1
|
Zhou J, Zhan WW, Li Y, Gao XR, Zhang C, Sun D, Yang Y. Hydride-Richest Molecular Complex: Ligand-Length Facilitated Cu 40H 38 Nanoclusters Exhibiting High Catalytic Performance for Selective Hydrogenation. Angew Chem Int Ed Engl 2025:e202504671. [PMID: 40229917 DOI: 10.1002/anie.202504671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/14/2025] [Accepted: 04/14/2025] [Indexed: 04/16/2025]
Abstract
Copper hydride clusters are extensively studied for their significant potential catalysis. Although clusters with a high hydride content are particularly intriguing, they present considerable synthetic challenges. Herein, we report two copper hydride clusters, Cu18H16 and Cu40H38, which exhibit similar layered structures and components, albeit differing in size. The larger-sized Cu40H38 with more hydrides was achieved through ligand-length modulation by replacing 1,2-bis(diphenylphosphino)ethane (dppe) in the synthesis of Cu18H16 with 1,5-bis(diphenylphosphino)pentane (dpppe). Cu40H38 is remarkable for i) the highest number of hydrides among known molecular compounds, ii) the highest number of unligated copper atoms and the highest metal-to-ligand ratio in copper hydride clusters. Moreover, catalytic studies on the selective hydrogenation of α,β-unsaturated carbonyl compounds demonstrate that Cu40H38 is a promising catalyst and provide clear structural evidence that a less sterically hindered cluster surface, with a high metal-to-ligand ratio, is beneficial for high-performance catalysis. The findings highlight the importance of surface composition and ligand coverage in catalytic efficiency and offer new avenues for designing high-performance copper hydride cluster catalysts.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Chemistry, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| | - Wen-Wen Zhan
- Department of Chemistry, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| | - Yan Li
- Department of Chemistry, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| | - Xin-Rui Gao
- Department of Chemistry, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| | - Chengkai Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P.R. China
| | - Yang Yang
- Department of Chemistry, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, P.R. China
| |
Collapse
|
2
|
Pan P, Kang X, Zhu M. Preparation Methods of Metal Nanoclusters. Chemistry 2025; 31:e202404528. [PMID: 39985476 DOI: 10.1002/chem.202404528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 02/24/2025]
Abstract
Metal nanoclusters, also known as ultrasmall nanoparticles, represent a promising class of nanomaterials due to their atomically precise characterizations and intriguing chemical-physical properties. The preparation is the cornerstone for advancing the nanocluster science, facilitating their structural determination, property investigation, and practical application. We have been devoted to exploring new and efficient approaches for the high-yield preparation of metal nanoclusters with customized structures and properties. We have proposed and developed four methodologies for the nanocluster preparation, including kinetic control, seeded growth, in situ two-phase ligand exchange, and metal exchange. More than 200 metal nanoclusters have been synthesized and structurally determined, laying the foundation for the elucidation of structure evolutions and structure-property correlations. In this concept, we emphasized our progress in proposing and developing the synthetic mythologies of metal nanoclusters. This Concept hopefully provides researchers attempting to study the preparation methods of metal nanoclusters with several feasible synthetic routes.
