1
|
Duan L, Wang L, Yao G, Zhu X, Sun Y, Lv F, Liu H, Yang Y, Li L, Luo Y, Wan Y. A d-Electron Deficient Pd Trimer for Exceptional Pyridine Hydrogenation Activity and Selectivity. Angew Chem Int Ed Engl 2025; 64:e202503926. [PMID: 40080385 DOI: 10.1002/anie.202503926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
The selective hydrogenation of pyridines containing reducible groups such as 2-phenylpyridine (PPY) typically has low yields due to strong nitrogen coordination with the metal as well as nonselective and over-hydrogenation. We report the synthesis of a novel Pd trimer catalyst through confined growth on an ordered mesoporous carrier, characterized by a 0.42 d-electron deficiency to address this challenge. This catalyst achieved a nearly complete conversion of 2-phenylpyridine and selectivity to 2-phenylpiperidine (PPD), maintaining its performance across eight batch cycles and continuous flow in the liquid phase for 800 h with negligible loss of activity or selectivity. We discuss the roles of active sites, including Pd d charge and ensemble structure, in relation to activation entropy, a Hammett study, and the adsorption configuration of the reactant. The exceptional 2-phenylpyridine hydrogenation activity and selectivity are attributed to the adsorption constraint of the pyridyl ring and the stabilization of the negatively charged transition state in the rate-determining step produced by the d-electron deficient Pd trimer.
Collapse
Affiliation(s)
- Linlin Duan
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Lili Wang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Guohua Yao
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Xiaojuan Zhu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Yafei Sun
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| | - Fei Lv
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Heng Liu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Yang Yang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, P.R. China
| | - Lina Li
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P.R. China
| | - Yong Luo
- State Key Laboratory of Organic-Inorganic Composites, Research Center of the Ministry of Education for High Gravity Engineering and Technology, Beijing University of Chemical Technology, Beijing, 100029, P.R. China
| | - Ying Wan
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Normal University, Shanghai, 200234, P.R. China
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P.R. China
| |
Collapse
|
2
|
Zhang W, Hao X, Liu X, Chu M, Li S, Wang X, Jiang F, Wang L, Zhang Q, Chen J, Wang D, Cao M. Photocatalytic Conversion of Polyester-Derived Alcohol into Value-Added Chemicals by Engineering Atomically Dispersed Pd Catalyst. Angew Chem Int Ed Engl 2025; 64:e202500814. [PMID: 39972654 DOI: 10.1002/anie.202500814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 02/18/2025] [Indexed: 02/21/2025]
Abstract
Photoreforming presents a promising strategy for upcycling waste polyester-derived alcohol into valuable chemicals. However, it remains a great challenge due to its low performance and unsatisfactory selectivity toward high-value C2 products. Here, we report the highly efficient and selective conversion of ethylene glycol (EG, a monomer of polyethylene terephthalate (PET)) to glycolaldehyde using atomically dispersed Pd species supported on TiO2 catalyst. A glycolaldehyde production rate of 5072 μmol gcat -1 h-1 with a selectivity of 90.0 % and long-term durability can be achieved. Experimental and theoretical results show that Pd single atoms can enhance the photocatalytic activity by enriching the photogenerated holes, which are the dominant species for the selective oxidation of EG to glycolaldehyde. More importantly, the adsorption of EG molecules on the catalysts is significantly promoted, which is subsequently transformed into RO⋅ radicals, a crucial intermediate in producing glycolaldehyde. Additionally, Pd single atoms on TiO2 enable the reduction of the glycolaldehyde desorption barrier, thereby facilitating high selectivity and inhibiting further oxidation to C1 products. This work provides new insights into the photocatalytic conversion of polyester wastes by atomic engineering.
