1
|
Xi Y, Zhang C, Tu W, Guo Y, Bao T, Zou Y, Liu C, Yu C. Modulating Active Hydrogen Supply and O 2 Adsorption: Sulfur Vacancy Matters for Boosting H 2O 2 Photosynthesis Performance. Angew Chem Int Ed Engl 2025; 64:e202505046. [PMID: 40213826 DOI: 10.1002/anie.202505046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/30/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Photocatalytic two-electron oxygen reduction reaction (2e- ORR) represents a promising approach for H2O2 production. However, the lack of photocatalysts with appropriate O2 adsorption and hydrogenation capabilities impedes the H2O2 production performance. Herein, we report the synthesis of Ni-doped ZnS hollow nanocubes with S vacancies (Ni-ZnS-Sv) as a dual-site 2e- ORR photocatalyst for efficient H2O2 production. Experimental results and density functional theory calculations reveal the vital roles of Sv in modulating the electronic structures of Ni and S dual sites toward enhanced 2e- ORR selectivity and activity. The atomically dispersed Ni sites with electron-rich state enable a Pauling-type (end-on) O2 adsorption configuration and a modest binding strength of O2 and OOH*, largely avoiding the O─O bond cleavage. Besides, the formation of electron-deficient S sites weakens the S─Hads bond, facilitating *Hads migration to adjacent Ni sites and accelerating the hydrogenation kinetics of O2 to OOH* intermediate. As a result, the elaborately designed Ni-ZnS-Sv photocatalyst exhibits a high H2O2 yield of 5649.49 µmol g-1 h-1 under UV-vis light irradiation in pure water. Our work offers new insights into the design principles of high-performance photocatalysts for artificial H2O2 photosynthesis systems.
Collapse
Affiliation(s)
- Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P.R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P.R. China
| | - Wenjing Tu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P.R. China
| | - Yuntian Guo
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P.R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P.R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P.R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P.R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P.R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P.R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P.R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
2
|
Jia S, Na J, Liu X, Li J, Sun S, Yu H, Shao Z. Modulated Nickel Single-Atom Sites as Highly Active Catalysts for the Synthesis of Neutral H 2O 2 at Ampere-Level Current Densities. ACS NANO 2025. [PMID: 40491021 DOI: 10.1021/acsnano.5c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
The versatile neutral hydrogen peroxide (H2O2), synthesized via electrocatalytic oxygen reduction reaction (ORR), holds significant promise for various applications. However, there have been limited reports on catalysts that operate at ampere-level current densities. The insufficient research on catalysts has hindered advancements in the 2e- ORR. Understanding how the coordination environment of single-atom catalysts influences 2e- ORR performance is crucial. In this study, we adjusted the adsorption energy of the reaction intermediates on nickel single-atom sites by utilizing oxygen functional groups present on carbon supports. Through a combination of comparative experiments and theoretical calculations, we demonstrated that Ni sites regulated by hydroxyl groups through direct interactions serve as excellent 2e- ORR sites. The resulting nickel single-atom catalyst (NiTPP@CNT-ox) exhibited an impressive H2O2 selectivity of up to 97.0% during rotating ring-disk electrode tests conducted in a 0.1 M K2SO4 solution at 0.4 V (vs RHE). In a two-electrode flow cell equipped with the NiTPP@CNT-ox-loaded gas diffusion electrode, a Faradaic efficiency exceeding 92.1% was achieved at current densities ranging from 0.2 to 1 A cm-2. Furthermore, the current density reached an unprecedented level of 1.6 A cm-2 while maintaining a Faradaic efficiency of 86.2%. Through cyclic operation, a H2O2 concentration of 10.0 wt % was attained. When scaling up the electrode area to 40 cm2, it is possible to obtain H2O2 at a concentration of 3.62 wt % directly without necessitating electrolyte recycling, thereby satisfying the concentration requirements for medical applications.
Collapse
Affiliation(s)
- Senyuan Jia
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingchen Na
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyi Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jiaxin Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Shucheng Sun
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hongmei Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhigang Shao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
3
|
Albashir AIM, Li Y, Dou J, Qi K, Qi W. Electrosynthesis of Hydrogen Peroxide at Industrial-Level Current Density in Flow-Cell System: Interfacial Microenvironment Regulation and Catalyst Design. SMALL SCIENCE 2025; 5:2500017. [PMID: 40529855 PMCID: PMC12168599 DOI: 10.1002/smsc.202500017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/29/2025] [Indexed: 06/20/2025] Open
Abstract
Electrosynthesis of hydrogen peroxide via two-electron oxygen reduction (2e- ORR) provides a green, sustainable, and cost-effective alternative to anthraquinone processes. However, scaling up from laboratory evaluations to practical applications remains challenging. Herein, an interfacial microenvironment regulation strategy using cetyltrimethylammonium bromide cationic surfactant is reported to boost the hydrogen peroxide (H2O2) production rate of commercial carbon black catalysts in alkaline flow-cell reactors. The modified interfacial microenvironment creates an ideal environment for H2O2 production, resulting in a 1.40-fold improvement in 2e- ORR current density (from 227.0 to 320.0 mA cm-2) and a 1.58-fold improvement in H2O2 production rate (from 137.0 to 217.8 mM L-1 h-1). Additionally, a boron-doped mesoporous carbon catalyst is developed, demonstrating superior catalytic performance, achieving a 1.80-fold improvement in H2O2 production rate (246.7 mM L-1 h-1) comparing with commercial carbon black. These results highlight the potential of microenvironment regulation and catalyst design for developing highly efficient and scalable H2O2 electrosynthesis system.
Collapse
Affiliation(s)
- Abdalazeez Ismail Mohamed Albashir
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangLiaoning110016P. R. China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyangLiaoningP. R. China
| | - Yunlong Li
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangLiaoning110016P. R. China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyangLiaoningP. R. China
| | - Jing Dou
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangLiaoning110016P. R. China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyangLiaoningP. R. China
| | - Ke Qi
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangLiaoning110016P. R. China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyangLiaoningP. R. China
| | - Wei Qi
- School of Materials Science and EngineeringUniversity of Science and Technology of ChinaShenyangLiaoning110016P. R. China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyangLiaoningP. R. China
| |
Collapse
|
4
|
Delgado GE, Cisterna J, Llanos J, Pulido R, Naveas N, Narea P, Amo-Ochoa P, Zamora F, León Y, Brito I. Structure-Property Relationships in Zwitterionic Pyridinium-Triazole Ligands: Insights from Crystal Engineering and Hirshfeld Surface Analysis. Int J Mol Sci 2025; 26:5123. [PMID: 40507933 PMCID: PMC12154730 DOI: 10.3390/ijms26115123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/18/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
This article discloses the synthesis of four new positional isomeric zwitterionic ligands exhibiting semi-flexible and flexible characteristics-n-pyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-PTCA), and n-methylpyridinium-1,2,3-triazole-4-carboxy-5-Acetate (n-MPTCA; where n = 3, 4)-which were derived from an aqueous solution of the corresponding sodium salts in an acidic medium (HCl). These compounds are successfully synthesized and characterized with FT-IR and multinuclear NMR spectroscopy; likewise, proper single crystals are obtained for each compound. All compounds adopt zwitterionic forms in the solid state, which are stabilized via intermolecular proton transfer processes involving HCl and solvent molecules. A single-crystal X-ray analysis revealed how positional isomerism and molecular flexibility influence the supramolecular topology. Specifically, 3-PTCA and 4-PTCA exhibit isomorphic hydrogen bond networks, while 3-MPTCA and 4-MPTCA display distinct packing motifs, attributed to the presence of a methylene spacer between the pyridinium and triazole rings. The Hirshfeld surface analysis quantitatively confirmed the dominance of O···H/H···O and N···H/H···N interactions in the solid-state architecture. These strong hydrogen-bonding networks are indicative of the potential proton-conductive behavior in the crystalline state, positioning these compounds as promising candidates for applications in proton-conducting materials. The structural insights gained underscore the pivotal role of molecular topology in tailoring crystal packing, with implications for the rational design of zwitterionic ligands in functional materials, including MOFs and coordination polymers. The calculated HOMO-LUMO energy gaps reveal a significant electronic variability among the ligands, influenced primarily by the positional isomerism and structural flexibility introduced by the methylene spacer.
Collapse
Affiliation(s)
- Gerzon E. Delgado
- Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida 5101, Venezuela;
| | - Jonathan Cisterna
- Departamento de Química, Facultad de Ciencias, Universidad de Católica del Norte, Sede Casa Central, Av. Angamos 0610, Antofagasta 1270709, Chile; (J.C.); (J.L.)
| | - Jaime Llanos
- Departamento de Química, Facultad de Ciencias, Universidad de Católica del Norte, Sede Casa Central, Av. Angamos 0610, Antofagasta 1270709, Chile; (J.C.); (J.L.)
| | - Ruth Pulido
- Departamento de Química, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta 1240000, Chile; (R.P.); (P.N.); (Y.L.)
- Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera” (INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain;
| | - Nelson Naveas
- Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera” (INC), Universidad Autónoma de Madrid, Campus de Cantoblanco, 28049 Madrid, Spain;
- Departamento de Física Aplicada, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Departamento de Ingeniería Química y Procesos de Minerales, Universidad de Antofagasta, Avenida Angamos 601, Antofagasta 1270300, Chile
| | - Pilar Narea
- Departamento de Química, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta 1240000, Chile; (R.P.); (P.N.); (Y.L.)
| | - Pilar Amo-Ochoa
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (P.A.-O.); (F.Z.)
- Institute for Advanced Research Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Félix Zamora
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid, 28049 Madrid, Spain; (P.A.-O.); (F.Z.)
- Institute for Advanced Research Chemistry (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Yasna León
- Departamento de Química, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta 1240000, Chile; (R.P.); (P.N.); (Y.L.)
| | - Iván Brito
- Departamento de Química, Universidad de Antofagasta, Av. Universidad de Antofagasta 02800, Campus Coloso, Antofagasta 1240000, Chile; (R.P.); (P.N.); (Y.L.)
| |
Collapse
|
5
|
Han S, Fan C, Cheng N, Liu W, Xu W, Liao Y, Tian S, Han L. Active Site-Mediated Photo-Thermo Catalysis for Methane Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503518. [PMID: 40411845 DOI: 10.1002/smll.202503518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/30/2025] [Indexed: 05/26/2025]
Abstract
Transformation of methane, an increasingly sustainable feedstock rich in carbon and hydrogen, into various valuable chemicals is a crucial option contributing to achieving global carbon neutrality but chemically restricted to high energy of the C─H bond. Photo-thermo catalysis offers a promising approach to activate the C─H bond and thus facilitate methane conversion even under mild conditions upon an effective arrangement of the active site on the reaction interface of catalysts. Despite significant progress, the insufficient mechanistic understanding of how active sites function in the photo-thermo catalytic system remains a fundamental challenge. This review addresses the critical gap by systematically summarizing and categorizing various active sites of photo-thermo catalysts reported so far for activation of the C─H bond, and elucidating their specific roles in mediating different photo-thermo methane conversion reactions, including reforming, cracking selective oxidation, and C─C coupling. The aim is to provide in-depth yet currently absent insights into active site manipulation for the activation of C─H bonds in methane and even other hydrocarbons, followed by the design of tailored, highly efficient catalysts for photo-thermo conversion of hydrocarbons.