Collapse
Affiliation(s)
- Peiyao Pan
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
3
|
Yang N, Kang Y, Liu J, Wang J, Zan Y, Zhao X, Wang X, Li L. Photothermal Miniemulsion Polymerization by Amphiphilic Gold Nanoclusters. Chem Asian J 2025; 20:e202401194. [PMID: 39714387 DOI: 10.1002/asia.202401194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/29/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Gold nanoclusters (AuNCs), which are approximately 2 nm in size, exhibit distinctive photophysical and catalytic properties, but their performance is often compromised by environmental factors. To mitigate these challenges, attempts have been made to incorporate AuNCs into polymer matrices to enhance their stability. Miniemulsion polymerization has proven to be an effective method for fabricating organic-inorganic composites. Here, we present a facile photothermal-assisted method for miniemulsion polymerization utilizing AuNCs, which serve as co-stabilizers of the emulsion and photothermal conversion agents. By grafting tryptamine onto hydrophilic AuNCs, the amphiphilic AuNCs were spontaneously adsorbed at the styrene/water interfaces, resulting in stable nanoemulsions. Taking advantage of the photothermal properties of surface-bounded AuNCs, rapid polymerization of styrene within the nanoemulsion was successfully initiated by external laser irradiation. The prepared nanocomposites inherited the photothermal activity of AuNCs and exhibited good photothermal stability and repeatability. This approach not only facilitates remote control of chemical reactions, but also optimizes the distribution of AuNCs within the final polymer matrix, thereby enabling the efficient synthesis of nanocomposites while exploiting the unique photofunctionality of AuNCs.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuetong Kang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiaren Liu
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiaxi Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yonghui Zan
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xuan Zhao
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Lidong Li
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|
4
|
Kaur R, Moutet J, Mills DD, Gianetti TL. Exploring the Synthesis and Properties of Fluorinated Cationic Triangulenes and Their Precursors. Chemistry 2025; 31:e202404135. [PMID: 39887758 DOI: 10.1002/chem.202404135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Fluorination of tris(2,6-dimethoxyphenyl)-methylium ((DMP)3C+) was achieved through the partial defluorination of the methyl 2,3,5,6-tetrafluorobenzoate via nucleophilic aromatic substitution. Using the fluorinated 2F((DMP)3C+) as a precursor, fluorinated tetramethoxy- and dimethoxyquin- acridinium salts (2F4 and 2F5 respectively) and trioxo-, azadioxo-, and diazaoxo- triangulenium salts (2F6, 2F7 and 2F8 respectively) were synthesized successfully in good to moderate yields. Fluorination induced significant red shifts in absorption (16 to 29 nm) and emission (13 to 41 nm) maxima, and increased electrophilicity as evidenced by lower reduction potentials. X-ray structural analysis showed distinct packing patterns compared to the non-fluorinated analogues, indicating the presence of molecular dipoles.
Collapse
Affiliation(s)
- Ramandeep Kaur
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85750, United States
| | - Jules Moutet
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85750, United States
| | - David D Mills
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85750, United States
| | - Thomas L Gianetti
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, 85750, United States
| |
Collapse
|
5
|
Kuang Y, Ni W, Liu H, Han J. Poly(p-Phenyleneethynylene)s-Based Sensor Array for Diagnosis of Clinical Diseases. ChemMedChem 2025; 20:e202400686. [PMID: 39581864 DOI: 10.1002/cmdc.202400686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Inspired by the mammalian taste and olfactory systems, array-based pattern recognition technology has demonstrated significant potential in discerning subtle differences between highly similar compounds and complex mixtures, owing to their unique parallel detection mechanism based on cross-reactive signals. While optical sensor array has been extensively employed in the field of chemical sensing, they encounter significant challenges in non-specific recognition of multiple analytes at low concentrations, particularly in rife environments with complex interferences. Poly(p-phenylene ethynylene)s (PPEs) offer substantial advantages in detecting multi-analytes at low concentrations, owing to its distinctive optical properties, including the "molecular wire" effect, fluorescence super-amplification and super-quenching. This is particularly promising for the parallel detection of ultra-low concentration multi-biomarkers in clinical diseases. As the continuous development of PPEs sensor array, more sensitive methods for rapid detection of clinical disease will be further developed. It will promote the further development of the field of early diagnosis of clinical diseases.
Collapse
Affiliation(s)
- Yongbin Kuang
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Weiwei Ni
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Han Liu
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| | - Jinsong Han
- State Key Laboratory of Natural Medicines, National R&D Center for Chinese Herbal Medicine Processing Department of Food Quality and Safety, College of Engineering, China Pharmaceutical University, Nanjing, 211109, China
| |
Collapse
|
6
|
Wang X, Zhong Y, Li T, Wang K, Dong W, Lu M, Zhang Y, Wu Z, Tang A, Bai X. Sequential addition of cations increases photoluminescence quantum yield of metal nanoclusters near unity. Nat Commun 2025; 16:587. [PMID: 39799142 PMCID: PMC11724975 DOI: 10.1038/s41467-025-55975-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 01/02/2025] [Indexed: 01/15/2025] Open
Abstract
Photoluminescence is one of the most intriguing properties of metal nanoclusters derived from their molecular-like electronic structure, however, achieving high photoluminescence quantum yield (PLQY) of metal core-dictated fluorescence remains a formidable challenge. Here, we report efficient suppression of the total structural vibrations and rotations, and management of the pathways and rates of the electron transfer dynamics to boost a near-unity absolute PLQY, by decorating progressive addition of cations. Specifically, with the sequential addition of Zn2+, Ag+, and Tb3+ into the 3-mercaptopropionic acids capped Au nanoclusters (NCs), the low-frequency vibration of the metal core progressively decreases from 144.0, 55.2 to 40.0 cm-1, and the coupling strength of electrons-high-frequency vibration related to surface motifs gradually diminishes from 40.2, 30.5 to 14.4 meV. Moreover, introducing cation additives significantly reduces electron transfer time from 40, 27 to 12 ps in the pathway from staple motifs to the metal core. This benefits from the shrinkage of the total structure that speeds up the shell-core electron transition, and in particular, the Tb3+ provides a hopping platform for the excited electrons as their intrinsic ladder-like energy level structure. As a result, it allows a remarkable enhancement in PLQY, from 51.2%, 83.4%, up to 99.5%.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China
| | - Yuan Zhong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China
| | - Tingting Li
- College of Materials Science and Engineering, Jilin Jianzhu University, Changchun, P. R. China
| | - Kunyu Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China
| | - Weinan Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China
| | - Min Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China
| | - Yu Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China
| | - Zhennan Wu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.