Collapse
Affiliation(s)
- Wenjing Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xuewei Hao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xinlin Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| | - Mingyu Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| | - Shengming Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xuchun Wang
- X-ray Science Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
| | - Feng Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China
| | - Lu Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| | - Qiao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| | - Jinxing Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| | - Dingsheng Wang
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Muhan Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, 215123, People's Republic of China
| |
Collapse
|
3
|
Peng M, Li C, Wang Z, Wang M, Zhang Q, Xu B, Li M, Ma D. Interfacial Catalysis at Atomic Level. Chem Rev 2025; 125:2371-2439. [PMID: 39818776 DOI: 10.1021/acs.chemrev.4c00618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Heterogeneous catalysts are pivotal to the chemical and energy industries, which are central to a multitude of industrial processes. Large-scale industrial catalytic processes rely on special structures at the nano- or atomic level, where reactions proceed on the so-called active sites of heterogeneous catalysts. The complexity of these catalysts and active sites often lies in the interfacial regions where different components in the catalysts come into contact. Recent advances in synthetic methods, characterization technologies, and reaction kinetics studies have provided atomic-scale insights into these critical interfaces. Achieving atomic precision in interfacial engineering allows for the manipulation of electronic profiles, adsorption patterns, and surface motifs, deepening our understanding of reaction mechanisms at the atomic or molecular level. This mechanistic understanding is indispensable not only for fundamental scientific inquiry but also for the design of the next generation of highly efficient industrial catalysts. This review examines the latest developments in atomic-scale interfacial engineering, covering fundamental concepts, catalyst design, mechanistic insights, and characterization techniques, and shares our perspective on the future trajectory of this dynamic research field.
Collapse
Affiliation(s)
- Mi Peng
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Chengyu Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Maolin Wang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingxin Zhang
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Bingjun Xu
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Mufan Li
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ding Ma
- Beijing National Laboratory for Molecular Science, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
4
|
Wang GC. Active-Site Ensemble for the Reverse Water-Gas Shift Reaction over Pd/TiO 2: Two Is Better than One or More. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11236-11247. [PMID: 39932247 DOI: 10.1021/acsami.4c17658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Determining whether the active-site ensemble number for a given reaction is a single atom, dual atom, or subnanocluster remains a challenge for both experimental and theoretical studies. This work presents a systematic theoretical study, employing density functional theory and mean-field microkinetic modeling, on the reverse water-gas shift (rWGS) reaction over the anatase TiO2-supported Pd cluster, Pdn/A-TiO2 (n = 1, 2, 3, 4) to explore the optimal active ensemble number required for rWGS. Our results show that Pd2 shows the best catalytic activity for rWGS, while neither Pd1 nor Pd3(Pd4) demonstrates high catalytic activity. This is due to either the limited active sites for carboxyl formation, as observed with Pd1, or excessively strong binding of H* species, which hinders the carboxyl formation, as seen with Pd3 (or Pd4). We found that Pd2with the most stable position for [COOH* + H*] species along the rWGS reaction energy diagrams, which maybe one of the possible reasons for its high rWGS catalytic activity. Moreover, H* binding energy can be used as a descriptor of rWGS activity, in line with the Sabatier principle, neither too strong nor too weak binding is favorable. It is hoped that the present findings can be extended to other reaction types, such as the water-gas shift (WGS) reaction, where Pd2 may outperform either a single Pd atom or small Pd clusters.
Collapse
Affiliation(s)
- Gui-Chang Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
5
|
Yang H, Duan P, Zhuang Z, Luo Y, Shen J, Xiong Y, Liu X, Wang D. Understanding the Dynamic Evolution of Active Sites among Single Atoms, Clusters, and Nanoparticles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415265. [PMID: 39748626 DOI: 10.1002/adma.202415265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Catalysis remains a cornerstone of chemical research, with the active sites of catalysts being crucial for their functionality. Identifying active sites, particularly during the reaction process, is crucial for elucidating the relationship between a catalyst's structure and its catalytic property. However, the dynamic evolution of active sites within heterogeneous metal catalysts presents a substantial challenge for accurately pinpointing the real active sites. The advent of in situ and operando characterization techniques has illuminated the path toward understanding the dynamic changes of active sites, offering robust scientific evidence to support the rational design of catalysts. There is a pressing need for a comprehensive review that systematically explores the dynamic evolution among single atoms, clusters, and nanoparticles as active sites during the reaction process, utilizing in situ and operando characterization techniques. This review aims to delineate the effects of various reaction factors on dynamic evolution of active sites among single atoms, clusters, and nanoparticles. Moreover, several in situ and operando techniques are elaborated with emphases on tracking the dynamic evolution of active sites, linking them to catalytic properties. Finally, it discusses challenges and future perspectives in identifying active sites during the reaction process and advancing in situ and operando characterization techniques.
