1
|
Song Y, Zhu C, Gong Z, Kang X, Liu Q, Liu Y, Ji M, Uji-I H, Huang W, Lu G. Improving the Activity of Platinum Nanoparticles in Electrocatalytic Oxidation of Formic Acid via the Surface Grafting of Thiol or Thiophenol Molecules. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40421574 DOI: 10.1021/acsami.5c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Electrocatalytic oxidation of organic molecules, in particular the formic acid oxidation reaction (FAOR), is crucial for applications such as direct liquid fuel cells. As one of the effective catalysts, platinum (Pt) has been widely used as the electrocatalyst for these reactions in the laboratory; however, its utilization in practical FAOR is still limited due to insufficient activity. This study introduces a simple and rapid molecular modification method to improve the FAOR performance of Pt by chemically adsorbing thiol or thiophenol molecules. At an optimal surface coverage of 7.1%, the current density of FAOR on cysteamine-grafted Pt reached up to 24.76 mA cm-2, a 7.2-fold increase compared to that on pristine Pt. This increase is mainly attributed to the change in the electronic structure of the Pt surface and the charge transfer at the interface, which are induced by the cysteamine molecules. X-ray photoelectron spectroscopy and in situ Raman spectroscopy demonstrated that the adsorption of cysteamine molecules on the Pt surface improves the charge transfer on the Pt surface and the production of formic acid via the formate pathway. The mechanism of enhanced catalysis on Pt-Cysteamine is revealed by density functional theory calculations. Interestingly, various thiols and thiophenols were also proved to be effective in promoting the FAOR reaction, and this strategy could also be applied to improve the performance of many other reactions (such as, methanol oxidation reaction).
Collapse
Affiliation(s)
- Yaxin Song
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Chengcheng Zhu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhongyan Gong
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Xing Kang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Qinghua Liu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaning Liu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Miao Ji
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Hiroshi Uji-I
- Research Institute for Electronic Science (RIES), Hokkaido University, N20 W10, Sapporo, Hokkaido 001-0020, Japan
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Wei Huang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics, and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, P. R. China
| | - Gang Lu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, and Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Yu Y, Han J, Li H, Diao H, Shi Y, Jin G, Li H, Bagliuk GA, Wang L, Lai J. CuPt Alloy Enabling the Tandem Catalysis for Reduction of HCOOH and NO 3 - to Urea at High Current Density. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419738. [PMID: 39981805 DOI: 10.1002/adma.202419738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/08/2025] [Indexed: 02/22/2025]
Abstract
The formation of urea by electrocatalytic reduction of C1-reactants and NO3 - is an attractive way to store renewable electricity, close the carbon cycle, and eliminate nitrate contaminants from wastewater. Involving insufficient supply of C1 reactants and multiple electron transfers makes the reaction difficult to achieve high Faraday efficiency and high yield at high current density. Here, a urea synthesis approach is presented via electrocatalytic reductive coupling between liquid HCOOH and NO3 - on copper foam (CF) loaded Cu4Pt catalyst with optimized ratios. A urea yield of 40.08 mg h-1 cm-2 is achieved with FE up to 58.1% at a current density of -502.3 mA cm-2, superior to the productivity of previously reported catalysts. No degradation is observed over 120-h continuous operation at such a high yield rate. The highly efficient activity of Cu4Pt/CF can be attributed to the synergetic effect between Pt and Cu sites via tandem catalysis, in which the doped Pt sites enrich liquid HCOOH reactants, promote HCOOH intermolecular dehydration, and form and adsorb large amounts of *CO key intermediates. The Cu sites can generate large quantities of the key intermediate *NH2. The Cu4Pt/CF adsorbed intermediates *CO and *NH2 are the basis for subsequent thermodynamic spontaneous C─N coupling.