Collapse
Affiliation(s)
- Shuangmei Han
- Engineering laboratory for agricultural biomass resources utilization, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Chen Fan
- Engineering laboratory for agricultural biomass resources utilization, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Nuo Cheng
- Engineering laboratory for agricultural biomass resources utilization, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Wen Liu
- Engineering laboratory for agricultural biomass resources utilization, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Weixin Xu
- Engineering laboratory for agricultural biomass resources utilization, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Yilin Liao
- Engineering laboratory for agricultural biomass resources utilization, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Sicong Tian
- Engineering laboratory for agricultural biomass resources utilization, College of Engineering, China Agricultural University, Beijing, 100083, China
| | - Lujia Han
- Engineering laboratory for agricultural biomass resources utilization, College of Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
6
|
Nie J, Li Z, Liu W, Sang Z, Yang D, Wang L, Hou F, Liang J. Recent Progress in Oxygen Reduction Reaction Toward Hydrogen Peroxide Electrosynthesis and Cooperative Coupling of Anodic Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420236. [PMID: 40079065 DOI: 10.1002/adma.202420236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/02/2025] [Indexed: 03/14/2025]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) via two-electron oxygen reduction reaction (2e- ORR) is a promising alternative to the anthraquinone oxidation process. To improve the overall energy efficiency and economic viability of this catalytic process, one pathway is to develop advanced catalysts to decrease the overpotential at the cathode, and the other is to couple 2e- ORR with certain anodic reactions to decrease the full cell voltage while producing valuable chemicals on both electrodes. The catalytic performance of a 2e- ORR catalyst depends not only on the material itself but also on the environmental factors. Developing promising electrocatalysts with high 2e- ORR selectivity and activity is a prerequisite for efficient H2O2 electrosynthesis, while coupling appropriate anodic reactions with 2e- ORR would further enhance the overall reaction efficiency. Considering this, here a comprehensive review is presented on the latest progress of the state-of-the-art catalysts of 2e- ORR in different media, the microenvironmental modulation mechanisms beyond catalyst design, as well as electrocatalytic system coupling 2e- ORR with various anodic oxidation reactions. This review also presents new insights regarding the existing challenges and opportunities within this rapidly advancing field, along with viewpoints on the future development of H2O2 electrosynthesis and the construction of green energy roadmaps.
Collapse
Affiliation(s)
- Jiahuan Nie
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhenxin Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhiyuan Sang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - De'an Yang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Liqun Wang
- Applied Physics Department, College of Physics and Materials Science, Tianjin Normal University, Tianjin, 300387, P. R. China
| | - Feng Hou
- Tianjin Key Laboratory of Low-dimensional Electronic Materials and Advanced Instrumentation, Tianjin, 300072, P. R. China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
7
|
Kuang T, Deng L, Liu M, Ding Y, Guo W, Cai Z, Liu W, Huang ZX. Facet Engineering of Metal-Organic Frameworks for Triboelectric Nanogenerators-Based Self-Powered Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415616. [PMID: 40159896 DOI: 10.1002/adma.202415616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 03/06/2025] [Indexed: 04/02/2025]
Abstract
Metal-organic frameworks (MOFs) are highly versatile materials with tunable chemical and structural properties, making them promising for triboelectric nanogenerators (TENGs) and electrocatalysis. However, achieving precise control over MOF coordination structures to optimize facet-dependent properties remains challenging. Here, a facile and scalable dual-solvent synthesis strategy is presented to fabricate dendrite Co-2-methylimidazole MOF (ZIF-67-D), enabling tailored preferred facet and coordination environments. Using density functional theory (DFT) calculations and synchrotron-based X-ray absorption spectroscopy, it is demonstrated that ZIF-67-D, enriched with (112) facets, features a reduced Co coordination number and enhanced electron-donating ability compared to the conventionally (011) facet-dominated rhombic dodecahedron ZIF-67 (ZIF-67-R). This facet engineering boosts TENG charge density by 2.4-fold, OER current density by 9.9-fold (@1.65 V), and HER current density by 1.9-fold (@-0.3 V). The (112)/(011) facet ratio can be also tuned to precisely alter TENG output. Moreover, the optimized ZIF-67-D shows excellent stability, maintaining electrolyzer performance for 72 h and enabling TENG devices even in high humidity. Consequently, ZIF-67-D-based TENG (D-TENG) devices exhibit robust energy generation and power ZIF-67-D||ZIF-67-D electrolyzers for continuous hydrogen (H2) production. These findings introduce a new paradigm for converting mechanical energy into sustainable chemical energy, offering insights into facet engineering for high-performance energy harvesting systems.
Collapse
Affiliation(s)
- Tairong Kuang
- Functional Polymers & Advanced Materials (FPAM) Lab, State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Linbing Deng
- Functional Polymers & Advanced Materials (FPAM) Lab, State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mingjin Liu
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Yutong Ding
- Functional Polymers & Advanced Materials (FPAM) Lab, State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wei Guo
- Functional Polymers & Advanced Materials (FPAM) Lab, State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhao Cai
- Faculty of Materials Science and Chemistry, China University of Geoscience, Wuhan, 430074, China
| | - Wenxian Liu
- Functional Polymers & Advanced Materials (FPAM) Lab, State Key Laboratory of Advanced Separation Membrane Materials, College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhao-Xia Huang
- National Engineering Research Center of Novel Equipment for Polymer Processing, Key Laboratory of Polymer Processing Engineering, Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, Department of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou, 510641, China
| |
Collapse
|
8
|
Pei Z, Guo Y, Luan D, Gu X, Lou XWD. Regulating the Local Reaction Microenvironment at Chromium Metal-Organic Frameworks for Efficient H 2O 2 Electrosynthesis in Neutral Electrolytes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500274. [PMID: 40159779 DOI: 10.1002/adma.202500274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/09/2025] [Indexed: 04/02/2025]
Abstract
The electrochemical synthesis of hydrogen peroxide represents a promising alternative to the traditional anthraquinone process, aiming for zero pollution. However, achieving efficient electrochemical synthesis of hydrogen peroxide in neutral electrolytes is challenging due to the sluggish kinetics of the two-electron oxygen reduction reaction. To address this issue, a unique metal-organic framework (MOF) featuring Cr metal sites coordinated with tetrabromoterephthalic acid (Cr-TBA) is synthesized. This specially designed MOF exhibits a distinctive paper-clip-like structure and remarkably enhanced Lewis acidity. Experimental results demonstrate that the obtained structure can facilitate the attraction of OH- ions in solution, promoting their accumulation on the catalyst surface. This enhancement leads to excellent performances of Cr-TBA in neutral electrolytes, achieving Faradaic efficiencies of 96-98% and a production rate of 13.4 mol gcat -1 h-1 at the current density of 150 mA cm-2. Operando spectroscopy and density functional theory calculations indicate that this modified microenvironment effectively facilitates the conversion of the *OOH intermediates to H2O2 on the catalyst surface.
Collapse
Affiliation(s)
- Zhihao Pei
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
9
|
Sang Z, Qiao Y, Chen R, Yin L, Hou F, Liang J. Internal hydrogen-bond enhanced two-electron oxygen reduction reaction for π-d conjugated metal-organic framework to H 2O 2 synthesis. Nat Commun 2025; 16:4050. [PMID: 40307221 PMCID: PMC12043898 DOI: 10.1038/s41467-025-58628-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Tailoring the electronic structure of electrocatalysts for oxygen reduction reaction (ORR) has been widely adopted to optimize their performance. However, the steric effect originating from the layered or crystal structure of a catalyst is often neglected. Herein, we demonstrate the importance of such steric effect in a one-dimensional π-d conjugated metal-organic framework with Ni-(NH)4 nodes (Ni-BTA) for optimizing its electrocatalytic performance, where the activity and selectivity towards two-electron ORR for H2O2 production are largely enhanced. Theoretical simulation and in-situ characterization demonstrate the formation of inter-layer H-bonds between *OOH intermediates and -N-H groups in the adjacent top layers of the Ni-sites, enhancing the *OOH binding energy to an optimum value. Thus, the as-prepared Ni-BTA catalyst exhibits an outstanding electrocatalytic 2e--ORR performances under neutral and alkaline conditions (e.g., >85% H2O2 selectivity from -0.1-0.4 V vs. RHE and >13.5 mol g-1 h-1 H2O2 yield in neutral electrolytes), also showing great potential on water treatment and disinfection. Here, we highlight the alternative avenues for utilizing the non-coordinated structure to regulate the catalytic performance, thus providing opportunities for the design of catalysts and beyond.
Collapse
Affiliation(s)
- Zhiyuan Sang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Yuqian Qiao
- School of Materials Science and Engineering, Peking University, 100871, Beijing, China
| | - Rui Chen
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China
| | - Feng Hou
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Ji Liang
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
10
|
Liang Z, Lei H, Zheng H, Wang HY, Zhang W, Cao R. Selective two-electron and four-electron oxygen reduction reactions using Co-based electrocatalysts. Chem Soc Rev 2025. [PMID: 40259844 DOI: 10.1039/d4cs01199f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The oxygen reduction reaction (ORR) can take place via both four-electron (4e-) and two-electron (2e-) pathways. The 4e- ORR, which produces water (H2O) as the only product, is the key reaction at the cathode of fuel cells and metal-air batteries. On the other hand, the 2e- ORR can be used to electrocatalytically synthesize hydrogen peroxide (H2O2). For the practical applications of the ORR, it is very important to precisely control the selectivity. Understanding structural effects on the ORR provides the basis to control the selectivity. Co-based electrocatalysts have been extensively studied for the ORR due to their high activity, low cost, and relative ease of synthesis. More importantly, by appropriately designing their structures, Co-based electrocatalysts can become highly selective for either the 2e- or the 4e- ORR. Therefore, Co-based electrocatalysts are ideal models for studying fundamental structure-selectivity relationships of the ORR. This review starts by introducing the reaction mechanism and selectivity evaluation of the ORR. Next, Co-based electrocatalysts, especially Co porphyrins, used for the ORR with both 2e- and 4e- selectivity are summarized and discussed, which leads to the conclusion of several key structural factors for ORR selectivity regulation. On the basis of this understanding, future works on the use of Co-based electrocatalysts for the ORR are suggested. This review is valuable for the rational design of molecular catalysts and material catalysts with high selectivity for 4e- and 2e- ORRs. The structural regulation of Co-based electrocatalysts also provides insights into the design and development of ORR electrocatalysts based on other metal elements.
Collapse
Affiliation(s)
- Zuozhong Liang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Hong-Yan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
11
|
Wang X, Wang N, Liu K, Yang M, Zhang R, Khan S, Pang J, Duan J, Hou B, Sand W. Synergistic Zn-Cd Bimetallic Engineering in ZIFs for High-Chloride 2e - ORR to H 2O 2 in Simulated Neutral Seawater. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1786. [PMID: 40333449 PMCID: PMC12028355 DOI: 10.3390/ma18081786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/03/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025]
Abstract
Marine biofouling causes significant economic losses, and conventional antifouling methods are often associated with environmental pollution. Hydrogen peroxide (H2O2), as a clean energy source, has gained increasing attention in recent years. Meanwhile, electrocatalytic 2e- oxygen reduction reaction (ORR) for H2O2 production has received growing interest. However, the majority of current studies are conducted on acidic or alkaline electrolytes, and research on 2e- ORR in neutral NaCl solutions remains rare. Here, a bimetallic Zn-Cd zeolitic imidazolate framework (ZnCd-ZIF) is rationally designed to achieve chloride-resistant 2e- ORR catalysis under simulated seawater conditions (pH 7.5, 3.5% Cl-). Experimental results demonstrate that the ZnCd-ZIF catalyst exhibits an exceptional H2O2 selectivity of 70% at 0.3 VRHE, surpassing monometallic Zn-ZIF (60%) and Cd-ZIF (50%). Notably, H2O2 production reaches 120 mmol g-1 in a Cl--containing neutral electrolyte, exhibiting strong resistance to structural corrosion and Cl- poisoning. This work not only pioneers an effective strategy for designing ORR catalysts adapted to marine environments but also advances the practical implementation of seawater-based electrochemical H2O2 synthesis.
Collapse
Affiliation(s)
- Xu Wang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China (M.Y.)
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Nan Wang
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Kunpeng Liu
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Meinan Yang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China (M.Y.)