Collapse
Affiliation(s)
- Hongchen Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Pengfei Duan
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yaowu Luo
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ji Shen
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuli Xiong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, Hubei, 430070, P. R. China
| | - Xiangwen Liu
- Institute of Analysis and Testing, Beijing Academy of Science and Technology, Beijing, 100094, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Singhvi C, Sharma G, Verma R, Paidi VK, Glatzel P, Paciok P, Patel VB, Mohan O, Polshettiwar V. Tuning the electronic structure and SMSI by integrating trimetallic sites with defective ceria for the CO 2 reduction reaction. Proc Natl Acad Sci U S A 2025; 122:e2411406122. [PMID: 39813253 PMCID: PMC11759900 DOI: 10.1073/pnas.2411406122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/12/2024] [Indexed: 01/18/2025] Open
Abstract
Heterogeneous catalysts have emerged as a potential key for closing the carbon cycle by converting carbon dioxide (CO2) into value-added chemicals. In this work, we report a highly active and stable ceria (CeO2)-based electronically tuned trimetallic catalyst for CO2 to CO conversion. A unique distribution of electron density between the defective ceria support and the trimetallic nanoparticles (of Ni, Cu, Zn) was established by creating the strong metal support interaction (SMSI) between them. The catalyst showed CO productivity of 49,279 mmol g-1 h-1 at 650 °C. CO selectivity up to 99% and excellent stability (rate remained unchanged even after 100 h) stemmed from the synergistic interactions among Ni-Cu-Zn sites and their SMSI with the defective ceria support. High-energy-resolution fluorescence-detection X-ray absorption spectroscopy (HERFD-XAS) confirmed this SMSI, further corroborated by in situ electron energy loss spectroscopy (EELS) and density functional theory (DFT) simulations. The in situ studies (HERFD-XAS & EELS) indicated the key role of oxygen vacancies of defective CeO2 during catalysis. The in situ transmission electron microscopy (TEM) imaging under catalytic conditions visualized the movement and growth of active trimetallic sites, which completely stopped once SMSI was established. In situ FTIR (supported by DFT) provided a molecular-level understanding of the formation of various reaction intermediates and their conversion into products, which followed a complex coupling of direct dissociation and redox pathway assisted by hydrogen, simultaneously on different active sites. Thus, sophisticated manipulation of electronic properties of trimetallic sites and defect dynamics significantly enhanced catalytic performance during CO2 to CO conversion.
Collapse
Affiliation(s)
- Charvi Singhvi
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Gunjan Sharma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Rishi Verma
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| | - Vinod K. Paidi
- Experiments Division, European Synchrotron Radiation Facility, Grenoble38043, Cedex 9, France
| | - Pieter Glatzel
- Experiments Division, European Synchrotron Radiation Facility, Grenoble38043, Cedex 9, France
| | - Paul Paciok
- Ernst-Ruska Center for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich52425, Germany
| | - Vashishtha B. Patel
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Ojus Mohan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai400076, India
| | - Vivek Polshettiwar
- Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai400005, India
| |
Collapse
|
7
|
Sun J, Lian G, Chen Z, Zou Z, Wang L. Merger of Single-Atom Catalysis and Photothermal Catalysis for Future Chemical Production. ACS NANO 2024; 18:34572-34595. [PMID: 39652059 DOI: 10.1021/acsnano.4c13030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Photothermal catalysis is an emerging field with significant potential for sustainable chemical production processes. The merger of single-atom catalysts (SACs) and photothermal catalysis has garnered widespread attention for its ability to achieve precise bond activation and superior catalytic performance. This review provides a comprehensive overview of the recent progress of SACs in photothermal catalysis, focusing on their underlying mechanisms and applications. The dynamic structural evolution of SACs during photothermal processes is highlighted, and the current advancements and future perspectives in the design, screening, and scaling up of SACs for photothermal processes are discussed. This review aims to provide insights into their continued development in this rapidly evolving field.