Collapse
Affiliation(s)
- Yaodong Yu
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jiani Han
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Shandong Engineering Research Center for Marine Environment Corrosion and Safety Protection, College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Haoran Li
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongyue Diao
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yue Shi
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guangzhe Jin
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Hongdong Li
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - G A Bagliuk
- Frantsevich Institute for Problems of Materials Science National Academy of Sciences of Ukraine Kyiv, Kyiv, 02000, Ukraine
| | - Lei Wang
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jianping Lai
- State Key Laboratory Base of Eco-Chemical Engineering, Ministry of Education, International Science and Technology Cooperation Base of Eco-chemical Engineering and Green Manufacturing, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
3
|
Xiao L, Jia D, Chen C, Liu T, Zhang X, Huang Q, Ubaidullah M, Sun Y, Huang S, Pu Z. Rare-earth oxide promoted Pd electrocatalyst for formic acid oxidation. Dalton Trans 2025; 54:3478-3485. [PMID: 39869171 DOI: 10.1039/d4dt03296a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The development of Pd-based materials with high activity and long-term stability is crucial for their practical applications as an anode catalyst in direct formic acid fuel cells. Herein, we reveal that the catalytic activity of Pd towards formic acid oxidation can be enhanced by incorporation of a series of rare-earth oxides, including Sc2O3, CeO2, La2O3, and Pr2O3. For example, Pd nanoparticles incorporated with Sc2O3 supported on nitrogen-doped reduced graphene oxide (Pd-Sc2O3/N-rGO-x, x = 1/3, 1/2, 2/3, 1, and 3/2; "x" denotes the molar ratio of Pd : Sc) can be obtained using a sodium borohydride reduction method. When directly used as an electrocatalyst towards formic acid oxidation (FAO), Pd-Sc2O3/N-rGO-2/3 exhibits the highest mass current density of 972.9 mA mgPd-1, surpassing that of the reference catalysts Pd/C (262.6 mA mgPd-1) and Pd/N-rGO (304.9 mA mgPd-1). More importantly, the Pd-Sc2O3/N-rGO-2/3 catalyst demonstrates high CO tolerance and long-term stability in the FAO reaction. The improved electrooxidation activity and stability could be attributed to the synergistic effect between Sc2O3 and Pd nanoparticles. Therefore, this study presents a crucial contribution to the advancement of various rare-earth oxides in enhancing Pd activity towards FAO and beyond.
Collapse
Affiliation(s)
- Lusheng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Danqi Jia
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Chen Chen
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Tingting Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Xiaofeng Zhang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Qiufeng Huang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| | - Mohd Ubaidullah
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Yuzhi Sun
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Shengyun Huang
- Ganjiang Innovation Academy, Key Laboratory of Rare Earths, Chinese Academy of Sciences, Ganzhou 341000, P. R. China.
| | - Zonghua Pu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry & Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, P. R. China.
| |
Collapse
|
4
|
Li Y, Yao MS, He Y, Du S. Recent Advances of Electrocatalysts and Electrodes for Direct Formic Acid Fuel Cells: from Nano to Meter Scale Challenges. NANO-MICRO LETTERS 2025; 17:148. [PMID: 39960581 PMCID: PMC11832879 DOI: 10.1007/s40820-025-01648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/25/2024] [Indexed: 02/20/2025]
Abstract
Direct formic acid fuel cells are promising energy devices with advantages of low working temperature and high safety in fuel storage and transport. They have been expected to be a future power source for portable electronic devices. The technology has been developed rapidly to overcome the high cost and low power performance that hinder its practical application, which mainly originated from the slow reaction kinetics of the formic acid oxidation and complex mass transfer within the fuel cell electrodes. Here, we provide a comprehensive review of the progress around this technology, in particular for addressing multiscale challenges from catalytic mechanism understanding at the atomic scale, to catalyst design at the nanoscale, electrode structure at the micro scale and design at the millimeter scale, and finally to device fabrication at the meter scale. The gap between the highly active electrocatalysts and the poor electrode performance in practical devices is highlighted. Finally, perspectives and opportunities are proposed to potentially bridge this gap for further development of this technology.
Collapse
Affiliation(s)
- Yang Li
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Ming-Shui Yao
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK
- State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
- University of the Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanping He
- School of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650504, People's Republic of China.
| | - Shangfeng Du
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
5
|
Hu S, Gong J, Tao Y, Ma R, Guan J, Liu X, Hu J, Yan J, Wang S, Zhang Z, Liang X, Zhuang Z, Han Y, Zheng X, Yan W, Chen C, Zhu W, Wang D, Xiong Y. Coordination-in-pipe engineering of Pt-based intermetallic compounds with nanometer to angstrom precision. Chem Sci 2025:d4sc07905a. [PMID: 39911330 PMCID: PMC11791777 DOI: 10.1039/d4sc07905a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
The simultaneous regulation of particle size, surface coordinated environment and composition for Pt-based intermetallic compound (Pt-IMC) nanoparticles to manipulate their reactivity for energy storage is of great importance. Herein, we report a general synthetic method for Pt-IMCs using SBA-15 for coordination-in-pipe engineering. The particle size can be regulated to 3-9 nm by carrying out the coordination in pipes with different diameters and the coordination number of the interface metal atoms can be adjusted by altering the N source. Moreover, this strategy can also be expanded to the synthesis of Pt-IMCs with the majority of fourth period transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn). The Pt3Co IMC using 1,10-phenanthroline as the nitrogen source (Pt3Co@CN) shows the highest catalytic performance in the methanol oxidation reaction (MOR; 2.19 A mgPt -1) among the investigated nitrogen sources. The high chemical states of surface Pt and Co, affected by the nitrogen coordination number at the angstrom scale, facilitate electron accumulation on active sites, reduce the activation energy of the rate-determining step and enhance the catalytic performance of Pt-IMCs in the MOR.