| | - Aiwei Tang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, P. R. China.
| | - Xue Bai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, P. R. China.
| |
Collapse
|
7
|
Fei W, Tang SY, Li MB. Luminescent metal nanoclusters and their application in bioimaging. NANOSCALE 2024; 16:19589-19605. [PMID: 39359125 DOI: 10.1039/d4nr03111c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Owing to their unique optical properties and atomically precise structures, metal nanoclusters (MNCs) constitute a new generation of optical probe materials. This mini-review provides a brief overview of luminescence mechanisms and modulation methods of luminescent metal nanoclusters in recent years. Based on these photophysical phenomena, the applications of cluster-based optical probes in optical bioimaging and related sensing, disease diagnosis, and treatment are summarized. Some challenges are also listed at the end.
Collapse
Affiliation(s)
- Wenwen Fei
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Sheng-Yan Tang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Man-Bo Li
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China.
| |
Collapse
|
8
|
Yadavalli HC, Kim Y, Jung IL, Park S, Kim TH, Shin JY, Nagda R, Thulstrup PW, Bjerrum MJ, Bhang YJ, Lee PH, Yang WH, Shah P, Yang SW. Energy Transfer Between i-Motif DNA Encapsulated Silver Nanoclusters and Fluorescein Amidite Efficiently Visualizes the Redox State of Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401629. [PMID: 38824675 DOI: 10.1002/smll.202401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Indexed: 06/04/2024]
Abstract
The redox regulation, maintaining a balance between oxidation and reduction in living cells, is vital for cellular homeostasis, intricate signaling networks, and appropriate responses to physiological and environmental cues. Here, a novel redox sensor, based on DNA-encapsulated silver nanoclusters (DNA/AgNCs) and well-defined chemical fluorophores, effectively illustrating cellular redox states in live cells is introduced. Among various i-motif DNAs, the photophysical property of poly-cytosines (C20)-encapsulated AgNCs that sense reactive oxygen species (ROS) is adopted. However, the sensitivity of C20/AgNCs is insufficient for evaluating ROS levels in live cells. To overcome this drawback, the ROS sensing mechanism of C20/AgNCs through gel electrophoresis, mass spectrometry, and small-angle X-ray scattering is primarily defined. Then, by tethering fluorescein amidite (FAM) and Cyanine 5 (Cy5) dyes to each end of the C20/AgNCs sensor, an Energy Transfer (ET) between AgNCs and FAM is achieved, resulting in intensified green fluorescence upon ROS detection. Taken together, the FAM-C20/AgNCs-Cy5 redox sensor enables dynamic visualization of intracellular redox states, yielding insights into oxidative stress-related processes in live cells.