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Ruiyong Zhang
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Sikandar Khan
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal 18000, Pakistan
| | - Jinhui Pang
- College of Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China (M.Y.)
| | - Jizhou Duan
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Baorong Hou
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| | - Wolfgang Sand
- State Key Laboratory of Advanced Marine Materials, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; (N.W.)
| |
Collapse
|
12
|
Lee Y, Seong J, Choi J, Kwon YG, Cheong D, Lee J, Lee S, Lee H, Kwon Y, Lee JH, Lah MS, Song HK. Intramolecular Double Activation by Biligands Sharing a Single Metal Atom for Preferred Two-Electron Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21156-21167. [PMID: 40150931 DOI: 10.1021/acsami.4c21525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
It is challenging to selectively promote the two-electron oxygen reduction reaction (2e-ORR) since highly ORR-active electrocatalysts are not satisfied with 2e-ORR and are most likely to go all the way to 4e-ORR, completely reducing dioxygen to water. Recently, however, the possibility of a 2e-ORR preference over 4e-ORR was raised by extensively considering multiple ORR mechanisms and employing a potential-dependent activity measure for constructing volcano plots. Here, we realized the preferred 2e-ORR via an intramolecular double activation of the peroxide intermediate (*OOH) by allowing the intermediate to be easily desorbed before proceeding to 4e-ORR. Dioxygen was transformed to *OOH on a carbon atom of the imidazole ligand of zeolitic imidazolate framework-8 (ZIF-8). When an amine group was introduced via ligand exchange, the selectivity of 2e-ORR was enhanced by 11%. The added amine attracted the oxygen atom of *OOH via a hydrogen bond to weaken the binding strength of *OOH to the carbon active site (double activation). The amine-decorated ZIF-8 exhibited H2O2 faradaic efficiency at 98.5% at ultrahigh-rate production at 625 mg cm-2 h-1 by 1 A cm-2 in a flow cell.
Collapse
Affiliation(s)
- Yeongdae Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
- Department of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Junmo Seong
- Department of Chemistry, UNIST, Ulsan 44919, South Korea
| | - Jihoon Choi
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Yeong Gwang Kwon
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Dosol Cheong
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Jisu Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Seonghwan Lee
- Department of Chemistry, UNIST, Ulsan 44919, South Korea
| | - Hojeong Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Youngkook Kwon
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Jun Hee Lee
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Myoung Soo Lah
- Department of Chemistry, UNIST, Ulsan 44919, South Korea
| | - Hyun-Kon Song
- School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| |
Collapse
|
13
|
Liu Y, Lei F, Li T, Wang S, Li Y. Noble-Metal-Free Electrocatalysts for Selective Hydrogen Peroxide Generation via Oxygen Reduction Reaction. Chemistry 2025; 31:e202404164. [PMID: 39833120 DOI: 10.1002/chem.202404164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/26/2024] [Accepted: 01/20/2025] [Indexed: 01/22/2025]
Abstract
Hydrogen peroxide (H2O2) is a versatile chemical widely used in various industries. The traditional anthraquinone method for H2O2 synthesis has environmental and safety concerns due to the use of organic solvents and hazardous by-products. The direct synthesis of H2O2 from H2 and O2 poses risks of flammability and explosion. Recently, the 2-electron oxygen reduction reaction (2e- ORR) method has emerged as a promising alternative, offering safety, environmental friendliness, and cost-effectiveness. This method utilizes gas diffusion electrodes to efficiently generate H2O2 without the need for additional dilution. In this review, we focus on the recent advancements in noble-metal-free materials for 2e- ORR electrocatalysis, which play a crucial role in the efficient production of H2O2. These materials, including transition metal compounds, macrocyclic complexes, carbon-based catalysts, framework materials, and MXenes catalysts, demonstrate significant advantages in enhancing H2O2 yield. The development of these non-precious metal catalysts can reduce costs and improve sustainability and promote the commercialization of related technologies. The review concludes with an outlook on the future trends of 2e- ORR electrocatalysts.
Collapse
Affiliation(s)
- Yuepeng Liu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Fang Lei
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300203, P. R. China
| | - Tingting Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Siyu Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Yi Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, P R China
| |
Collapse
|
14
|
Yang M, Song W, Chen C, Yang X, Zhuang Z, Zhang H, Wang F, Yu L. Atomically Dispersed Co/Mo Sites Anchored on Mesoporous Carbon Hollow Spheres for Highly Selective Oxygen Reduction to Hydrogen Peroxide in Acidic Media. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416401. [PMID: 40087856 DOI: 10.1002/adma.202416401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/04/2025] [Indexed: 03/17/2025]
Abstract
Two-electron oxygen reduction reaction (2e- ORR) in acidic media is a promising route for the decentralized and on-site hydrogen peroxide (H2O2) generation. Nevertheless, strong interaction between active sites and *OOH intermediates usually induces the O─O bond cleavage to convert 2e- pathway into the sluggish 4e- ORR. Therefore, it is highly necessary to optimize the electronic structure of 2e- ORR electrocatalysts for the regulation of adsorption energy. Herein, we propose the utilization of atomically dispersed Co/Mo sites anchored on mesoporous carbon hollow spheres (Co/Mo-MCHS) via a template-engaged strategy for highly selective ORR to H2O2 in acid. Benefitting from the electron-donating effect of Mo atoms, an enriched electron density around the Co center for Co/Mo-MCHS is observed, resulting in optimal adsorption of the key *OOH intermediates to approach the apex of 2e- ORR volcano plot. Moreover, the introduction of Mo species simultaneously suppresses the electroreduction of as-obtained H2O2 on Co sites. As a consequence, Co/Mo-MCHS delivers a high H2O2 selectivity of 90-95% in acid. The flow cell based on the Co/Mo-MCHS catalyst achieves a remarkable H2O2 yield of 2102 mg for 150 h. Moreover, this strategy can be extended to other early transition metal elements with similar electronic modifier effects.
Collapse
Affiliation(s)
- Min Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Weihao Song
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, National Engineering Research Center for Fuel Cell and Hydrogen Source Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chengjin Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xue Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zhongbin Zhuang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Huabin Zhang
- King Abdullah University of Science and Technology Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Jeddah, 23955-6900, Saudi Arabia
| | - Feng Wang
- State Key Laboratory of Chemical Resource Engineering, Laboratory of Electrochemical Process and Technology for Materials, National Engineering Research Center for Fuel Cell and Hydrogen Source Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Le Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
15
|
Bao T, Wu Y, Tang C, Xi Y, Zou Y, Shan P, Zhang C, Drożd W, Stefankiewicz AR, Yuan P, Yu C, Liu C. Highly Ordered Conductive Metal-Organic Frameworks with Chemically Confined Polyoxometalate Clusters: A Dual-Functional Electrocatalyst for Efficient H 2O 2 Synthesis and Biomass Valorization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2500399. [PMID: 40099650 DOI: 10.1002/adma.202500399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/08/2025] [Indexed: 03/20/2025]
Abstract
The design of bifunctional and high-performance electrocatalysts that can be used as both cathodes and anodes for the two-electron oxygen reduction reaction (2e- ORR) and biomass valorization is attracting increasing attention. Herein, a conserved ligand replacement strategy is developed for the synthesis of highly ordered conductive metal-organic frameworks (Ni-HITP, HITP = 2, 3, 6, 7, 10, 11-hexaiminotriphenylene) with chemically confined phosphotungstic acid (PW12) nanoclusters in the nanopores. The newly formed Ni-O-W bonds in the resultant Ni-HITP/PW12 electrocatalysts modulate the electronic structures of both Ni and W sites, which are favorable for cathodic 2e- ORR to H2O2 production and anodic 5-hydroxymethylfurfural oxidation reaction (HMFOR) to 2, 5-furandicarboxylic acid (FDCA), respectively. In combination with the deliberately retained conductive frameworks and ordered pores, the dual-functional Ni-HITP/PW12 composites enable a H2O2 production rate of 9.51 mol gcat -1 h-1 and an FDCA yield of 96.8% at a current density of 100 mA cm-2/cell voltage of 1.38 V in an integrated 2e- ORR/HMFOR system, significantly improved than the traditional 2e- ORR/oxygen evolution reaction system. This work has provided new insights into the rational design of advanced electrocatalysts and electrocatalytic systems for the green synthesis of valuable chemicals.
Collapse
Affiliation(s)
- Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yunuo Wu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chencheng Tang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Pengyue Shan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Wojciech Drożd
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Artur R Stefankiewicz
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań, 61-614, Poland
| | - Pei Yuan
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
16
|
Zou J, Yu Y, Zhao D, Hu W. A zinc hydroxide-organic framework for electrochemical synthesis of H 2O 2. Chem Commun (Camb) 2025. [PMID: 39969257 DOI: 10.1039/d4cc06773h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Zinc hydroxide-organic framework (Zn-HOF) nanosheets were synthesized by electrochemically triggered self-reconstruction of a double-ligand metal-organic framework (MOF) for the first time. This Zn-HOF catalyst exhibits high activity and selectivity towards the two-electron oxygen reduction reaction (2e-ORR), delivering a high H2O2 productivity of 3.95 mol gcat-1 h-1 at 0 V vs. RHE with a Faraday efficiency (FE) of approximately 96% in an alkaline electrolyte.
Collapse
Affiliation(s)
- Jiajia Zou
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, P. R. China.
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| | - Yang Yu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, P. R. China.
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| | - Dantong Zhao
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, P. R. China.
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| | - Weihua Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Chongqing, 400715, P. R. China.
- School of Materials & Energy, Southwest University, Chongqing, 400715, P. R. China
- Chongqing Key Laboratory of Battery Materials and Technology, Chongqing, 400715, P. R. China
| |
Collapse
|
17
|
Chen S, Luo T, Wang J, Xiang J, Li X, Ma C, Kao CW, Chan TS, Liu YN, Liu M. Tuning Proton Affinity on Co-N-C Atomic Interface to Disentangle Activity-Selectivity Trade-off in Acidic Oxygen Reduction to H 2O 2. Angew Chem Int Ed Engl 2025; 64:e202418713. [PMID: 39497445 DOI: 10.1002/anie.202418713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Indexed: 11/20/2024]
Abstract
In oxygen reduction reaction to H2O2 via two-electron pathway (2e- ORR), adsorption strength of oxygen-containing intermediates determines both catalytic activity and selectivity. However, it also causes activity-selectivity trade-off. Herein, we propose a novel strategy through modulating the interaction between protons and *OOH intermediates to break the activity-selectivity trade-off for highly active and selective 2e- ORR. Taking the typical cobalt-nitrogen-carbon single-atom catalyst as an example, boron heteroatoms doped into second coordination sphere of CoN4 (Co1-NBC) increase proton affinity on catalyst surface, facilitating proton attack on the former oxygen of *OOH and thereby promoting H2O2 formation. As a result, Co1-NBC simultaneously achieves prominent 2e- ORR activity and selectivity in acid with onset potential of 0.724 V vs. RHE and H2O2 selectivity of 94 %, surpassing most reported catalysts. Furthermore, Co1-NBC exhibits a remarkable H2O2 productivity of 202.7 mg cm-2 h-1 and a remarkable stability of 60 h at 200 mA cm-2 in flow cell. This work provides new insights into resolving activity-selectivity trade-off in electrocatalysis.
Collapse
Affiliation(s)
- Shanyong Chen
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, 410083, Changsha, China
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, 511443, Guangzhou, China
| | - Tao Luo
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, 410083, Changsha, China
| | - Jingyu Wang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Jiaqi Xiang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Xiaoqing Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, 410083, Changsha, China
| | - Chao Ma
- School of Materials Science and Engineering, Hunan University, 410082, Changsha, China
| | - Cheng-Wei Kao
- National Synchrotron Radiation Research Center, 300092, Hsinchu, Taiwan
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, 300092, Hsinchu, Taiwan
| | - You-Nian Liu
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, 410083, Changsha, China
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University, 410083, Changsha, China
| |
Collapse
|
18
|
Mehta S, Elmerhi N, Kaur S, Mohammed AK, Nagaiah TC, Shetty D. Modulating Core Polarity in Metal-free Covalent Organic Frameworks for Selective Electrocatalytic Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2025; 64:e202417403. [PMID: 39472302 PMCID: PMC11773118 DOI: 10.1002/anie.202417403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Indexed: 11/24/2024]
Abstract
Tuning the charge density at the active site to balance the adsorption ability and reactivity of oxygen is extremely significant for driving a two-electron oxygen reduction reaction (ORR) to produce hydrogen peroxide (H2O2). Herein, we have highlighted the influence of intermolecular polarity in covalent organic frameworks (COFs) on the efficiency and selectivity of electrochemical H2O2 production. Different C3 symmetric building blocks have been utilized to regulate the charge density at the active sites. The benzene-cored COF, which exhibits reduced polarity than the triazine-cored COF, displayed enhanced performance in H2O2 production, achieving 93.1 % selectivity for H2O2 at 0.4 V with almost two-electron transfer and a faradaic efficiency of 90.5 %. In-situ electrochemical Raman spectroscopy and scanning electrochemical microscopy (SECM) were employed to confirm H2O2 generation and analyze spatial reactivity patterns. These techniques provided detailed insights into localized catalytic behavior, emphasizing the influence of core polarity.