Collapse
Affiliation(s)
- Junchuan Sun
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Guanwu Lian
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhongxin Chen
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Zhigang Zou
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Lu Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| |
Collapse
|
8
|
Lu Y, Lin F, Zhang Z, Thompson C, Zhu Y, Doudin N, Kovarik L, García Vargas CE, Jiang D, Fulton JL, Wu Y, Gao F, Dohnálek Z, Karim AM, Wang H, Wang Y. Enhancing Activity and Stability of Pd-on-TiO 2 Single-Atom Catalyst for Low-Temperature CO Oxidation through in Situ Local Environment Tailoring. J Am Chem Soc 2024. [PMID: 39344102 DOI: 10.1021/jacs.4c07861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The development of efficient Pd single-atom catalysts for CO oxidation, crucial for environmental protection and fundamental studies, has been hindered by their limited reactivity and thermal stability. Here, we report a thermally stable TiO2-supported Pd single-atom catalyst that exhibits enhanced intrinsic CO oxidation activity by tunning the local coordination of Pd atoms via H2 treatment. Our comprehensive characterization reveals that H2-treated Pd single atoms have reduced nearest Pd-O coordination and form short-distanced Pd-Ti coordination, effectively stabilizing Pd as isolated atoms even at high temperatures. During CO oxidation, partial replacement of the Pd-Ti coordination by O or CO occurs. This unique Pd local environment facilitates CO adsorption and promotes the activity of the surrounding oxygen species, leading to superior catalytic performance. Remarkably, the turnover frequency of the H2-treated Pd single-atom catalyst at 120 °C surpasses that of the O2-treated Pd single-atom catalyst and the most effective Pd/Pt single-atom catalysts by an order of magnitude. These findings open up new possibilities for the design of high-performance single-atom catalysts for crucial industrial and environmental applications.
Collapse
Affiliation(s)
- Yubing Lu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Fan Lin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zihao Zhang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Coogan Thompson
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Yifeng Zhu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nassar Doudin
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Libor Kovarik
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Carlos E García Vargas
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Dong Jiang
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - John L Fulton
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Yiqing Wu
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Feng Gao
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Zdenek Dohnálek
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Ayman M Karim
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24060, United States
| | - Huamin Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| | - Yong Wang
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, United States
| |
Collapse
|
9
|
Tiwari JN, Kumar K, Safarkhani M, Umer M, Vilian ATE, Beloqui A, Bhaskaran G, Huh YS, Han Y. Materials Containing Single-, Di-, Tri-, and Multi-Metal Atoms Bonded to C, N, S, P, B, and O Species as Advanced Catalysts for Energy, Sensor, and Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403197. [PMID: 38946671 PMCID: PMC11580296 DOI: 10.1002/advs.202403197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Indexed: 07/02/2024]
Abstract
Modifying the coordination or local environments of single-, di-, tri-, and multi-metal atom (SMA/DMA/TMA/MMA)-based materials is one of the best strategies for increasing the catalytic activities, selectivity, and long-term durability of these materials. Advanced sheet materials supported by metal atom-based materials have become a critical topic in the fields of renewable energy conversion systems, storage devices, sensors, and biomedicine owing to the maximum atom utilization efficiency, precisely located metal centers, specific electron configurations, unique reactivity, and precise chemical tunability. Several sheet materials offer excellent support for metal atom-based materials and are attractive for applications in energy, sensors, and medical research, such as in oxygen reduction, oxygen production, hydrogen generation, fuel production, selective chemical detection, and enzymatic reactions. The strong metal-metal and metal-carbon with metal-heteroatom (i.e., N, S, P, B, and O) bonds stabilize and optimize the electronic structures of the metal atoms due to strong interfacial interactions, yielding excellent catalytic activities. These materials provide excellent models for understanding the fundamental problems with multistep chemical reactions. This review summarizes the substrate structure-activity relationship of metal atom-based materials with different active sites based on experimental and theoretical data. Additionally, the new synthesis procedures, physicochemical characterizations, and energy and biomedical applications are discussed. Finally, the remaining challenges in developing efficient SMA/DMA/TMA/MMA-based materials are presented.