Collapse
Affiliation(s)
- Shouyao Hu
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jiaxin Gong
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Yu Tao
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Runze Ma
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jianping Guan
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Xu Liu
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jinhua Hu
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Jun Yan
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| | - Shibin Wang
- College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310032 China
| | - Zedong Zhang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xiao Liang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University Beijing 100084 China
- Department of Chemical Engineering, Columbia University New York NY 10027 USA
| | - Yunhu Han
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University Xi'an 710072 China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 China
| | - Wensheng Yan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China Hefei 230029 China
| | - Chengjin Chen
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Wei Zhu
- State Key Lab of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology Beijing 100029 China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yu Xiong
- Department of Chemistry and Chemical Engineering, Central South University Changsha 410083 China
| |
Collapse
|
6
|
Chen X, Feng S, Yan J, Zou Y, Wang L, Qiao J, Liu Y. In 2O 3/Bi 2O 3 interface induces ultra-stable carbon dioxide electroreduction on heterogeneous InBiO x catalyst. J Colloid Interface Sci 2025; 678:757-766. [PMID: 39217691 DOI: 10.1016/j.jcis.2024.08.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The electrochemical reduction of CO2 (ERCO2) has emerged as one of the most promising methods for achieving both renewable energy storage and CO2 recovery. However, achieving both high selectivity and stability of catalysts remains a significant challenge. To address this challenge, this study investigated the selective synthesis of formate via ERCO2 at the interface of In2O3 and Bi2O3 in the InBiO6 composite material. Moreover, InBiO6 was synthesized using indium-based metal-organic frameworks as precursor, which underwent continuous processing through ion exchange and thermal reduction. The results revealed that the formate Faradaic efficiency (FEformate) of InBiO6 reached nearly 100 % at -0.86 V vs. reversible hydrogen electrode (RHE) and remained above 90 % after continuous 317-h electrolysis, which exceeded those of previously reported indium-based catalysts. Additionally, the InBiO6 composite material exhibited an FEformate exceeding 80 % across a wide potential range of 500 mV from -0.76 to -1.26 V vs. RHE. Density-functional theory analysis confirmed that the heterogeneous interface of InBiO6 played a role in achieving optimal free energies for *OCHO on its surface. Furthermore, the addition of Bi to the InBiO6 matrix facilitated electron transfer and altered the electronic structure of In2O3, thereby enhancing the adsorption, decomposition, and formate production of *OCHO.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Shuoshuo Feng
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Jiaying Yan
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Yanhong Zou
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Linlin Wang
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China
| | - Jinli Qiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Environmental Science and Engineering, Donghua University, 2999 Ren'min North Road, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuyu Liu
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Baoshan District, Shanghai 200444, China.
| |
Collapse
|
7
|
Yang H, Li C, Lü L, Li Z, Zhang S, Huang Z, Ma R, Liu S, Ge M, Zhou W, Yuan X. Electronegativity- induced cobalt-doped platinum hollow nanospheres with high CO tolerance for efficient methanol oxidation reaction. J Colloid Interface Sci 2025; 678:300-308. [PMID: 39298982 DOI: 10.1016/j.jcis.2024.09.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Although Platinum (Pt)-based alloys have garnered significant interest within the realm of direct methanol fuel cells (DMFCs), there still exists a notable dearth in the exploration of the catalytic behavior of the liquid fuels on well-defined active sites and unavoidable Pt poisoning because of the adsorbed CO species (COads). Here, we propose an electronegativity-induced electronic redistribution strategy to optimize the adsorption of crucial intermediates for the methanol oxidation reaction (MOR) by introducing the Co element to form the PtCo alloys. The optimal PtCo hollow nanospheres (HNSs) exhibit excellent high-quality activity of 3.27 A mgPt-1, which is 11.6 times and 13.1 times higher than that of Pt/C and pure Pt, respectively. The in-situ Fourier transform infrared reflection spectroscopy validates that electron redistribution could weak CO adsorption, and subsequently decrease the CO poisoning adjacent the Pt active sites. Theoretical simulations result show that the introduction of Co optimize surface electronic structure and reduce the d-band center of Pt, thus optimized the adsorption behavior of COads. This study not only employs a straightforward method for the preparation of Pt-based alloys but also delineates a pathway toward designing advanced active sites for MOR via electronegativity-induced electronic redistribution.