Collapse
Affiliation(s)
- Shivangi Mehta
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Nada Elmerhi
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
- Center for Catalysis & Separations (CeCaS)Khalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Sukhjot Kaur
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Abdul Khayum Mohammed
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| | - Tharamani C. Nagaiah
- Department of ChemistryIndian Institute of Technology RoparRupnagarPunjab140001India
| | - Dinesh Shetty
- Department of ChemistryKhalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
- Center for Catalysis & Separations (CeCaS)Khalifa University of Science & TechnologyAbu DhabiP.O. Box 127788UAE
| |
Collapse
|
19
|
Sun K, Lu R, Liu Y, Webb J, Hanif M, Zhao Y, Wang Z, Waterhouse GIN. Balancing Activity and Selectivity in Two-Electron Oxygen Reduction through First Coordination Shell Engineering in Cobalt Single Atom Catalysts. Angew Chem Int Ed Engl 2025; 64:e202416070. [PMID: 39639822 DOI: 10.1002/anie.202416070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 12/05/2024] [Indexed: 12/07/2024]
Abstract
The electrochemical two-electron oxygen reduction reaction (2e- ORR) offers a potentially cost-effective and eco-friendly route for the production of hydrogen peroxide (H2O2). However, the competing 4e- ORR that converts oxygen to water limits the selectivity towards hydrogen peroxide. Accordingly, achieving highly selective H2O2 production under low voltage conditions remains challenging. Herein, guided by first-principles density functional theory (DFT) calculations, we show that modulation the first coordination sphere in Co single atom catalysts (Co-N-C catalysts with Co-NxO4-x sites), specifically the replacement of Co-N bonds with Co-O bonds, can weaken the *OOH adsorption strength to boost the selectivity towards H2O2 (albeit with a slight decrease in ORR activity). Further, by synthesizing a series of N-doped carbon-supported catalysts with Co-NxO4-x active sites, we were able to validate the DFT findings and explore the trade-off between catalytic activity and selectivity for 2e- ORR. A catalyst with trans-Co-N2O2 sites exhibited excellent catalytic activity and H2O2 selectivity, affording a H2O2 production rate of 12.86 m o l g c a t . - 1 h - 1 ${mol\ {g}_{cat.}^{-1}{h}^{-1}{\rm \ }}$ and an half-cell energy-efficiency of 0.07 m o l H 2 O 2 g c a t . - 1 J - 1 ${{mol}_{{H}_{2}{O}_{2}}\ {g}_{cat.}^{-1}\ {J}^{-1}}$ during a 100-hours H2O2 production test in a flow-cell.
Collapse
Affiliation(s)
- Kai Sun
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Ruihu Lu
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Yuge Liu
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Joshua Webb
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Muhammad Hanif
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Ziyun Wang
- School of Chemical Sciences, University of Auckland, Auckland, 1010, New Zealand
| | | |
Collapse
|
20
|
Xi Y, Xiang Y, Zhang C, Bao T, Zou Y, Zou J, Wei G, Wang L, Xu H, Yu C, Liu C. Perfect Is Perfect: Nickel Prussian Blue Analogue as A High-Efficiency Electrocatalyst for Hydrogen Peroxide Production. Angew Chem Int Ed Engl 2025; 64:e202413866. [PMID: 39175142 DOI: 10.1002/anie.202413866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Prussian blue analogues (PBA) are a large family of functional materials with diverse applications such as in electrochemical fields. However, their use in the emerging two-electron oxygen reduction reaction for clean production of hydrogen peroxide (H2O2) is lagging. Herein, a general solvent exchange induced reconstruction strategy is demonstrated, through which an abnormal NiNi-PBA superstructure is synthesized as a high-performance electrocatalyst for H2O2 generation. The resultant NiNi-PBA superstructure has a stoichiometric composition with saturated lattice water, and a leaf-like morphology composed of interconnected small-size nanosheets with identical orientation and predominate {210} side surface exposure. Our studies show that the Ni-N centers on {210} facets are the active sites, and the saturated lattice H2O favors a six-coordinated environment that results in high selectivity. The "perfect" structure including stoichiometric composition and ideal facet exposure leads to a high selectivity of ~100 % and H2O2 yield of 5.7 mol g-1 h-1, superior to the reported MOF-based electrocatalysts and most other electrocatalysts.
Collapse
Affiliation(s)
- Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yitong Xiang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Queensland 4072, Australia
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, P. R. China
| | - Guangfeng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Lei Wang
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
| | - Hongyi Xu
- Department of Materials and Environmental Chemistry, Stockholm University, Stockholm, 10691, Sweden
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| |
Collapse
|
21
|
Li J, Zhang C, Bao T, Xi Y, Yuan L, Zou Y, Bi Y, Liu C, Yu C. Dual Near-Infrared-Response S-Scheme Heterojunction with Asymmetric Adsorption Sites for Enhanced Nitrogen Photoreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416210. [PMID: 39558701 DOI: 10.1002/adma.202416210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/05/2024] [Indexed: 11/20/2024]
Abstract
Photocatalytic nitrogen reduction reaction (PNRR) holds immense promise for sustainable ammonia (NH3) synthesis. However, few photocatalysts can utilize NIR light that carries over 50% of the solar energy for NH3 production with high performance. Herein, a dual NIR-responsive S-scheme ZnCoSx/Fe3S4 heterojunction photocatalyst is designed with asymmetric adsorption sites and excellent PNRR performance. The heterojunction possesses a hollow-on-hollow superstructure: Fe3S4 nanocrystal-modified ZnCoSx nanocages as building blocks assemble into spindle-shaped particles with a spindle-like cavity. Both Fe3S4 and ZnCoSx are NIR active, allowing efficient utilization of full-spectrum light. Moreover, an S-scheme heterojunction is constructed that promotes charge separation. In addition, the Fe/Co dual-metal sites at the interface enable an asymmetric side-on adsorption mode of N2, favoring the polarization and activation of N2 molecules. In combination with the promoted mass transfer and active site exposure of hollow superstructure, a superior PNRR performance is achieved, with a high NH3 evolution rate of 2523.4 µmol g-1 h-1, an apparent quantum yield of 9.4% at 400 nm and 8% at 1000 nm, and a solar-to-chemical conversion efficiency of 0.32%. The work paves the way for the rational design of advanced heterojunction catalysts for PNRR.
Collapse
Affiliation(s)
- Jiaxin Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chaoqi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Tong Bao
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yamin Xi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Ling Yuan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yingying Zou
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Yin Bi
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
| | - Chengzhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, P. R. China
- State Key Laboratory of Petroleum Molecular and Process Engineering, SKLPMPE, East China Normal University, Shanghai, 200062, P. R. China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
22
|
Tian Q, Jing L, Wang W, Ye X, Chai X, Zhang X, Hu Q, Yang H, He C. Hydrogen Peroxide Electrosynthesis via Selective Oxygen Reduction Reactions Through Interfacial Reaction Microenvironment Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414490. [PMID: 39610213 DOI: 10.1002/adma.202414490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/01/2024] [Indexed: 11/30/2024]
Abstract
The electrochemical two-electron oxygen reduction reaction (2e- ORR) offers a compelling alternative for decentralized and on-site H2O2 production compared to the conventional anthraquinone process. To advance this electrosynthesis system, there is growing interest in optimizing the interfacial reaction microenvironment to boost electrocatalytic performance. This review consolidates recent advancements in reaction microenvironment engineering for the selective electrocatalytic conversion of O2 to H2O2. Starting with fundamental insights into interfacial electrocatalytic mechanisms, an overview of various strategies for constructing the favorable local reaction environment, including adjusting electrode wettability, enhancing mesoscale mass transfer, elevating local pH, incorporating electrolyte additives, and employing pulsed electrocatalysis techniques is provided. Alongside these regulation strategies, the corresponding analyses and technical remarks are also presented. Finally, a summary and outlook on critical challenges, suggesting future research directions to inspire microenvironment engineering and accelerate the practical application of H2O2 electrosynthesis is delivered.
Collapse
Affiliation(s)
- Qiang Tian
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lingyan Jing
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Wenyi Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xieshu Ye
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiaoyan Chai
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xue Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qi Hu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hengpan Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Chuanxin He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
23
|
Zhang S, Zeng D, Wang H, Tang X, Jiang Y, Yu C. Recent Progress in Situ Application of H 2O 2 Produced via Catalytic Synthesis. Chemistry 2024; 30:e202402767. [PMID: 39498747 DOI: 10.1002/chem.202402767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 11/07/2024]
Abstract
Industrial production of H2O2 requires lots of energy and causes environmental pollution. Moreover, in subsequent applications, much economic loss could be produced during the transportation process of H2O2 and its dilution process. Therefore, it is highly desirable for in situ application of H2O2. In recent years, catalytic synthesis of H2O2, e. g., direct catalytic synthesis, electrocatalytic synthesis, and photocatalytic synthesis, has attracted more and more attention because the continuous and low-concentration H2O2 produced by catalytic synthesis can be directly used for the oxidation of organic compounds, effectively avoiding the shortcomings of the current industrial route. Here, we briefly reviewed the latest processes for the catalytic production of H2O2 via various routes. On this basis, we summarized and discussed the in situ application of H2O2 in typical organic conversion reactions, including the ammoximation of ketones, the oxidation of alcohols, the oxidation of C-H bonds, and the oxidation of olefins. Some in situ coupling reactions have shown excellent performance with high conversion and selectivity, and the economic cost has been significantly reduced. Finally, the shortcomings of the in situ utilization of H2O2 in coupling reactions were analyzed, and some strategies for promoting the efficiency of the H2O2 application in organic synthesis were proposed.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Debin Zeng
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hui Wang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
- Guangdong Provincial Key Laboratory of Advanced Green Lubricating Materials, Maoming, Guangdong, 525000, China
| | - Xiaolong Tang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Changlin Yu
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| |
Collapse
|
24
|
Cui L, Chen B, Chen D, He C, Liu Y, Zhang H, Qiu J, Liu L, Jing W, Zhang Z. Species mass transfer governs the selectivity of gas diffusion electrodes toward H 2O 2 electrosynthesis. Nat Commun 2024; 15:10632. [PMID: 39639001 PMCID: PMC11621356 DOI: 10.1038/s41467-024-55091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024] Open
Abstract
The meticulous design of advanced electrocatalysts and their integration into gas diffusion electrode (GDE) architectures is emerging as a prominent research paradigm in the H2O2 electrosynthesis community. However, it remains perplexing that electrocatalysts and assembled GDE frequently exhibit substantial discrepancies in H2O2 selectivity during bulk electrolysis. Here, we elucidate the pivotal role of mass transfer behavior of key species (including reactants and products) beyond the intrinsic properties of the electrocatalyst in dictating electrode-scale H2O2 selectivity. This tendency becomes more pronounced in high reaction rate (current density) regimes where transport limitations are intensified. By utilizing diffusion-related parameters (DRP) of GDEs (i.e., wettability and catalyst layer thickness) as probe factors, we employ both short- and long-term electrolysis in conjunction with in-situ electrochemical reflection-absorption imaging and theoretical calculations to thoroughly investigate the impact of DRP and DRP-controlled local microenvironments on O2 and H2O2 mass transfer. The mechanistic origins of diffusion-dependent conversion selectivity at the electrode scale are unveiled accordingly. The fundamental insights gained from this study underscore the necessity of architectural innovations for mainstream hydrophobic GDEs that can synchronously optimize mass transfer of reactants and products, paving the way for next-generation GDEs in gas-consuming electroreduction scenarios.
Collapse
Affiliation(s)
- Lele Cui
- Membrane & Nanotechnology-Enabled Water Treatment Center, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Bin Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Shuangliang Environmental Technology Co.Ltd, Jiangyin, China
| | - Dongxu Chen
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Chen He
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
| | - Yi Liu
- Membrane & Nanotechnology-Enabled Water Treatment Center, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Hongyi Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Environment, Tsinghua University, Beijing, China
| | - Jian Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- Jiangsu Shuangliang Environmental Technology Co.Ltd, Jiangyin, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Wenheng Jing
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.