Collapse
Affiliation(s)
- Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin Young Shin
- Department of Neurology, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Morten Jannik Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Yong Joo Bhang
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahak-ro Yeonsugu, Incheon, 21984, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pratik Shah
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Matus MF, Häkkinen H. Rational Design of Targeted Gold Nanoclusters with High Affinity to Integrin αvβ3 for Combination Cancer Therapy. Bioconjug Chem 2024. [PMID: 39008847 DOI: 10.1021/acs.bioconjchem.4c00248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The unique attributes of targeted nano-drug delivery systems (TNDDSs) over conventional cancer therapies in suppressing off-target effects make them one of the most promising options for cancer treatment. There is evidence that the density of surface-conjugated ligands is a crucial factor in achieving the desired therapeutic efficacy of TNDDSs, but this is hardly manageable in conventional nanomaterials. In this context, ligand-protected gold nanoclusters (AuNCs) are excellent candidates for developing new TNDDSs with a unique control on their surface functionalities, thus helping to achieve enhanced delivery performance. Here, we study the interactions and binding free energies between ten different functionalized Au144(SR)60 (SR = thiolate ligand) nanoclusters and integrin αvβ3 using molecular dynamics simulations and the umbrella sampling method to obtain the optimal formulations. The AuNCs were functionalized with anticancer drugs (5-fluorouracil or signaling pathways inhibitors, such as capivasertib, linifanib, tanespimycin, and taselisib) and integrin-targeting peptides (RGD4C or QS13), and we identified the optimal mixed ligand layer to enhance their binding affinity to the cancer cell receptor. The results showed that changing the proportions of the same type of ligands on the surface of AuNCs led to differences of up to 38 kcal/mol in computed binding free energies. RGD4C as the targeting peptide resulted in greater affinity for αvβ3, and in most formulations studied, a higher amount of drug than peptide was needed. Polar and charged residues, such as Ser123, Asp150, Tyr178, Arg214, and Asp251 were found to play a significant role in AuNC binding. Our simulations also revealed that Mn2+ cations are crucial for stabilizing the αvβ3-AuNC complex. These findings demonstrate the potential of carefully designing the surface composition of TNDDSs to optimize their target affinity and specificity.
Collapse
Affiliation(s)
| | - Hannu Häkkinen
- Department of Physics, University of Jyväskylä, FI-40014 Jyväskylä, Finland
- Department of Chemistry, Nanoscience Center, University of Jyväskylä, FI-40014 Jyväskylä, Finland
| |
Collapse
|
10
|
Zheng H, Zhou Y, Yan B, Zhou G, Cheng X, Lin S, Duan M, Li J, Wang L, Fan C, Chen J, Shen J. DNA Framework-Guided Self-Limiting Aggregation for Highly Luminescent Metal Cluster Nanoaggregates. J Am Chem Soc 2024; 146:17094-17102. [PMID: 38867462 DOI: 10.1021/jacs.4c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
The photoluminescent properties of atomically precise metal nanoclusters (MCs) have garnered significant attention in the fields of chemical sensing and biological imaging. However, the limited brightness of single-component nanoclusters hinders their practical applications, and the conventional ligand engineering approaches have proven insufficient in enhancing the emission efficiency of MCs. Here, we present a DNA framework-guided strategy to prepare highly luminescent metal cluster nanoaggregates. Our approach involves an amphiphilic DNA framework comprising a hydrophobic alkyl core and a rigid DNA framework shell, serving as a nucleation site and providing well-defined nanoconfinements for the self-limiting aggregation of MCs. Through this method, we successfully produced homogeneous MC nanoaggregates (10.1 ± 1.2 nm) with remarkable nanoscale precision. Notably, this strategy proves adaptable to various MCs, leading to a substantial enhancement in emission and quantum yield, up to 3011- and 87-fold, respectively. Furthermore, our investigation using total internal reflection fluorescence microscopy at the single-particle level uncovered a more uniform photon number distribution and higher photostability for MC nanoaggregates compared to template-free counterparts. This DNA-templating strategy introduces a conceptually innovative approach for studying the photoluminescent properties of aggregates with nanoscale precision and holds promise for constructing highly luminescent MC nanoparticles for diverse applications.
Collapse
Affiliation(s)
- Haoran Zheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bingjie Yan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Gaoang Zhou
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinyi Cheng
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sicheng Lin
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mulin Duan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Lihua Wang
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Chen
- Institute of Materiobiology, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Jianlei Shen
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
11
|
Li H, Wang T, Han J, Xu Y, Kang X, Li X, Zhu M. Fluorescence resonance energy transfer in atomically precise metal nanoclusters by cocrystallization-induced spatial confinement. Nat Commun 2024; 15:5351. [PMID: 38914548 PMCID: PMC11196639 DOI: 10.1038/s41467-024-49735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
Understanding the fluorescence resonance energy transfer (FRET) of metal nanoparticles at the atomic level has long been a challenge due to the lack of accurate systems with definite distance and orientation of molecules. Here we present the realization of achieving FRET between two atomically precise copper nanoclusters through cocrystallization-induced spatial confinement. In this study, we demonstrate the establishment of FRET in a cocrystallized Cu8(p-MBT)8(PPh3)4@Cu10(p-MBT)10(PPh3)4 system by exploiting the overlapping spectra between the excitation of the Cu10(p-MBT)10(PPh3)4 cluster and the emission of the Cu8(p-MBT)8(PPh3)4 cluster, combined with accurate control over the confined space between the two nanoclusters. Density functional theory is employed to provide deeper insights into the role of the distance and dipole orientations of molecules to illustrate the FRET procedure between two cluster molecules at the electronic structure level.