Collapse
Affiliation(s)
- Hu Yang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China; State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Linzhe Lü
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhuogen Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shiqi Zhang
- School of Mechanical Engineering, Nantong University, Nantong 226019, China.
| | - Zheng Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Rui Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sisi Liu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Wei Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, China; Suzhou Laboratory, Suzhou 215000, China.
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
8
|
Ni C, Wang K, Jin L, Liu Y, Chen J, Yang L, Ji C, Xu H, Li Z, Tian L. Built-in electric field guides oxygen evolution electrocatalyst reconstruction. Chem Commun (Camb) 2025; 61:658-668. [PMID: 39641669 DOI: 10.1039/d4cc04740k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Creating a built-in electric field (BIEF) in catalysts represents an effective strategy to promote electron transfer and induce asymmetric charge distribution, thereby facilitating surface dynamic reconstruction under oxygen evolution reaction (OER) conditions. This review summarizes recent advancements in the field of OER electrocatalysts, with a focus on regulating the work function of components to tailor the BIEFs to guide surface reconstruction processes. It also discusses the importance of surface reconstruction in improving electrocatalytic performance and the influence of BIEFs on the reconstruction of catalysts. By analyzing various strategies for manipulating electric fields for guiding surface reconstruction of OER electrocatalysts, along with numerous representative examples, this review highlights how these techniques can enhance catalytic activity and stability. The findings underscore the potential of engineered BIEFs as a powerful tool in the design of next-generation electrocatalysts, paving the way for more efficient energy conversion technologies.
Collapse
Affiliation(s)
- Chunmei Ni
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Kun Wang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lei Jin
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Yang Liu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Jie Chen
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Lida Yang
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Chanyuan Ji
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Hui Xu
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| | - Zhao Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou, 221018, P. R. China
| | - Lin Tian
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou, Jiangsu Province 213164, China.
| |
Collapse
|
9
|
Lin X, Geng S, Du X, Wang F, Zhang X, Xiao F, Xiao Z, Wang Y, Cheng J, Zheng Z, Huang X, Bu L. Efficient direct formic acid electrocatalysis enabled by rare earth-doped platinum-tellurium heterostructures. Nat Commun 2025; 16:147. [PMID: 39747847 PMCID: PMC11696842 DOI: 10.1038/s41467-024-55612-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
The lack of high-efficiency platinum (Pt)-based nanomaterials remains a formidable and exigent challenge in achieving high formic acid oxidation reaction (FAOR) and membrane electrode assembly (MEA) catalysis for direct formic acid fuel cell (DFAFC) technology. Herein, we report 16 Pt-based heterophase nanotrepang with rare earth (RE)-doped face-centered cubic Pt (fcc-Pt) and trigonal Pt-tellurium (t-PtTe2) configurations ((RE-Pt)-PtTe2 HPNT). Yttrium (Y) is identified as the optimal dopant, existing as single sites and clusters on the surface. The (Y-Pt)-PtTe2 HPNT/C demonstrates the superior mass and specific activities of 6.4 A mgPt-1 and 5.4 mA cm-2, outperforming commercial Pt/C by factors of 49.2 and 25.7, respectively. Additionally, it achieves a normalized MEA power density of 485.9 W gPt-1, tripling that of Pt/C. Density functional theory calculations further reveal that Y doping enhances HCOO* intermediate adsorption and suppresses CO intermediate formation, thereby promoting FAOR kinetics. This work highlights the role of RE metals in heterostructure regulation of Pt-based anodic nanomaterials for achieving the efficient direct formic acid electrocatalysis.
Collapse
Affiliation(s)
- Xin Lin
- College of Energy, Xiamen University, Xiamen, China
| | - Shize Geng
- College of Energy, Xiamen University, Xiamen, China
| | - Xianglong Du
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Feiteng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xu Zhang
- College of Energy, Xiamen University, Xiamen, China
| | - Fang Xiao
- College of Energy, Xiamen University, Xiamen, China
| | - Zhengyi Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Yucheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | | | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen, China.