Collapse
Affiliation(s)
- Jitendra N. Tiwari
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Krishan Kumar
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
| | - Moein Safarkhani
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
- School of ChemistryDamghan UniversityDamghan36716‐45667Iran
| | - Muhammad Umer
- Bernal InstituteDepartment of Chemical SciencesUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - A. T. Ezhil Vilian
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| | - Ana Beloqui
- POLYMATApplied Chemistry DepartmentFaculty of ChemistryUniversity of the Basque Country UPV/EHUPaseo Manuel de Lardizabal 3Danostia‐San Sebastian20018Spain
- IKERBASQUEBasque Foundation for SciencePlaza Euskadi 5Bilbao48009Spain
| | - Gokul Bhaskaran
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Yun Suk Huh
- Department of Biological Sciences and BioengineeringNano Bio High‐Tech Materials Research CenterInha UniversityIncheon22212Republic of Korea
| | - Young‐Kyu Han
- Department of Energy and Materials EngineeringDongguk University‐SeoulSeoul100715Republic of Korea
| |
Collapse
|
10
|
Wang H, Choi H, Shimogawa R, Li Y, Zhang L, Kim HY, Frenkel AI. Unravelling the origin of reaction-driven aggregation and fragmentation of atomically dispersed Pt catalyst on ceria support. NANOSCALE 2024; 16:14716-14721. [PMID: 38829119 DOI: 10.1039/d4nr01396d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Metal-support interaction plays a crucial role in governing the stability and activity of atomically dispersed platinum catalysts on ceria support. The migration and aggregation of platinum atoms during the catalytic reaction leads to the redistribution of active sites. In this study, by utilizing a multimodal characterization scheme, we observed the aggregation of platinum atoms at high temperatures under reverse water gas shift reaction conditions and the subsequent fragmentation of platinum clusters, forming "single atoms" upon cooling. Theoretical simulations of both effects uncovered the roles of carbon monoxide binding on perimeter Pt sites in the clusters and hydrogen coverage in the aggregation and fragmentation mechanisms. This study highlights the complex effects of adsorbate and supports interactions with metal sites in Pt/ceria catalysts that govern their structural transformations under in situ conditions.
Collapse
Affiliation(s)
- Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
| | - Hyuk Choi
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Mitsubishi Chemical Corporation, Science and Innovation Center, Yokohama 227-8502, Japan
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Hyun You Kim
- Department of Materials Science and Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Division of Chemistry, Brookhaven National Laboratory, Upton, NY 11973, USA
| |
Collapse
|
11
|
Huang J, Klahn M, Tian X, Bartling S, Zimina A, Radtke M, Rockstroh N, Naliwajko P, Steinfeldt N, Peppel T, Grunwaldt JD, Logsdail AJ, Jiao H, Strunk J. Fundamental Structural and Electronic Understanding of Palladium Catalysts on Nitride and Oxide Supports. Angew Chem Int Ed Engl 2024; 63:e202400174. [PMID: 38466808 DOI: 10.1002/anie.202400174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/13/2024]
Abstract
The nature of the support can fundamentally affect the function of a heterogeneous catalyst. For the novel type of isolated metal atom catalysts, sometimes referred to as single-atom catalysts, systematic correlations are still rare. Here, we report a general finding that Pd on nitride supports (non-metal and metal nitride) features a higher oxidation state compared to that on oxide supports (non-metal and metal oxide). Through thorough oxidation state investigations by X-ray absorption spectroscopy (XAS), X-ray photoelectron spectroscopy (XPS), CO-DRIFTS, and density functional theory (DFT) coupled with Bader charge analysis, it is found that Pd atoms prefer to interact with surface hydroxyl group to form a Pd(OH)x species on oxide supports, while on nitride supports, Pd atoms incorporate into the surface structure in the form of Pd-N bonds. Moreover, a correlation was built between the formal oxidation state and computational Bader charge, based on the periodic trend in electronegativity.