Collapse
Affiliation(s)
- Hao Li
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
- School of Materials and Chemical Engineering, Anhui Jianzhu University, 230601, Hefei, China
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA
| | - Jiaojiao Han
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Ying Xu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China
| | - Xi Kang
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, WA, 98195-1653, USA.
| | - Manzhou Zhu
- Department of Chemistry and Centre for Atomic Engineering of Advanced Materials, Anhui University, 230601, Hefei, China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, 230601, Hefei, China.
- Key Laboratory of Functional Inorganic Material Chemistry of Anhui Province, Anhui University, 230601, Hefei, China.
| |
Collapse
|
12
|
Xu J, Zhao S, Zhang Q, Huang X, Du K, Wang J, Wang J, Chen C, Zhang B, Chang J, Gong X. Development of highly sensitive dual-enhanced fluorescence quenching immunochromatographic test strips based on Pt nanoprobes. Biosens Bioelectron 2024; 254:116195. [PMID: 38479341 DOI: 10.1016/j.bios.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 04/02/2024]
Abstract
The fluorescence-quenching method is crucial in vitro analysis, particularly for immunochromatographic test strips (ICTs) using noble metal nanoparticles as probes. However, ICTs still fall short in meeting the requirements for the detection of traces biomarkers due to the noble metal nanoparticles can only quench fluorescence of the dyes within a confined distance. Interestingly, noble metal nanoparticles, such as Pt NPs cannot only perform fluorescence-quenching ability based on the Förster resonance energy transfer (FRET), but also show perfect oxidase-like catalytic performance on many kinds of substrates, such as 3,3',5,5' -tetramethylbenzidine (TMB). We observed that the oxTMB (the oxidation products of TMB) exhibited notable effectiveness in quenching Cy5 fluorescence by the strong inner filter effect (IFE), which obviously improved the fluorescence-quenching efficiency with extremely low background signal. Through the dual-enhanced fluorescence quenching mechanism, the fluorescence quenching constant (Kn) was 661.24-fold that of only Pt NPs on the NC membrane. To validate the feasibility of this technique, we employed two types of biomarkers, namely microRNA (miR-15a-5p) and the signature protein (PSA). The sensitivity of miR-15a-5p was 9.286 × 10-18 mol/L and 17.5-fold more than that based on Pt NPs. As for the PSA, the LOD (0.6265 pg/mL) was 15.5-fold enhancement more sensitive after catalysis. Overall, the dual-enhanced fluorescence quenching rFICTs could act as a practical detection for biomarker in real samples.
Collapse
Affiliation(s)
- Jiashuo Xu
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Shuang Zhao
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Qiuting Zhang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Xu Huang
- School of Medical Imaging Tianjin Medical University, Tianjin, 300204, China
| | - Kang Du
- Tianjin BoomSciex Technology Co., Ltd, Tianjin, 300400, China
| | - Jinzhi Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Jiaxun Wang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China
| | - Cheng Chen
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, Tianjin, 300072, China
| | - Bingbo Zhang
- Department of Radiology, Tongji Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, 200065, China.