| |
Collapse
|
10
|
Tan X, Wang J, Xiao Y, Guo Y, He W, Du B, Cui H, Wang C. Engineering Topological and Chemical Disorder in Pd Sites for Record-Breaking Formic Acid Electrocatalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414283. [PMID: 39535834 DOI: 10.1002/adma.202414283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Designing palladium-based formic acid oxidation reaction (FAOR) catalysts to achieve significant breakthroughs in catalytic activity, pathway selectivity, and toxicity resistance is both urgent and challenging. Here, these challenges are addressed by pioneering a novel catalyst design that incorporates both topological and chemical disorder, developing a new class of PdCuLaYMnW high-entropy amorphous alloys with a porous network (Net-Pd-HEAA) as a highly active, selective, and stable FAOR electrocatalyst. This novel Net-Pd-HEAA demonstrates record-breaking FAOR performance, achieving the mass and specific activities of 5.94 A mgPd -1 and 8.94 mA cm-2, respectively, surpassing all previously reported Pd-based catalysts and showing strong competitiveness against advanced Pt-based catalysts. Simulataneously, Net-Pd-HEAA exhibits extraordinary stability in accelerated durability tests (ADT) and chronoamperometry (CA) tests. Advanced characterization and in situ, spectral analysis reveal that the extremely disordered atomic structure effectively regulates the geometric and electronic structure of the Pd sites, enhancing active intermediate coverage, facilitating dehydrogenation pathway, and inhibiting the production/adsorption of CO. Furthermore, when employed as the anode catalyst in proton exchange membrane water electrolysis (PEMWE), Net-Pd-HEAA only requires a potential of 1.28 V to obtain a current density of 1 A cm-2, and operates stably in a highly corrosive electrolyte for over 100 h.
Collapse
Affiliation(s)
- Xiaohong Tan
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jiarui Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yuhang Xiao
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yingying Guo
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Weidong He
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Binjie Du
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Cui
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chengxin Wang
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
11
|
Zhang S, Liu S, Luo J, Gu Y, Liu X, Liu F, Tan P, Pan J. Highly-Branched PtCu Nanocrystals with Low-Coordination for Enhanced Oxygen Reduction Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407869. [PMID: 39363644 DOI: 10.1002/smll.202407869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Low-coordination platinum-based nanocrystals emanate great potential for catalyzing the oxygen reduction reactions (ORR) in fuel cells, but are not widely applied owing to poor structural stability. Here, several PtCu nanocrystals (PtCu NCs) with low coordination numbers were prepared via a facile one-step method, while the desirable catalyst structures were easily obtained by adjusting the reaction parameters. Wherein, the Pt1Cu1 NCs catalyst with abundant twin boundaries and high-index facets displays 15.25 times mass activity (1.647 A mgPt -1 at 0.9 VRHE) of Pt/C owing to the abundant effective active sites, low-coordination numbers and appropriate compressive strain. More importantly, the core-shell and highly developed dendritic structures in Pt1Cu1 NCs catalyst give it an extremely high stability with only 17.2% attenuation of mass activity while 61.1% for Pt/C after the durability tests (30 000 cycles). In H2-O2 fuel cells, Pt1Cu1 NCs cathode also exhibits a higher peak power density and a longer-term lifetime than Pt/C cathode. Moreover, theoretical calculations imply that the weaker adsorption of intermediate products and the lower formation energy barrier of OOH* in Pt1Cu1 NCs collaboratively boost the ORR process. This work offers a morphology tuning approach to prepare and stabilize the low-coordination platinum-based nanocrystals for efficient and stable ORR.
Collapse
Affiliation(s)
- Shaohui Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Suying Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Juan Luo
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Yuke Gu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Xuanzhi Liu
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Feng Liu
- Yunnan Precious Metals Lab Co., Ltd., Kunming, Yunnan, 650106, China
| | - Pengfei Tan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| | - Jun Pan
- State Key Laboratory of Powder Metallurgy, Central South University, 932 Lushan Road, Changsha, 410083, P. R. China
| |
Collapse
|
12
|
Jiang S, Xue J, Liu T, Huang H, Xu A, Liu D, Luo Q, Bao J, Liu X, Ding T, Jiang Z, Yao T. Visualization of the Distance-Dependent Synergistic Interaction in Heterogeneous Dual-Site Catalysis. J Am Chem Soc 2024; 146:29084-29093. [PMID: 39394051 DOI: 10.1021/jacs.4c10613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
Understanding the characteristics of interfacial hydroxyl (OH) at the solid/liquid electrochemical interface is crucial for deciphering synergistic catalysis. However, it remains challenging to elucidate the influences of spatial distance between interfacial OH and neighboring reactants on reaction kinetics at the atomic level. Herein, we visualize the distance-dependent synergistic interaction in heterogeneous dual-site catalysis by using ex-situ infrared nanospectroscopy and in situ infrared spectroscopy techniques. These spectroscopic techniques achieve direct identification of the spatial distribution of synergistic species and reveal that OH facilitates the reactant deprotonation process depending on site distances in dual-site catalysts. Via modulating Ir-Co pair distances, we find that the dynamic equilibrium between generation and consumption of OH accounts for high-efficiency synergism at the optimized distance of 7.9 Å. At farther or shorter distances, spatial inaccessibility and resistance of OH with intermediates lead to OH accumulation, thereby diminishing the synergistic effect. Hence, a volcano-shaped curve has been established between the spatial distance and mass activity using formic acid oxidation as the probe reaction. This notion could also be extended to oxophilic metals, like Ir-Ru pairs, where volcano curves and dynamic equilibrium further evidence the universal significance of spatial distances.