- Quzhou Membrane Material Innovation Institute, Quzhou, China.
| | - Zhenghua Zhang
- Membrane & Nanotechnology-Enabled Water Treatment Center, Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
- School of Environment, Tsinghua University, Beijing, China.
- Australian Research Council (ARC) Centre of Excellence for Carbon Science and Innovation (ARC-CoE), Queensland Node, School of Chemistry and Physics and QUT Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD, Australia.
| |
Collapse
|
25
|
Li Y, Luan D, Lou XWD. Engineering of Single-Atomic Sites for Electro- and Photo-Catalytic H 2O 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412386. [PMID: 39460391 DOI: 10.1002/adma.202412386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Direct electro- and photo-synthesis of H2O2 through the 2e- O2 reduction reaction (ORR) and H2O oxidation reaction (WOR) offer promising alternatives for on-demand and on-site production of this chemical. Exploring robust and selective active sites is crucial for enhancing H2O2 production through these pathways. Single-atom catalysts (SACs), featuring isolated active sites on supports, possess attractive properties for promoting catalysis and unraveling catalytic mechanisms. This review first systematically summarizes significant advancements in atomic engineering of both metal and nonmetal single-atom sites for electro- and photo-catalytic 2e- ORR to H2O2, as well as the dynamic behaviors of active sites during catalytic processes. Next, the progress of single-atom sites in H2O2 production through 2e- WOR is overviewed. The effects of the local physicochemical environments on the electronic structures and catalytic behaviors of isolated sites, along with the atomic catalytic mechanism involved in these H2O2 production pathways, are discussed in detail. This work also discusses the recent applications of H2O2 in advanced chemical transformations. Finally, a perspective on the development of single-atom catalysis is highlighted, aiming to provide insights into future research on SACs for electro- and photo-synthesis of H2O2 and other advanced catalytic applications.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
26
|
Qin Y, Jha S, Hu C, Song Z, Miao L, Chen Y, Liu P, Lv Y, Gan L, Liu M. Hydrogen-bonded micelle assembly directed conjugated microporous polymers for nanospherical carbon frameworks towards dual-ion capacitors. J Colloid Interface Sci 2024; 675:1091-1099. [PMID: 39032375 DOI: 10.1016/j.jcis.2024.07.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/21/2024] [Accepted: 07/06/2024] [Indexed: 07/23/2024]
Abstract
Well-orchestrated carbon nanostructure with superb stable framework and high surface accessibility is crucial for zinc-ion hybrid capacitors (ZIHCs). Herein, a hydrogen-bonded micelle self-assembly strategy is proposed for morphology-controllable synthesis of conjugated microporous polymers (CMPs) derived carbon to boost zinc ion storage capability. In the strategy, F127 micellar assembly through intermolecular hydrogen bonds serves as structure-directed agents, directing CMPs' oligomers grow into nanospherical assembly. The nanospherical carbon frameworks derived from CMPs (CNS-2) have shown maximized surface accessibility due to their plentiful tunable porosity and hierarchical porous structure with abundant mesoporous interconnected channels, and superb stability originating from CMPs' robust framework, thus the CNS-2-based ZIHCs exhibit ultrahigh energy density of 163 Wh kg-1 and ultralong lifespan with 93 % capacity retention after 200, 000 cycles at 20 A g-1. Charged ion storage efficiency also lies in dual-ion alternate uptake of Zn2+ and CF3SO3- as well as chemical redox of Zn2+ with carbonyl/pyridine motifs forming O-Zn-N bonds. Maximized surface accessibility and dual-ion storage mechanism ensure excellent electrochemical performance. Thus, the hydrogen-bond-guide micelle self-assembly strategy has provided a facile way to design nanoarchitectures of CMPs derived carbon for advanced cathodes of ZIHCs.
Collapse
Affiliation(s)
- Yang Qin
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China
| | - Shreeti Jha
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China
| | - Chengmin Hu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China
| | - Ziyang Song
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China
| | - Ling Miao
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China
| | - Yumin Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China
| | - Pingxuan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China
| | - Yaokang Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Lihua Gan
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China.
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, PR. China.
| |
Collapse
|
27
|
Zhang MD, Huang JR, Liang CP, Chen XM, Liao PQ. Continuous Electrosynthesis of Pure H 2O 2 Solution with Medical-Grade Concentration by a Conductive Ni-Phthalocyanine-Based Covalent Organic Framework. J Am Chem Soc 2024; 146:31034-31041. [PMID: 39495344 DOI: 10.1021/jacs.4c10675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Electrosynthesis of H2O2 provides an environmentally friendly alternative to the traditional anthraquinone method employed in industry, but suffers from impurities and restricted yield rate and concentration of H2O2. Herein, we demonstrated a Ni-phthalocyanine-based covalent-organic framework (COF, denoted as BBL-PcNi) with a higher inherent conductivity of 1.14 × 10-5 S m-1, which exhibited an ultrahigh current density of 530 mA cm-2 with a Faradaic efficiency (H2O2) of ∼100% at a low cell voltage of 3.5 V. Notably, this high level of performance is maintained over a continuous operation of 200 h without noticeable degradation. When integrated into a scale-up membrane electrode assembly electrolyzer and operated at ∼3300 mA at a very low cell voltage of 2 V, BBL-PcNi continuously yielded a pure H2O2 solution with medical-grade concentration (3.5 wt %), which is at least 3.5 times higher than previously reported catalysts and 1.5 times the output of the traditional anthraquinone process. A mechanistic study revealed that enhancing the π-conjugation to reduce the band gap of the molecular catalytic sites integrated into a COF is more effective to enhance its inherent electron transport ability, thereby significantly improving the electrocatalytic performance for H2O2 generation.
Collapse
Affiliation(s)
- Meng-Di Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Cheng-Peng Liang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515021, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
28
|
Li Z, Jia J, Sang Z, Liu W, Nie J, Yin L, Hou F, Liu J, Liang J. A Computation-Guided Design of Highly Defined and Dense Bimetallic Active Sites on a Two-Dimensional Conductive Metal-Organic Framework for Efficient H 2O 2 Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202408500. [PMID: 39115946 DOI: 10.1002/anie.202408500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
Electrochemical synthesis of hydrogen peroxide (H2O2) via the two-electron oxygen reduction reaction (2e--ORR) provides an alternative method to the energy-intensive anthraquinone method. Metal macrocycles with precise coordination are widely used for 2e--ORR electrocatalysis, but they have to be commonly loaded on conductive substrates, thus exposing a large number of 2e--ORR-inactive sites that result in poor H2O2 production rate and efficiency. Herein, guided by first-principle predictions, a substrate-free and two-dimensional conductive metal-organic framework (Ni-TCPP(Co)), composed of CoN4 sites in porphine(Co) centers and Ni2O8 nodes, is designed as a multi-site catalyst for H2O2 electrosynthesis. The approperiate distance between the CoN4 and Ni2O8 sites in Ni-TCPP(Co) weakens the electron transfer between them, thus ensuring their inherent activities and creating high-density active sites. Meanwhile, the intrinsic electronic conductivity and porosity of Ni-TCPP(Co) further facilitate rapid reaction kinetics. Therefore, outstanding 2e--ORR electrocatalytic performance has been achieved in both alkaline and neutral electrolytes (>90 %/85 % H2O2 selectivity within 0-0.8 V vs. RHE and >18.2/18.0 mol g-1 h-1 H2O2 yield under alkaline/neutral conditions), with confirmed feasibility for water purification and disinfection applications. This strategy thus provides a new avenue for designing catalysts with precise coordination and high-density active sites, promoting high-efficiency electrosynthesis of H2O2 and beyond.
Collapse
Affiliation(s)
- Zhenxin Li
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jingjing Jia
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhiyuan Sang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiahuan Nie
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Lichang Yin
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Science, Shenyang, 110016, China
| | - Feng Hou
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jiachen Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Ji Liang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
29
|
Liu M, Zhao J, Dong H, Meng H, Cao D, Zhu K, Yao J, Wang G. Electrodeposition of Ni/Cu Bimetallic Conductive Metal-Organic Frameworks Electrocatalysts with Boosted Oxygen Reduction Activity for Zinc-Air Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405309. [PMID: 39148192 DOI: 10.1002/smll.202405309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/04/2024] [Indexed: 08/17/2024]
Abstract
Zinc-air batteries employing non-Pt cathodes hold significant promise for advancing cathodic oxygen reduction reaction (ORR). However, poor intrinsic electrical conductivity and aggregation tendency hinder the application of metal-organic frameworks (MOFs) as active ORR cathodes. Conductive MOFs possess various atomically dispersed metal centers and well-aligned inherent topologies, eliminating the additional carbonization processes for achieving high conductivity. Here, a novel room-temperature electrochemical cathodic electrodeposition method is introduced for fabricating uniform and continuous layered 2D bimetallic conductive MOF films cathodes without polymeric binders, employing the organic ligand 2,3,6,7,10,11-hexaiminotriphenylene (HITP) and varying the Ni/Cu ratio. The influence of metal centers on modulating the ORR performance is investigated by density functional theory (DFT), demonstrating the performance of bimetallic conductive MOFs can be effectively tuned by the unpaired 3d electrons and the Jahn-Teller effect in the doped Cu. The resulting bimetallic Ni2.1Cu0.9(HITP)2 exhibits superior ORR performance, boasting a high onset potential of 0.93 V. Moreover, the assembled aqueous zinc-air battery demonstrates high specific capacity of 706.2 mA h g-1, and exceptional long-term charge/discharge stability exceeding 1250 cycles.
Collapse
Affiliation(s)
- Mufei Liu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Jing Zhao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Hao Meng
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Dianxue Cao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Kai Zhu
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Jiaxin Yao
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, Heilongjiang, 150001, P. R. China
- Heilongjiang Hachuan Carbon Materials Technology Co. LTD, National Quality Supervision, Inspection Center of Graphite Products, Jixi, 158100, P. R. China
| |
Collapse
|
30
|
Yang L, Cheng H, Li H, Sun G, Liu S, Ma T, Zhang L. Atomic Confinement Empowered CoZn Dual-Single-Atom Nanotubes for H 2O 2 Production in Sequential Dual-Cathode Electro-Fenton Process. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406957. [PMID: 38923059 DOI: 10.1002/adma.202406957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/18/2024] [Indexed: 06/28/2024]
Abstract
Single-atom catalysts (SACs) are flourishing in various fields because of their 100% atomic utilization. However, their uncontrollable selectivity, poor stability and vulnerable inactivation remain critical challenges. According to theoretical predictions and experiments, a heteronuclear CoZn dual-single-atom confined in N/O-doped hollow carbon nanotube reactors (CoZnSA@CNTs) is synthesized via spatial confinement growth. CoZnSA@CNTs exhibit superior performance for H2O2 electrosynthesis over the entire pH range due to dual-confinement of atomic sites and O2 molecule. CoZnSA@CNTs is favorable for H2O2 production mainly because the synergy of adjacent atomic sites, defect-rich feature and nanotube reactor promoted O2 enrichment and enhanced H2O2 reactivity/selectivity. The H2O2 selectivity reaches ∼100% in a range of 0.2-0.65 V versus RHE and the yield achieves 7.50 M gcat -1 with CoZnSA@CNTs/carbon fiber felt, exceeding most of the reported SACs in H-type cells. The obtained H2O2 is converted directly to sodium percarbonate and sodium perborate in a safe way for H2O2 storage/transportation. The sequential dual-cathode electron-Fenton process promotes the formation of reactive oxygen species (•OH, 1O2 and •O2 -) by activating the generated H2O2, enabling accelerated degradation of various pollutants and Cr(VI) detoxification in actual wastewater. This work proposes a promising confinement strategy for catalyst design and selectivity regulation of complex reactions.
