorescence microscopy (nanoscopy). By combining the photoactivatable xanthone (PaX) core with a tetrazine group, we achieve minimally sized and highly sensitive molecular dyads for the selective labeling of unnatural amino acids introduced by genetic code expansion. We exploit the excited state quenching properties of the tetrazine group to attenuate the photoactivation rates of the PaX, and further reduce the overall fluorescence emission of the photogenerated fluorophore, providing two mechanisms of selectivity to reduce the off-target signal. Coupled with MINFLUX nanoscopy, we employ our dyads in the minimal-linkage-error imaging of vimentin filaments, demonstrating molecular-scale precision in fluorophore positioning.
Collapse
Affiliation(s)
- Ayse Aktalay
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Richard Lincoln
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Lukas Heynck
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | | | - Alexey N. Butkevich
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
| | - Mariano L. Bossi
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department
of Optical Nanoscopy, Max Planck Institute
for Medical Research, Jahnstraße 29, 69120 Heidelberg, Germany
- Department
of NanoBiophotonics, Max Planck Institute
for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
18
|
Zeng S, Liu X, Kafuti YS, Kim H, Wang J, Peng X, Li H, Yoon J. Fluorescent dyes based on rhodamine derivatives for bioimaging and therapeutics: recent progress, challenges, and prospects. Chem Soc Rev 2023; 52:5607-5651. [PMID: 37485842 DOI: 10.1039/d2cs00799a] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Since their inception, rhodamine dyes have been extensively applied in biotechnology as fluorescent markers or for the detection of biomolecules owing to their good optical physical properties. Accordingly, they have emerged as a powerful tool for the visualization of living systems. In addition to fluorescence bioimaging, the molecular design of rhodamine derivatives with disease therapeutic functions (e.g., cancer and bacterial infection) has recently attracted increased research attention, which is significantly important for the construction of molecular libraries for diagnostic and therapeutic integration. However, reviews focusing on integrated design strategies for rhodamine dye-based diagnosis and treatment and their wide application in disease treatment are extremely rare. In this review, first, a brief history of the development of rhodamine fluorescent dyes, the transformation of rhodamine fluorescent dyes from bioimaging to disease therapy, and the concept of optics-based diagnosis and treatment integration and its significance to human development are presented. Next, a systematic review of several excellent rhodamine-based derivatives for bioimaging, as well as for disease diagnosis and treatment, is presented. Finally, the challenges in practical integration of rhodamine-based diagnostic and treatment dyes and the future outlook of clinical translation are also discussed.
Collapse
Affiliation(s)
- Shuang Zeng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaosheng Liu
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Yves S Kafuti
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Heejeong Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| | - Jingyun Wang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
| | - Haidong Li
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China.
- School of Bioengineering, Dalian University of Technology, 2 Linggong Road, Hi-tech Zone, Dalian 116024, China
- Provincial Key Laboratory of Interdisciplinary Medical Engineering for Gastrointestinal Carcinoma, Cancer Hospital of Dalian University of Technology (Liaoning Cancer Hospital & Institute), Shenyang, Liaoning 110042, China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea.
| |
Collapse
|
19
|
Lee JH, Chiu JHC, Ginga NJ, Ahmed T, Thouless MD, Liu Y, Takayama S. Super-resolution imaging of linearized chromatin in tunable nanochannels. NANOSCALE HORIZONS 2023; 8:1043-1053. [PMID: 37221952 DOI: 10.1039/d3nh00096f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Nanofluidic linearization and optical mapping of naked DNA have been reported in the research literature, and implemented in commercial instruments. However, the resolution with which DNA features can be resolved is still inherently limited by both Brownian motion and diffraction-limited optics. Direct analysis of native chromatin is further hampered by difficulty in electrophoretic manipulation, which is routinely used for DNA analysis. This paper describes the development of a three-layer, tunable, nanochannel system that enables non-electrophoretic linearization and immobilization of native chromatin. Furthermore, through careful selection of self-blinking fluorescent dyes and the design of the nanochannel system, we achieve direct stochastic optical reconstruction microscopy (dSTORM) super-resolution imaging of the linearized chromatin. As an initial demonstration, rDNA chromatin extracted from Tetrahymena is analyzed by multi-color imaging of total DNA, newly synthesized DNA, and newly synthesized histone H3. Our analysis reveals a relatively even distribution of newly synthesized H3 across two halves of the rDNA chromatin with palindromic symmetry, supporting dispersive nucleosome segregation. As a proof-of-concept study, our work achieves super-resolution imaging of native chromatin fibers linearized and immobilized in tunable nanochannels. It opens up a new avenue for collecting long-range and high-resolution epigenetic information as well as genetic information.
Collapse
Affiliation(s)
- Ji-Hoon Lee
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Joyce Han-Ching Chiu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Nicholas J Ginga
- Department of Mechanical and Aerospace Engineering, University of Alabama in Huntsville, Huntsville, AL 35899, USA
| | - Tasdiq Ahmed
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M D Thouless
- Department of Mechanical Engineering and Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yifan Liu
- Department of Biochemistry and Molecular Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90033, USA.
| | - Shuichi Takayama
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University School of Medicine, Atlanta, GA 30332, USA.
- The Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|