Collapse
Affiliation(s)
- Shuaiwei Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Jiawei Xue
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Hui Huang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Airong Xu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Dong Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Qiquan Luo
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P.R. China
| | - Jun Bao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Xiaokang Liu
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Ding
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Zheng Jiang
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| | - Tao Yao
- School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China
| |
Collapse
|
13
|
Zhan C, Sun H, Yan W, Xia J, Meng XM, Li T, Bu L, Kong Q, Lin H, Liu W, Huang X, Chen N. A Biphasic Strategy to Synergistically Accelerate Activation and CO Spillover in Formic Acid Oxidation Catalysis. NANO LETTERS 2024; 24:8134-8142. [PMID: 38900138 DOI: 10.1021/acs.nanolett.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Developing highly efficient and carbon monoxide (CO)-tolerant platinum (Pt) catalysts for the formic acid oxidation reaction (FAOR) is vital for direct formic acid fuel cells (DFAFCs), yet it is challenging due to the high energy barrier of direct intermediates (HCOO* and COOH*) as well as the CO poisoning issues associated with Pt alloy catalysts. Here we present a versatile biphasic strategy by creating a hexagonal/cubic crystalline-phase-synergistic PtPb/C (h/c-PtPb/C) catalyst to tackle the aforementioned issues. Detailed investigations reveal that h/c-PtPb/C can simultaneously facilitate the adsorption of direct intermediates while inhibiting CO adsorption, thereby significantly improving the activation and CO spillover. As a result, h/c-PtPb/C showcases an outstanding FAOR activity of 8.1 A mgPt-1, which is 64.5 times higher than that of commercial Pt/C and significantly surpasses monophasic PtPb. Moreover, the h/c-PtPb/C-based membrane electrode assembly exhibits an exceptional peak power density of 258.7 mW cm-2 for practical DFAFC applications.
Collapse
Affiliation(s)
- Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Haoran Sun
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Wei Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing Xia
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiang-Min Meng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Tongtong Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Qingyu Kong
- Synchrotron Soleil, L'Orme des Merisiers, St-Aubin, 91192 Gif-sur-Yvette Cedex, France
| | - Haixin Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Wei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Nanjun Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
14
|
Liu L, Jin L, Xiao Z, Fang N, Lin X, Ji Y, Wang Y, Li Y, Huang X, Bu L. Heterostructured Pt-PbS Nanobelt Achieves Remarkable Direct Formic Acid Oxidation Catalysis. NANO LETTERS 2024; 24:8162-8170. [PMID: 38904300 DOI: 10.1021/acs.nanolett.4c02133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Developing efficient and CO-tolerant platinum (Pt)-based anodic catalysts is challenging for a direct formic acid fuel cell (DFAFC). Herein, we report heterostructured Pt-lead-sulfur (PtPbS)-based nanomaterials with gradual phase regulation as efficient formic acid oxidation reaction (FAOR) catalysts. The optimized Pt-PbS nanobelts (Pt-PbS NBs/C) display the mass and specific activities of 5.90 A mgPt-1 and 21.4 mA cm-2, 2.2/1.2, 1.5/1.1, and 36.9/79.3 times greater than those of PtPb-PbS NBs/C, Pt-PbSO4 NBs/C, and commercial Pt/C, respectively. Simultaneously, it exhibits a higher membrane electrode assembly (MEA) power density (183.5 mW cm-2) than commercial Pt/C (40.3 mW cm-2). This MEA stably operates at 0.4 V for 25 h, demonstrating a competitive potential of device application. The distinctive heterostructure endows the Pt-PbS NBs/C with optimized dehydrogenation steps and resisting the CO poisoning, thus presenting the remarkable FAOR performance. This work paves an effective avenue for creating high-performance anodic catalysts for fuel cells and beyond.