Collapse
Affiliation(s)
- Lijun Yang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
- Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials of Liaoning Province, Institute of Clean Energy Chemistry, Liaoning University, Shenyang, 110036, China
| | - Huimin Cheng
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Hui Li
- School of Science, Stem College, Rmit University, Melbourne, VIC 3000, Australia
| | - Ga Sun
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Sitong Liu
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| | - Tianyi Ma
- School of Science, Stem College, Rmit University, Melbourne, VIC 3000, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
31
|
Zhang Z, Chen W, Chu HK, Xiong F, Zhang K, Yan H, Meng F, Gao S, Ma B, Hai X, Zou R. Fe-O 4 Motif Activated Graphitic Carbon via Oxo-Bridge for Highly Selective H 2O 2 Electrosynthesis. Angew Chem Int Ed Engl 2024; 63:e202410123. [PMID: 39132744 DOI: 10.1002/anie.202410123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Indexed: 08/13/2024]
Abstract
Carbon-based materials have been utilized as effective catalysts for hydrogen peroxide electrosynthesis via two-electron oxygen reduction reaction (2e ORR), however the insufficient selectivity and productivity still hindered the further industrial applications. In this work, we report the Fe-O4 motif activated graphitic carbon material which enabled highly selective H2O2 electrosynthesis operating at high current density with excellent anti-poisoning property. In the bulk production test, the concentration of H2O2 cumulated to 8.6 % in 24 h and the corresponding production rate of 33.5 mol gcat -1 h-1 outperformed all previously reported materials. Theoretical model backed by in situ characterization verified α-C surrounding the Fe-O4 motif as the actual reaction site in terms of thermodynamics and kinetics aspects. The strategy of activating carbon reaction site by metal center via oxo-bridge provides inspiring insights for the rational design of carbon materials for heterogeneous catalysis.
Collapse
Affiliation(s)
- Zitao Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Weibin Chen
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Hsing Kai Chu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Feng Xiong
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Kexin Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Huacai Yan
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Fanqi Meng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Song Gao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Bing Ma
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Xiao Hai
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Ruqiang Zou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
32
|
Zhu J, Lu XF, Luan D, Lou XWD. Metal-Organic Frameworks Derived Carbon-Supported Metal Electrocatalysts for Energy-Related Reduction Reactions. Angew Chem Int Ed Engl 2024; 63:e202408846. [PMID: 39031731 DOI: 10.1002/anie.202408846] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Electrochemical reduction reactions, as cathodic processes in many energy-related devices, significantly impact the overall efficiency determined mainly by the performance of electrocatalysts. Metal-organic frameworks (MOFs) derived carbon-supported metal materials have become one of star electrocatalysts due to their tunable structure and composition through ligand design and metal screening. However, for different electroreduction reactions, the required active metal species vary in phase component, electronic state, and catalytic center configuration, hence requiring effective customization. From this perspective, this review comprehensively analyzes the structural design principles, metal loading strategies, practical electroreduction performance, and complex catalytic mechanisms, thereby providing insights and guidance for the future rational design of such electroreduction catalysts.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
33
|
Chen J, Lin Y, Li Q, Ren H, Zhang L, Sun Y, Zhang S, Shang X, Zhou W, Wu M, Li Z. Amphiphilic Polymer Electrolyte Blocking Lattice Oxygen Evolution from High-Voltage Nickel-rich Cathodes for Ultra-Thermal Stabile Batteries. Angew Chem Int Ed Engl 2024; 63:e202407024. [PMID: 38864254 DOI: 10.1002/anie.202407024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Ni-rich cathodes have been intensively adopted in Li-ion batteries to pursuit high energy density, which still suffering irreversible degradation at high voltage. Some unstable lattice O2- species in Ni-rich cathodes would be oxidized to singlet oxygen 1O2 and released at high volt, which lead to irreversible phase transfer from the layered rhombohedral (R) phase to a spinel-like (S) phase. To overcome the issue, the amphiphilic copolymers (UMA-Fx) electrolyte were prepared by linking hydrophobic C-F side chains with hydrophilic subunits, which could self-assemble on Ni-rich cathode surface and convert to stable cathode-electrolyte interphase layer. Thereafter, the oxygen releasing of polymer coated cathode was obviously depressed and substituted by the Co oxidation (Co3+→Co4+) at high volt (>4.2 V), which could suppressed irreversible phase transfer and improve cycling stability. Moreover, the amphiphilic polymer electrolyte was also stable with Li anode and had high ion conductivity. Therefore, the NCM811//UMA-F6//Li pouch cell exhibited outstanding energy density (362.97 Wh/kg) and durability (cycled 200 times at 4.7 V), which could be stalely cycled even at 120°C without short circuits or explosions.
Collapse
Affiliation(s)
- Jialiang Chen
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yan Lin
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiang Li
- College of Physics, Qingdao University, Qingdao, Shandong 266071, China
| | - Hao Ren
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Linchen Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuanyuan Sun
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Siyu Zhang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Xinchao Shang
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Weidong Zhou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mingbo Wu
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhongtao Li
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
34
|
Qian Z, Liu D, Liu D, Luo Y, Ji W, Wang Y, Chen Y, Hu R, Pan H, Wu P, Duan Y. Scalable Cathodic H 2O 2 Electrosynthesis using Cobalt-Coordinated Nanocellulose Electrocatalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403947. [PMID: 38948958 DOI: 10.1002/smll.202403947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Converting hierarchical biomass structure into cutting-edge architecture of electrocatalysts can effectively relieve the extreme dependency of nonrenewable fossil-fuel-resources typically suffering from low cost-effectiveness, scarce supplies, and adverse environmental impacts. A cost-effective cobalt-coordinated nanocellulose (CNF) strategy is reported for realizing a high-performance 2e-ORR electrocatalysts through molecular engineering of hybrid ZIFs-CNF architecture. By a coordination and pyrolysis process, it generates substantial oxygen-capturing active sites within the typically oxygen-insulating cellulose, promoting O2 mass and electron transfer efficiency along the nanostructured Co3O4 anchored with CNF-based biochar. The Co-CNF electrocatalyst exhibits an exceptional H2O2 electrosynthesis efficiency of ≈510.58 mg L-1 cm-2 h-1 with an exceptional superiority over the existing biochar-, or fossil-fuel-derived electrocatalysts. The combination of the electrocatalysts with stainless steel mesh serving as a dual cathode can strongly decompose regular organic pollutants (up to 99.43% removal efficiency by 30 min), showing to be a desirable approach for clean environmental remediation with sustainability, ecological safety, and high-performance.
Collapse
Affiliation(s)
- Zhiyun Qian
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Di Liu
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Detao Liu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yao Luo
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Wenhao Ji
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yan Wang
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yonghao Chen
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Rui Hu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Hui Pan
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Peilin Wu
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| | - Yulong Duan
- School of Light Industry and Engineering, South China University of Technology, Wushan Rd., 381#, Tianhe District, Guangzhou, Guangdong, 510640, China
| |
Collapse
|
35
|
Pei Z, Li Y, Fan G, Guo Y, Luan D, Gu X, Lou XWD. Low-Coordinated Conductive ZnCu Metal-Organic Frameworks for Highly Selective H 2O 2 Electrosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403808. [PMID: 38770988 DOI: 10.1002/smll.202403808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Indexed: 05/22/2024]
Abstract
Direct electrosynthesis of hydrogen peroxide (H2O2) with high production rate and high selectivity through the two-electron oxygen reduction reaction (2e-ORR) offers a sustainable alternative to the energy-intensive anthraquinone technology but remains a challenge. Herein, a low-coordinated, 2D conductive Zn/Cu metal-organic framework supported on hollow nanocube structures (ZnCu-MOF (H)) is rationally designed and synthesized. The as-prepared ZnCu-MOF (H) catalyst exhibits substantially boosted electrocatalytic kinetics, enhanced H2O2 selectivity, and ultra-high Faradaic efficiency for 2e-ORR process in both alkaline and neutral conditions. Electrochemical measurements, operando/quasi in situ spectroscopy, and theoretical calculation demonstrate that the introduction of Cu atoms with low-coordinated structures induces the transformation of active sites, resulting in the beneficial electron transfer and the optimized energy barrier, thereby improving the electrocatalytic activity and selectivity.
Collapse
Affiliation(s)
- Zhihao Pei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Yunxiang Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, Kowloon, 999077, China
| |
Collapse
|
36
|
Duan Q, Xu Y, Zha Y, Meng F, Wang Q, Wen Y, Qiu J. Near-Complete Suppression of NIR-II Luminescence Quenching in Halide Double Perovskites for Surface Functionalization Through Facet Engineering. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403198. [PMID: 38932471 PMCID: PMC11348257 DOI: 10.1002/advs.202403198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/09/2024] [Indexed: 06/28/2024]
Abstract
Lanthanide-based NIR-II-emitting materials (1000-1700 nm) show promise for optoelectronic devices, phototherapy, and bioimaging. However, one major bottleneck to prevent their widespread use lies in low quantum efficiencies, which are significantly constrained by various quenching effects. Here, a highly oriented (222) facet is achieved via facet engineering for Cs2NaErCl6 double perovskites, enabling near-complete suppression of NIR-II luminescence quenching. The optimally (222)-oriented Cs2Ag0.10Na0.90ErCl6 microcrystals emit Er3+ 1540 nm light with unprecedented high quantum efficiencies of 90 ± 6% under 379 nm UV excitation (ultralarge Stokes shift >1000 nm), and a record near-unity quantum yield of 98.6% is also obtained for (222)-based Cs2NaYb0.40Er0.60Cl6 microcrystallites under 980 nm excitation. With combined experimental and theoretical studies, the underlying mechanism of facet-dependent Er3+ 1540 nm emissions is revealed, which can contribute to surface asymmetry-induced breakdown of parity-forbidden transition and suppression of undesired non-radiative processes. Further, the role of surface quenching is reexamined by molecular dynamics based on two facets, highlighting the drastic two-phonon coupling effect of a hydroxyl group to 4I13/2 level of Er3+. Surface-functionalized facets will provide new insights for tunable luminescence in double perovskites, and open up a new avenue for developing highly efficient NIR-II emitters toward broad applications.
Collapse
Affiliation(s)
- Qiudong Duan
- Faculty of Material Science and EngineeringKey Lab of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093China
| | - Yusheng Xu
- Faculty of Material Science and EngineeringKey Lab of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093China
| | - Yu Zha
- Faculty of Material Science and EngineeringKey Lab of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093China
| | - Fanju Meng
- Faculty of Material Science and EngineeringKey Lab of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093China
| | - Qi Wang
- Faculty of Material Science and EngineeringKey Lab of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093China
| | - Yugeng Wen
- Faculty of Material Science and EngineeringKey Lab of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093China
| | - Jianbei Qiu
- Faculty of Material Science and EngineeringKey Lab of Advanced Materials of Yunnan ProvinceKunming University of Science and TechnologyKunming650093China
| |
Collapse
|
37
|
Li S, Shi L, Guo Y, Wang J, Liu D, Zhao S. Selective oxygen reduction reaction: mechanism understanding, catalyst design and practical application. Chem Sci 2024; 15:11188-11228. [PMID: 39055002 PMCID: PMC11268513 DOI: 10.1039/d4sc02853h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024] Open
Abstract
The oxygen reduction reaction (ORR) is a key component for many clean energy technologies and other industrial processes. However, the low selectivity and the sluggish reaction kinetics of ORR catalysts have hampered the energy conversion efficiency and real application of these new technologies mentioned before. Recently, tremendous efforts have been made in mechanism understanding, electrocatalyst development and system design. Here, a comprehensive and critical review is provided to present the recent advances in the field of the electrocatalytic ORR. The two-electron and four-electron transfer catalytic mechanisms and key evaluation parameters of the ORR are discussed first. Then, the up-to-date synthetic strategies and in situ characterization techniques for ORR electrocatalysts are systematically summarized. Lastly, a brief overview of various renewable energy conversion devices and systems involving the ORR, including fuel cells, metal-air batteries, production of hydrogen peroxide and other chemical synthesis processes, along with some challenges and opportunities, is presented.