Collapse
Affiliation(s)
- Junhao Huang
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Marcus Klahn
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Xinxin Tian
- Institute of Molecular Science, Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province, Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry, Shanxi University, Taiyuan, 030006, China
| | - Stephan Bartling
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Anna Zimina
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Martin Radtke
- Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Nils Rockstroh
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Pawel Naliwajko
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Norbert Steinfeldt
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Tim Peppel
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Jan-Dierk Grunwaldt
- Institute of Catalysis Research and Technology and Institute for Chemical Technology and Polymer Chemistry, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Andrew J Logsdail
- Max Planck-Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, United Kingdom
| | - Haijun Jiao
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
| | - Jennifer Strunk
- Leibniz Institute for Catalysis e.V., Albert-Einstein-Straße 29a, 18059, Rostock, Germany
- Industrial Chemistry and Heterogeneous Catalysis, Technical University of Munich, Lichtenbergstrße 4, 85748, Garching, Germany
| |
Collapse
|
12
|
Liu L, Chen T, Chen Z. Understanding the Dynamic Aggregation in Single-Atom Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308046. [PMID: 38287886 PMCID: PMC10987127 DOI: 10.1002/advs.202308046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Indexed: 01/31/2024]
Abstract
The dynamic response of single-atom catalysts to a reactive environment is an increasingly significant topic for understanding the reaction mechanism at the molecular level. In particular, single atoms may experience dynamic aggregation into clusters or nanoparticles driven by thermodynamic or kinetic factors. Herein, the inherent mechanistic nuances that determine the dynamic profile during the reaction will be uncovered, including the intrinsic stability and site-migration barrier of single atoms, external stimuli (temperature, voltage, and adsorbates), and the influence of catalyst support. Such dynamic aggregation can be beneficial or deleterious on the catalytic performance depending on the optimal initial state. Those examples will be highlighted where in situ formed clusters, rather than single atoms, serve as catalytically active sites for improved catalytic performance. This is followed by the introduction of operando techniques to understand the structural evolution. Finally, the emerging strategies via confinement and defect-engineering to regulate dynamic aggregation will be briefly discussed.
Collapse
Affiliation(s)
- Laihao Liu
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Tiankai Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| | - Zhongxin Chen
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenGuangdong518172China
| |
Collapse
|
13
|
Fu Y, Lu K, Hu A, Huang J, Guo L, Zhou J, Zhao J, Prezhdo OV, Liu M. d z2 Band Links Frontier Orbitals and Charge Carrier Dynamics of Single-Atom Cocatalyst-Aided Photocatalytic H 2 Production. J Am Chem Soc 2023; 145:28166-28175. [PMID: 38086059 PMCID: PMC10755699 DOI: 10.1021/jacs.3c10661] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023]
Abstract
The Cu single-atom catalyst (SAC) supported on TiO2 exhibits outstanding efficacy in photocatalytic hydrogen evolution. The precise operational mechanism remains a subject of ongoing debate. The focus resides with the interplay linking heightened catalytic activity, dynamic valence state alterations of Cu atoms, and their hybridization with H2O orbitals, manifested in catalyst color changes. Taking anatase TiO2 (101) as a prototypical surface, we perform ab initio quantum dynamics simulation to reveal that the high activity of the Cu-SAC is due to the quasi-planar coordination structure of the Cu atom after H2O adsorption, allowing it to trap photoexcited hot electrons and inject them into the hybridized orbital between Cu and H2O. The observed alterations in the valence state and the coloration can be attributed to the H atom released during H2O dissociation and adsorbed onto the lattice O atom neighboring the Cu-SAC. Notably, this adsorption of H atoms puts the Cu-SAC into an inert state, as opposed to an activating effect reported previously. Our work clarifies the relationship between the high photocatalytic activity and the local dynamic atomic coordination structure, providing atomistic insights into the structural changes occurring during photocatalytic reactions on SACs.