Collapse
Affiliation(s)
- Liangbin Liu
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lujie Jin
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Zhengyi Xiao
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Nan Fang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xin Lin
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Yujin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Yucheng Wang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
| | - Xiaoqing Huang
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| |
Collapse
|
15
|
Wang H, Kang X, Han B. Electrocatalysis in deep eutectic solvents: from fundamental properties to applications. Chem Sci 2024; 15:9949-9976. [PMID: 38966383 PMCID: PMC11220594 DOI: 10.1039/d4sc02318h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Electrocatalysis stands out as a promising avenue for synthesizing high-value products with minimal environmental footprint, aligning with the imperative for sustainable energy solutions. Deep eutectic solvents (DESs), renowned for their eco-friendly, safe, and cost-effective nature, present myriad advantages, including extensive opportunities for material innovation and utilization as reaction media in electrocatalysis. This review initiates with an exposition on the distinctive features of DESs, progressing to explore their applications as solvents in electrocatalyst synthesis and electrocatalysis. Additionally, it offers an insightful analysis of the challenges and prospects inherent in electrocatalysis within DESs. By delving into these aspects comprehensively, this review aims to furnish a nuanced understanding of DESs, thus broadening their horizons in the realm of electrocatalysis and facilitating their expanded application.
Collapse
Affiliation(s)
- Hengan Wang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Xinchen Kang
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Centre for Excellence in Molecular Sciences, Centre for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemistry, University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
16
|
Lv Y, Liu P, Xue R, Guo Q, Ye J, Gao D, Jiang G, Zhao S, Xie L, Ren Y, Zhang P, Wang Y, Qin Y. Cascaded p-d Orbital Hybridization Interaction in Ultrathin High-Entropy Alloy Nanowires Boosts Complete Non-CO Pathway of Methanol Oxidation Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309813. [PMID: 38482730 PMCID: PMC11109631 DOI: 10.1002/advs.202309813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Indexed: 05/23/2024]
Abstract
Designing high efficiency platinum (Pt)-based catalysts for methanol oxidation reaction (MOR) with high "non-CO" pathway selectivity is strongly desired and remains a grand challenge. Herein, PtRuNiCoFeGaPbW HEA ultrathin nanowires (HEA-8 UNWs) are synthesized, featuring unique cascaded p-d orbital hybridization interaction by inducing dual p-block metals (Ga and Pb). In comparison with Pt/C, HEA-8 UNWs exhibit 15.0- and 4.2-times promotion of specific and mass activity for MOR. More importantly, electrochemical in situ FITR spectroscopy reveals that the production/adsorption of CO (CO*) intermediate is effectively avoided on HEA-8 UNWs, leading to the complete "non-CO" pathway for MOR. Theoretical calculations demonstrate the optimized electronic structure of HEA-8 UNWs can facilitates a lower energy barrier for the "non-CO" pathway in the MOR.
Collapse
Affiliation(s)
- Yipin Lv
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Pei Liu
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Ruixin Xue
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Qiudi Guo
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Jinyu Ye
- College of Chemistry and Chemical EngineeringXiamen University XiamenFujian361005P. R. China
| | - Daowei Gao
- School of Chemistry and Chemical EngineeringUniversity of JinanJinan250022P. R. China
| | - Guangce Jiang
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Shiju Zhao
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Lixia Xie
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Yunlai Ren
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| | - Pengfang Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell TechnologyLiaocheng UniversityLiaocheng252000P. R. China
| | - Yao Wang
- Key Laboratory of Synthetic and Biological ColloidsMinistry of EducationSchool of Chemical and Material EngineeringInternational Joint Research Center for Photoresponsive Molecules and MaterialsJiangnan UniversityWuxi214122P. R. China
| | - Yuchen Qin
- College of sciencesHenan Agricultural UniversityZhengzhouHenan450000P. R. China
| |
Collapse
|
17
|
Guo Z, Yu Y, Li C, Campos Dos Santos E, Wang T, Li H, Xu J, Liu C, Li H. Deciphering Structure-Activity Relationship Towards CO 2 Electroreduction over SnO 2 by A Standard Research Paradigm. Angew Chem Int Ed Engl 2024; 63:e202319913. [PMID: 38284290 DOI: 10.1002/anie.202319913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/28/2024] [Indexed: 01/30/2024]
Abstract
Authentic surface structures under reaction conditions determine the activity and selectivity of electrocatalysts, therefore, the knowledge of the structure-activity relationship can facilitate the design of efficient catalyst structures for specific reactivity requirements. However, understanding the relationship between a more realistic active surface and its performance is challenging due to the complicated interface microenvironment in electrocatalysis. Herein, we proposed a standard research paradigm to effectively decipher the structure-activity relationship in electrocatalysis, which is exemplified in the CO2 electroreduction over SnO2 . The proposed practice has aided in discovering authentic/resting surface states (Sn layer) of SnO2 accountable for the electrochemical CO2 reduction reaction (CO2 RR) performance under electrocatalytic conditions, which then is corroborated in the subsequent CO2 RR experiments over SnO2 with different morphologies (nanorods, nanoparticles, and nanosheets) in combination with in situ characterizations. This proposed methodology is further extended to the SnO electrocatalysts, providing helpful insights into catalytic structures. It is believed that our proposed standard research paradigm is also applicable to other electrocatalytic systems, in the meantime, decreases the discrepancy between theory and experiments, and accelerates the design of catalyst structures that achieve sustainable performance for energy conversion.