Collapse
Affiliation(s)
- Shilong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lei Shi
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yingjie Guo
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jingyang Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Di Liu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing) Beijing 100083 P. R. China
| | - Shenlong Zhao
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences Beijing 100190 P. R. China
| |
Collapse
|
38
|
Geng J, Huang Y, Guo Y, Li H, Li F. Surface Coordination Modulated Morphological Anisotropic Engineering of Iron-Benzoquinone Frameworks for Lithium-Ion Batteries. Angew Chem Int Ed Engl 2024; 63:e202405066. [PMID: 38742486 DOI: 10.1002/anie.202405066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/22/2024] [Accepted: 05/13/2024] [Indexed: 05/16/2024]
Abstract
Morphological anisotropic engineering is powerful to synthesize metal-organic frameworks (MOFs) with versatile physicochemical properties for diverse applications ranging from gas storage/separation to electrocatalysis and batteries, etc. Herein, we developed a carbon substrate guided strategy to manipulate the facet-dependent coordination for morphology engineering of Fe-THBQ (tetrahydroxy-1,4-benzoquinone) frameworks, which is built with cubic Fe octamer bridged by two parallel THBQ ligands along three orthogonal axes, extending to a three-dimensional (3D) framework with pcu-e network topology. The electronegative O-containing functional groups on carbon surfaces compete with THBQ linkers to selectively interact with the unsaturated coordinated Fe cations on the {111} facets and inhibit crystal growth along the <111> direction. The morphology of Fe-THBQ evolves from thermodynamically favored truncated cube to cuboctahedron depending on the content of O-containing functional groups on the carbon substrate. The Fe-THBQ with varied morphologies exhibits facet-dependent performances for electrochemical lithium storage. This work will shed light on the morphology modulation of MOFs for promising applications.
Collapse
Affiliation(s)
- Jiarun Geng
- Frontiers Science Center for New Organic Matter, Key State Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yaohui Huang
- Frontiers Science Center for New Organic Matter, Key State Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yihe Guo
- Frontiers Science Center for New Organic Matter, Key State Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haixia Li
- Frontiers Science Center for New Organic Matter, Key State Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- Key Laboratory of Advanced Electrode Materials for Novel Solar Cells for Petroleum and Chemical Industry of China, Suzhou University of Science and Technology, Suzhou, Jiangsu Province, 215009, China
| | - Fujun Li
- Frontiers Science Center for New Organic Matter, Key State Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
39
|
Zhou H, Gu S, Lu Y, Zhang G, Li B, Dou F, Cao S, Li Q, Sun Y, Shakouri M, Pang H. Stabilizing Ni 2+ in Hollow Nano MOF/Polymetallic Phosphides Composites for Enhanced Electrochemical Performance in 3D-Printed Micro-Supercapacitors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401856. [PMID: 38529841 DOI: 10.1002/adma.202401856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Polymetallic phosphides exhibit favorable conductivities. A reasonable design of nano-metal-organic frame (MOF) composite morphologies and in situ introduction of polymetallic phosphides into the framework can effectively improve electrolyte penetration and rapid electron transfer. To address existing challenges, Ni, with a strong coordination ability with N, is introduced to partially replace Co in nano-Co-MOF composite. The hollow nanostructure is stabilized through CoNi bimetallic coordination and low-temperature controllable polymetallic phosphide generation rate. The Ni, Co, and P atoms, generated during reduction, effectively enhance electron transfer rate within the framework. X-ray absorption fine structure (XAFS) characterization results further confirm the existence of Ni-N, Ni-Ni, and Co-Co structures in the nanocomposite. The changes in each component during the charge-discharge process of the electrochemical reactions are investigated using in situ X-ray diffraction (XRD). Theoretical calculations further confirm that P can effectively improve conductivity. VZNPGC//MXene MSCs, constructed with active materials derived from the hollow nano MOF composites synthesized through the Ni2+ stabilization strategy, demonstrate a specific capacitance of 1184 mF cm-2, along with an energy density of 236.75 µWh cm-2 (power density of 0.14 mW cm-2). This approach introduces a new direction for the synthesis of highly conductive nano-MOF composites.
Collapse
Affiliation(s)
- Huijie Zhou
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shunyu Gu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yibo Lu
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Guangxun Zhang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Bing Li
- Tourism Cooking Institute, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Fei Dou
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Shuai Cao
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Qian Li
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Yangyang Sun
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| | - Mohsen Shakouri
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, Saskatchewan, S7N 2V3, Canada
| | - Huan Pang
- Institute of Innovation Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225009, P. R. China
| |
Collapse
|
40
|
Yang H, An N, Kang Z, Menezes PW, Chen Z. Understanding Advanced Transition Metal-Based Two Electron Oxygen Reduction Electrocatalysts from the Perspective of Phase Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400140. [PMID: 38456244 DOI: 10.1002/adma.202400140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/26/2024] [Indexed: 03/09/2024]
Abstract
Non-noble transition metal (TM)-based compounds have recently become a focal point of extensive research interest as electrocatalysts for the two electron oxygen reduction (2e- ORR) process. To efficiently drive this reaction, these TM-based electrocatalysts must bear unique physiochemical properties, which are strongly dependent on their phase structures. Consequently, adopting engineering strategies toward the phase structure has emerged as a cutting-edge scientific pursuit, crucial for achieving high activity, selectivity, and stability in the electrocatalytic process. This comprehensive review addresses the intricate field of phase engineering applied to non-noble TM-based compounds for 2e- ORR. First, the connotation of phase engineering and fundamental concepts related to oxygen reduction kinetics and thermodynamics are succinctly elucidated. Subsequently, the focus shifts to a detailed discussion of various phase engineering approaches, including elemental doping, defect creation, heterostructure construction, coordination tuning, crystalline design, and polymorphic transformation to boost or revive the 2e- ORR performance (selectivity, activity, and stability) of TM-based catalysts, accompanied by an insightful exploration of the phase-performance correlation. Finally, the review proposes fresh perspectives on the current challenges and opportunities in this burgeoning field, together with several critical research directions for the future development of non-noble TM-based electrocatalysts.
Collapse
Affiliation(s)
- Hongyuan Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
| | - Na An
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technische Universität Berlin, Straße des 17 Juni 135, Sekr. C2, 10623, Berlin, Germany
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
41
|
Wei J, Lou J, Hu W, Song X, Wang H, Yang Y, Zhang Y, Jiang Z, Mei B, Wang L, Yang T, Wang Q, Li X. Superstructured Carbon with Enhanced Kinetics for Zinc-Air Battery and Self-Powered Overall Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308956. [PMID: 38183403 DOI: 10.1002/smll.202308956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/15/2023] [Indexed: 01/08/2024]
Abstract
The present study proposes a novel engineering concept for the customization of functionality and construction of superstructure to fabricate 2D monolayered N-doped carbon superstructure electrocatalysts decorated with Co single atoms or Co2P nanoparticles derived from 2D bimetallic ZnCo-ZIF superstructure precursors. The hierarchically porous carbon superstructure maximizes the exposure of accessible active sites, enhances electron/mass transport efficiency, and accelerates reaction kinetics simultaneously. Consequently, the Co single atoms embedded N-doped carbon superstructure (Co-NCS) exhibits remarkable catalytic activity toward oxygen reduction reaction, achieving a half-wave potential of 0.886 V versus RHE. Additionally, the Co2P nanoparticles embedded N-doped carbon superstructure (Co2P-NCS) demonstrates high activity for both oxygen evolution reaction and hydrogen evolution reaction, delivering low overpotentials of 292 mV at 10 mA cm-2 and 193 mV at 10 mA cm-2 respectively. Impressively, when employed in an assembled rechargeable Zn-air battery, the as-prepared 2D carbon superstructure electrocatalysts exhibit exceptional performance with a peak power density of 219 mW cm-2 and a minimal charge/discharge voltage gap of only 1.16 V at 100 mA cm-2. Moreover, the cell voltage required to drive an overall water-splitting electrolyzer at a current density of 10 mA cm-2 is merely 1.69 V using these catalysts as electrodes.
Collapse
Affiliation(s)
- Jiamin Wei
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Jiali Lou
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Weibo Hu
- School of New Energy, Ningbo University of Technology, Ningbo, 315336, China
| | - Xiaokai Song
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Haifeng Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yang Yang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Yaqi Zhang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Ziru Jiang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Bingbao Mei
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201800, PR China
| | - Liangbiao Wang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Tinghai Yang
- Institute of Advanced Functional Materials for Energy, School of Chemistry and Chemical Engineering, Jiangsu University of Technology, Changzhou, 213001, China
| | - Qing Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou, 213164, China
| | - Xiaopeng Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
42
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
43
|
Luo Z, Gong J, Li Q, Wei F, Liu B, Taylor Isimjan T, Yang X. Geometric and Electronic Engineering in Co/VN Nanoparticles to Boost Bifunctional Oxygen Electrocatalysis for Aqueous/Flexible Zn-Air Batteries. Chemistry 2024; 30:e202303943. [PMID: 38288675 DOI: 10.1002/chem.202303943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 02/21/2024]
Abstract
Modulating metal-metal and metal-support interactions is one of the potent tools for augmenting catalytic performance. Herein, highly active Co/VN nanoparticles are well dispersed on three-dimensional porous carbon nanofoam (Co/VN@NC) with the assistance of dicyandiamide. Studies certify that the consequential disordered carbon substrate reinforces the confinement of electrons, while the coupling of diverse components optimizes charge redistribution among species. Besides, theoretical analyses confirm that the regulated electron configuration can significantly tune the binding strength between the active sites and intermediates, thus optimizing reaction energy barriers. Therefore, Co/VN@NC exhibits a competitive potential difference (ΔE, 0.65 V) between the half-wave potential of ORR and OER potential at 10 mA cm-2, outperforming Pt/C+RuO2 (0.67 V). Further, catalyst-based aqueous/flexible ZABs present superior performances with peak power densities of 156 and 85 mW cm-2, superior to Pt/C-based counterparts (128 and 73 mW cm-2). This research provides a pivotal foundation for the evolution of bifunctional catalysts in the energy sector.
Collapse
Affiliation(s)
- Zuyang Luo
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Junlin Gong
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Qiuxia Li
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Fengli Wei
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Baofa Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
44
|
Feng C, Zhang L. Microdroplet assisted hollow ZnCdS@PDA nanocages' synergistic confinement effect for promoting photocatalytic H 2O 2 production. MATERIALS HORIZONS 2024; 11:1515-1527. [PMID: 38240069 DOI: 10.1039/d3mh01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Solar-driven photocatalytic H2O2 production is greatly impeded by the slow mass transfer and rapid recombination of photogenerated charge carriers for multiphase reactions. Polydopamine (PDA)-coated hollow ZnCdS (ZnCdS@PDA) octahedral cages with sulfur vacancies were constructed as micro-reactors to provide a delimited micro-environment for highly efficient paired H2O2 production through water oxidation coupled with oxygen reduction. At neutral pH, hollow ZnCdS@PDA cages exhibited a high H2O2 production yield of 45.5 mM g-1 h-1 without the assistance of sacrificial agents in bulk solution, which can be attributed to the distinguished space constraint in hollow nanocages and a surprisingly adjusted band structure. Compared to the bulk water system, H2O and O2 inside the hollow nanocage can form an ideal system for boosting such nanoconfined H2O or O2 molecules' adsorption/enrichment on the interior of the ZnCdS active sites. More importantly, the photocatalytic yield of H2O2 generation (H2O2 concentrations of 190-65.6 mM g-1 h-1) obtained in the abundant gas-liquid interface of microdroplets is dramatically higher than that obtained in an aqueous bulk environment under visible light conditions without using sacrificial agents. This enhancement can be attributed to the synergistic effect of the hollow ZnCdS@PDA nanocage reactor and the microdroplet confinement photocatalysis reaction. Particularly, the improved/confined enhancement of O2 availability and enhanced charge separation, along with high catalytic durability are the main reasons leading to significant H2O2 production due to an ultrahigh interfacial electric field and an extremely large specific surface area in microdroplets. In addition to producing a highly concentrated liquid of hydrogen peroxide during the microdroplet photoreaction, we also obtained white solid hydrogen peroxide powder with strong oxidizing properties reducing costs and increasing safety in storage and transportation. This study highlights that nano-liquid catalysis (using microdroplets) provides a very efficient pathway for accelerating semiconductor photocatalysis limited by gas diffusion in a liquid.