| | - Jin Chang
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| | - Xiaoqun Gong
- School of Life Sciences, Tianjin University and Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
13
|
Xia S, Duan Y, Yu S, Sun Y, Zhu H, Zhao Z, Wang L, Liu H, He Y, He H. A cellulosic multi-bands fluorescence probe for rapid detection of pH and glutathione. Carbohydr Polym 2024; 331:121893. [PMID: 38388065 DOI: 10.1016/j.carbpol.2024.121893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/28/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024]
Abstract
The detection of pH and glutathione (GSH) is positively significant for the cell microenvironment imaging. Here, to assess the pH value and the concentration of GSH efficiently and visually, a cellulose-based multi-bands ratiometric fluorescence probe was designed by assembling MnO2-modified cellulose gold nanoclusters, fluorescein isothiocyanate-grafted cellulose nanocrystals (CNCs) and protoporphyrin IX-modified CNCs. The probe exhibits GSH-responsive, pH-sensitive and GSH/pH-independent fluorescent properties at 440 nm, 520 nm, and 633 nm, respectively. Furthermore, the probe identifies GSH within 4 s by degrading MnO2 into Mn2+ in response to GSH. Ingeniously, the green fluorescence of the probe at 520 nm was decreased with pH, and the red fluorescence at 633 nm remained stable. Therefore, the probe displayed distinguishing fluorescence colors from pink to blue and from green to blue for the synchronous detection of pH and GSH concentration within 4 s. The design strategy provides insights to construct multi-bands fluorescence probes for the rapid detection of multiple target analytes.
Collapse
Affiliation(s)
- Siyuan Xia
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yujie Duan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shanshan Yu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yupei Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hongxiang Zhu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Zihan Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Lei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| | - Hui Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yingping He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hui He
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China.
| |
Collapse
|
14
|
Bhunia S, Mukherjee M, Purkayastha P. Fluorescent metal nanoclusters: prospects for photoinduced electron transfer and energy harvesting. Chem Commun (Camb) 2024; 60:3370-3378. [PMID: 38444358 DOI: 10.1039/d4cc00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Research on noble metal nanoclusters (MNCs) (elements with filled electron d-bands) is progressing forward because of the extensive and extraordinary chemical, optical, and physical properties of these materials. Because of the ultrasmall size of the MNCs (typically within 1-3 nm), they can be applied in areas of nearly all possible scientific domains. The greatest advantage of MNCs is the tunability that can be imposed, not only on their structures, but also on their chemical, physical, and biological properties. Nowadays, MNCs are very effectively used as energy donors and acceptors under suitable conditions and hence act as energy harvesters in solar cells, semiconductors, and biomarkers. In addition, ultrafast photoinduced electron transfer (PET) can be practised using MNCs under various circumstances. Herein, we have focused on the energy harvesting phenomena of Au-, Ag-, and Cu-based MNCs and elaborated on different ways to apply them.
Collapse
Affiliation(s)
- Soumyadip Bhunia
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190401, Israel.
| | - Manish Mukherjee
- Department of Chemistry & Biochemistry, 251 Nieuwland Science Hall, Notre Dame, IN 46556, USA
| | - Pradipta Purkayastha
- Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur 741246, WB, India.
| |
Collapse
|
15
|
Tavakkoli Yaraki M, Rubio NS, Tukova A, Liu J, Gu Y, Kou L, Wang Y. Spectroscopic Identification of Charge Transfer of Thiolated Molecules on Gold Nanoparticles via Gold Nanoclusters. J Am Chem Soc 2024; 146:5916-5926. [PMID: 38380514 DOI: 10.1021/jacs.3c11959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Investigation of charge transfer needs analytical tools that could reveal this phenomenon, and enables understanding of its effect at the molecular level. Here, we show how the combination of using gold nanoclusters (AuNCs) and different spectroscopic techniques could be employed to investigate the charge transfer of thiolated molecules on gold nanoparticles (AuNP@Mol). It was found that the charge transfer effect in the thiolated molecule could be affected by AuNCs, evidenced by the amplification of surface-enhanced Raman scattering (SERS) signal of the molecule and changes in fluorescence lifetime of AuNCs. Density functional theory (DFT) calculations further revealed that AuNCs could amplify the charge transfer process at the molecular level by pumping electrons to the surface of AuNPs. Finite element method (FEM) simulations also showed that the electromagnetic enhancement mechanism along with chemical enhancement determines the SERS improvement in the thiolated molecule. This study provides a mechanistic insight into the investigation of charge transfer at the molecular level between organic and inorganic compounds, which is of great importance in designing new nanocomposite systems. Additionally, this work demonstrates the potential of SERS as a powerful analytical tool that could be used in nanochemistry, material science, energy, and biomedical fields.
Collapse
Affiliation(s)
- Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Noelia Soledad Rubio
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Anastasiia Tukova
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| | - Junxian Liu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia
| | - Yuantong Gu
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia
| | - Liangzhi Kou
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Garden Point Campus, Brisbane, Queensland 4001, Australia
| | - Yuling Wang
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|