Collapse
Affiliation(s)
- Zhongyuan Guo
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Yihong Yu
- Key Lab for Anisotropy and Texture of Materials, School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Congcong Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Egon Campos Dos Santos
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Huihui Li
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuangwei Liu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| |
Collapse
|
18
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
19
|
Li L, Ye X, Xiao Q, Zhu Q, Hu Y, Han M. Nanostructure engineering of Pt/Pd-based oxygen reduction reaction electrocatalysts. Phys Chem Chem Phys 2023; 25:30172-30187. [PMID: 37930248 DOI: 10.1039/d3cp03522k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Increasing the atomic utilization of Pt and Pd elements is the key to the advancement and broad dissemination of fuel cells. Central to this task is the design and fabrication of highly active and stable Pt- or Pd-based electrocatalysts for the oxygen reduction reaction (ORR), which requires a comprehensive understanding of the ORR pathways and mechanism. Past endeavors have accumulated a wealth of knowledge about the Pt/Pd-based ORR electrocatalysts based on structure engineering, while a systematic review of the nanostructure engineering of Pt/Pd-based ORR electrocatalysts has been rarely reported. In this review, we provide a systematic discussion about the current status of Pt/Pd-based ORR electrocatalysts from the perspective of nanostructure engineering, and we highlight the ORR pathways, mechanisms and theories in order to understand the ORR in a more complex nanocatalyst. Particularly, the underlying structure-function relationship of Pt/Pd-based ORR electrocatalysts is specifically highlighted, which will guide the future synthesis of more efficient ORR electrocatalysts.
Collapse
Affiliation(s)
- Le Li
- Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Xintong Ye
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qi Xiao
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Qianyi Zhu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Ying Hu
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| | - Meijun Han
- Jiangsu Urban and Rural Construction Vocational College, Changzhou 213147, China
| |
Collapse
|
20
|
Hu X, An Z, Wang W, Lin X, Chan TS, Zhan C, Hu Z, Yang Z, Huang X, Bu L. Sub-Monolayer SbO x on PtPb/Pt Nanoplate Boosts Direct Formic Acid Oxidation Catalysis. J Am Chem Soc 2023; 145:19274-19282. [PMID: 37585588 DOI: 10.1021/jacs.3c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
To promote the commercialization of direct formic acid fuel cell (DFAFC), it is vital to explore new types of direct formic acid oxidation (FAOR) catalysts with high activity and direct pathway. Here, we report the synthesis of intermetallic platinum-lead/platinum nanoplates inlaid with sub-monolayer antimony oxide surface (PtPb/Pt@sub-SbOx NPs) for efficient catalytic applications in FAOR. Impressively, they can achieve the remarkable FAOR specific and mass activities of 28.7 mA cm-2 and 7.2 A mgPt-1, which are 151 and 60 times higher than those of the state-of-the-art commercial Pt/C, respectively. Furthermore, the X-ray photoelectron spectroscopy and X-ray absorption spectroscopy results collectively reveal the optimization of the local coordination environment by the surface sub-monolayer SbOx, along with the electron transfer from Pb and Sb to Pt, driving the predominant dehydrogenation process. The sub-monolayer SbOx on the surface can effectively attenuate the CO generation, largely improving the FAOR performance of PtPb/Pt@sub-SbOx NPs. This work develops a class of high-performance Pt-based anodic catalyst for DFAFC via constructing the unique intermetallic core/sub-monolayer shell structure.
Collapse
Affiliation(s)
- Xinrui Hu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhengchao An
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weizhen Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xin Lin
- College of Energy, Xiamen University, Xiamen 361102, China
| | - Ting-Shan Chan
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Changhong Zhan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zhiwei Hu
- College of Chemistry, Max Planck Institute for Chemical Physics of Solids, Nothnitzer Strasse 40, Dresden 01187, Germany
| | | | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingzheng Bu
- College of Energy, Xiamen University, Xiamen 361102, China
| |
Collapse
|