Collapse
Affiliation(s)
- Chenxi Feng
- Lei Zhang, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, P. R. China.
| | - Lei Zhang
- Lei Zhang, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, P. R. China.
| |
Collapse
|
45
|
Trench AB, Fernandes CM, Moura JPC, Lucchetti LEB, Lima TS, Antonin VS, de Almeida JM, Autreto P, Robles I, Motheo AJ, Lanza MRV, Santos MC. Hydrogen peroxide electrogeneration from O 2 electroreduction: A review focusing on carbon electrocatalysts and environmental applications. CHEMOSPHERE 2024; 352:141456. [PMID: 38367878 DOI: 10.1016/j.chemosphere.2024.141456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Hydrogen peroxide (H2O2) stands as one of the foremost utilized oxidizing agents in modern times. The established method for its production involves the intricate and costly anthraquinone process. However, a promising alternative pathway is the electrochemical hydrogen peroxide production, accomplished through the oxygen reduction reaction via a 2-electron pathway. This method not only simplifies the production process but also upholds environmental sustainability, especially when compared to the conventional anthraquinone method. In this review paper, recent works from the literature focusing on the 2-electron oxygen reduction reaction promoted by carbon electrocatalysts are summarized. The practical applications of these materials in the treatment of effluents contaminated with different pollutants (drugs, dyes, pesticides, and herbicides) are presented. Water treatment aiming to address these issues can be achieved through advanced oxidation electrochemical processes such as electro-Fenton, solar-electro-Fenton, and photo-electro-Fenton. These processes are discussed in detail in this work and the possible radicals that degrade the pollutants in each case are highlighted. The review broadens its scope to encompass contemporary computational simulations focused on the 2-electron oxygen reduction reaction, employing different models to describe carbon-based electrocatalysts. Finally, perspectives and future challenges in the area of carbon-based electrocatalysts for H2O2 electrogeneration are discussed. This review paper presents a forward-oriented viewpoint of present innovations and pragmatic implementations, delineating forthcoming challenges and prospects of this ever-evolving field.
Collapse
Affiliation(s)
- Aline B Trench
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Caio Machado Fernandes
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - João Paulo C Moura
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Lanna E B Lucchetti
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Thays S Lima
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Vanessa S Antonin
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - James M de Almeida
- Ilum Escola de Ciência - Centro Nacional de Pesquisa em Energia e Materiais (CNPEM), Brazil
| | - Pedro Autreto
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil
| | - Irma Robles
- Center for Research and Technological Development in Electrochemistry, S.C., Parque Tecnologico Queretaro, 76703, Sanfandila, Pedro Escobedo, Queretaro, Mexico
| | - Artur J Motheo
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Marcos R V Lanza
- São Carlos Institute of Chemistry, University of São Paulo, P.O. Box 780, São Carlos, SP, CEP 13560-970, Brazil
| | - Mauro C Santos
- Centre of Natural and Human Sciences, Federal University of ABC. Rua Santa Adélia 166, Bairro Bangu, 09210-170, Santo André, SP, Brazil.
| |
Collapse
|
46
|
Zhi Q, Jiang R, Yang X, Jin Y, Qi D, Wang K, Liu Y, Jiang J. Dithiine-linked metalphthalocyanine framework with undulated layers for highly efficient and stable H 2O 2 electroproduction. Nat Commun 2024; 15:678. [PMID: 38263147 PMCID: PMC10805717 DOI: 10.1038/s41467-024-44899-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024] Open
Abstract
Realization of stable and industrial-level H2O2 electroproduction still faces great challenge due large partly to the easy decomposition of H2O2. Herein, a two-dimensional dithiine-linked phthalocyaninato cobalt (CoPc)-based covalent organic framework (COF), CoPc-S-COF, was afforded from the reaction of hexadecafluorophthalocyaninato cobalt (II) with 1,2,4,5-benzenetetrathiol. Introduction of the sulfur atoms with large atomic radius and two lone-pairs of electrons in the C-S-C linking unit leads to an undulated layered structure and an increased electron density of the Co center for CoPc-S-COF according to a series of experiments in combination with theoretical calculations. The former structural effect allows the exposition of more Co sites to enhance the COF catalytic performance, while the latter electronic effect activates the 2e- oxygen reduction reaction (2e- ORR) but deactivates the H2O2 decomposition capability of the same Co center, as a total result enabling CoPc-S-COF to display good electrocatalytic H2O2 production performance with a remarkable H2O2 selectivity of >95% and a stable H2O2 production with a concentration of 0.48 wt% under a high current density of 125 mA cm-2 at an applied potential of ca. 0.67 V versus RHE for 20 h in a flow cell, representing the thus far reported best H2O2 synthesis COFs electrocatalysts.
Collapse
Affiliation(s)
- Qianjun Zhi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rong Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiya Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yucheng Jin
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Dongdong Qi
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Kang Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Science, Beijing, 100049, China.
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
47
|
Li ZM, Zhang CQ, Liu C, Zhang HW, Song H, Zhang ZQ, Wei GF, Bao XJ, Yu CZ, Yuan P. High-efficiency Electroreduction of O 2 into H 2 O 2 over ZnCo Bimetallic Triazole Frameworks Promoted by Ligand Activation. Angew Chem Int Ed Engl 2024; 63:e202314266. [PMID: 37940614 DOI: 10.1002/anie.202314266] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/03/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023]
Abstract
Co-based metal-organic frameworks (MOFs) as electrocatalysts for two-electron oxygen reduction reaction (2e- ORR) are highly promising for H2 O2 production, but suffer from the intrinsic activity-selectivity trade-off. Herein, we report a ZnCo bimetal-triazole framework (ZnCo-MTF) as high-efficiency 2e- ORR electrocatalysts. The experimental and theoretical results demonstrate that the coordination between 1,2,3-triazole and Co increases the antibonding-orbital occupancy on the Co-N bond, promoting the activation of Co center. Besides, the adjacent Zn-Co sites on 1,2,3-triazole enable an asymmetric "side-on" adsorption mode of O2 , favoring the reduction of O2 molecules and desorption of OOH* intermediate. By virtue of the unique ligand effect, the ZnCo-MTF exhibits a 2e- ORR selectivity of ≈100 %, onset potential of 0.614 V and H2 O2 production rate of 5.55 mol gcat -1 h-1 , superior to the state-of-the-art zeolite imidazole frameworks. Our work paves the way for the design of 2e- ORR electrocatalysts with desirable coordination and electronic structure.
Collapse
Affiliation(s)
- Zi-Meng Li
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
| | - Chao-Qi Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Chao Liu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Hong-Wei Zhang
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Zhi-Qiang Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guang-Feng Wei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Xiao-Jun Bao
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| | - Cheng-Zhong Yu
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Pei Yuan
- College of Chemical Engineering, National Engineering Research Center of Chemical Fertilizer Catalyst, Fuzhou University, Fuzhou, 350002, China
- Qingyuan Innovation Laboratory, Quanzhou, 362801, China
| |
Collapse
|
48
|
Sun Y, Fan W, Li Y, Sui NLD, Zhu Z, Zhou Y, Lee JM. Tuning Coordination Structures of Zn Sites Through Symmetry-Breaking Accelerates Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306687. [PMID: 37649133 DOI: 10.1002/adma.202306687] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/19/2023] [Indexed: 09/01/2023]
Abstract
Manipulating the coordination environment of individual active sites in a precise manner remains an important challenge in electrocatalytic reactions. Herein, inspired by theoretical predictions, a facile procedure to synthesize a series of symmetry-breaking zinc metal-organic framework (Zn-MOF) catalysts with well-defined structures is presented. Benefiting from the optimized coordination microenvironment regulated by symmetry-breaking, Zn-N2 S2 -MOF exhibits the best performance of nitrogen (N2 ) reduction reaction (NRR) with NH3 yield rate of 25.07 ± 1.57 µg h-1 cm-2 and Faradaic efficiency of 44.57 ± 2.79% compared with reported Zn-based NRR catalysts. X-ray absorption near-edge structure shows that the symmetry-breaking distorts the coordination environment and modulates the delocalized electrons around the Zn sites, which favors the formation of unpaired low-valence Znδ+ , thereby facilitating the adsorption/activation of N2 . Theoretical calculations elucidate that low-valence Znδ+ in Zn-N2 S2 -MOF can effectively lower the energy barrier of potential determining step, promoting the kinetics and boosting the NRR activity. This work highlights the relationship between the precise coordination environment of metal sites and the catalytic activity, which offers insightful guidance for rationally designing high-efficiency electrocatalysts.
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Wenjun Fan
- Dalian National Laboratory for Clean Energy, State Key Laboratory of Catalysis, iChEM, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| | - Nicole L D Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute (NEWRI), Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore, 637141, Singapore
| | - Zhouhao Zhu
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Yingtang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
| |
Collapse
|
49
|
Yao S, Wang S, Liu Y, Hou Z, Wang J, Gao X, Sun Y, Fu W, Nie K, Xie J, Yang Z, Yan YM. High Flux and Stability of Cationic Intercalation in Transition-Metal Oxides: Unleashing the Potential of Mn t 2g Orbital via Enhanced π-Donation. J Am Chem Soc 2023. [PMID: 38039528 DOI: 10.1021/jacs.3c08264] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Transition-metal oxides (TMOs) often struggle with challenges related to low electronic conductivity and unsatisfactory cyclic stability toward cationic intercalation. In this work, we tackle these issues by exploring an innovative strategy: leveraging heightened π-donation to activate the t2g orbital, thereby enhancing both electron/ion conductivity and structural stability of TMOs. We engineered Ni-doped layered manganese dioxide (Ni-MnO2), which is characterized by a distinctive Ni-O-Mn bridging configuration. Remarkably, Ni-MnO2 presents an impressive capacitance of 317 F g-1 and exhibits a robust cyclic stability, maintaining 81.58% of its original capacity even after 20,000 cycles. Mechanism investigations reveal that the incorporation of Ni-O-Mn configurations stimulates a heightened π-donation effect, which is beneficial to the π-type orbital hybridization involving the O 2p and the t2g orbital of Mn, thereby accelerating charge-transfer kinetics and activating the redox capacity of the t2g orbital. Additionally, the charge redistribution from Ni to the t2g orbital of Mn effectively elevates the low-energy orbital level of Mn, thus mitigating the undesirable Jahn-Teller distortion. This results in a subsequent decrease in the electron occupancy of the π*-antibonding orbital, which promotes an overall enhancement in structural stability. Our findings pave the way for an innovative paradigm in the development of fast and stable electrode materials for intercalation energy storage by activating the low orbitals of the TM center from a molecular orbital perspective.
Collapse
Affiliation(s)
- Shuyun Yao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shiyu Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yuanming Liu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zishan Hou
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Jinrui Wang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Xueying Gao
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yanfei Sun
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Weijie Fu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Kaiqi Nie
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jiangzhou Xie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiyu Yang
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Yi-Ming Yan
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
50
|
Guo W, Zhang W, Han N, Xie S, Zhou Z, Monnens W, Martinez Mora O, Xue Z, Zhang X, Zhang X, Fransaer J. Electrosynthesis of Metal-Organic Framework Films with Well-Defined Facets. Chemistry 2023; 29:e202302338. [PMID: 37556185 DOI: 10.1002/chem.202302338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
The deposition of metal-organic framework (MOF) films with defined exposed facets is important to enhance the performance of these films for, for example, catalysis or separations. In this work, MOF films with specific exposed facets are electrodeposited anodically on various substrates (e. g. on copper-sputtered Si wafers, copper meshes, copper foams, and polypropylene membranes). The influence of the deposition parameters, including the pH of the solution, current density, concentration of linker, and solvent, on the exposed facets of the deposited MOFs was investigated. The results suggest that precise control over the supersaturation during anodic deposition is a possible strategy for synthesizing MOF crystals with well-defined exposed facets. This approach provides a powerful toolbox for various applications requiring crystal facet control of MOF films.
Collapse
Affiliation(s)
- Wei Guo
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Wei Zhang
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Ning Han
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Sijie Xie
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Zhenyu Zhou
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Wouter Monnens
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | | | - Zhenhong Xue
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Xueliang Zhang
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| | - Xuan Zhang
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
- ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Zhejiang University, Hangzhou, 311215, P.R. China
| | - Jan Fransaer
- Department of Materials Engineering, KU Leuven, Leuven, 3001, Belgium
| |
Collapse
|