Collapse
Affiliation(s)
- Yiwei Fu
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, P. R. China
| | - Kejian Lu
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, P. R. China
| | - Anlan Hu
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, P. R. China
| | - Jie Huang
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, P. R. China
| | - Liejin Guo
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, P. R. China
| | - Jian Zhou
- Center
for Alloy Innovation and Design, State Key Laboratory for Mechanical
Behavior of Materials, School of Materials Science and Engineering, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, P. R. China
| | - Jin Zhao
- ICQD/Hefei
National Laboratory for Physical Sciences at the Microscale, CAS Key
Laboratory of Strongly-Coupled Quantum Matter Physics, and Department
of Physics, University of Science and Technology
of China, Hefei, Anhui 230026, P. R. China
- Synergetic
Innovation Center of Quantum Information & Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Oleg V. Prezhdo
- Department
of Chemistry and Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Maochang Liu
- International
Research Center for Renewable Energy, State Key Laboratory of Multiphase
Flow, Xi′an Jiaotong University, Xi′an, Shaanxi 710049, P. R. China
- Suzhou
Academy
of Xi′an Jiaotong University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
14
|
Wang H, Shimogawa R, Zhang L, Ma L, Ehrlich SN, Marinkovic N, Li Y, Frenkel AI. Migration and aggregation of Pt atoms on metal oxide-supported ceria nanodomes control reverse water gas shift reaction activity. Commun Chem 2023; 6:264. [PMID: 38052925 DOI: 10.1038/s42004-023-01064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/17/2023] [Indexed: 12/07/2023] Open
Abstract
Single-atom catalysts (SACs) are particularly sensitive to external conditions, complicating the identification of catalytically active species and active sites under in situ or operando conditions. We developed a methodology for tracing the structural evolution of SACs to nanoparticles, identifying the active species and their link to the catalytic activity for the reverse water gas shift (RWGS) reaction. The new method is illustrated by studying structure-activity relationships in two materials containing Pt SACs on ceria nanodomes, supported on either ceria or titania. These materials exhibited distinctly different activities for CO production. Multimodal operando characterization attributed the enhanced activity of the titania-supported catalysts at temperatures below 320 ˚C to the formation of unique Pt sites at the ceria-titania interface capable of forming Pt nanoparticles, the active species for the RWGS reaction. Migration of Pt nanoparticles to titania support was found to be responsible for the deactivation of titania-supported catalysts at elevated temperatures. Tracking the migration of Pt atoms provides a new opportunity to investigate the activation and deactivation of Pt SACs for the RWGS reaction.
Collapse
Affiliation(s)
- Haodong Wang
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Ryuichi Shimogawa
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
- Mitsubishi Chemical Corporation, Science & Innovation Center, 1000, Kamoshida-cho, Aoba-ku, Yokohama, 227-8502, Japan
| | - Lihua Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Lu Ma
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Steven N Ehrlich
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Nebojsa Marinkovic
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Yuanyuan Li
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
- Chemistry Division, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
15
|
Zhou C, Zhang J, Fu Y, Dai H. Recent Advances in the Reverse Water-Gas Conversion Reaction. Molecules 2023; 28:7657. [PMID: 38005379 PMCID: PMC10674781 DOI: 10.3390/molecules28227657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The increase in carbon dioxide emissions has significantly impacted human society and the global environment. As carbon dioxide is the most abundant and cheap C1 resource, the conversion and utilization of carbon dioxide have received extensive attention from researchers. Among the many carbon dioxide conversion and utilization methods, the reverse water-gas conversion (RWGS) reaction is considered one of the most effective. This review discusses the research progress made in RWGS with various heterogeneous metal catalyst types, covering topics such as catalyst performance, thermodynamic analysis, kinetics and reaction mechanisms, and catalyst design and preparation, and suggests future research on RWGS heterogeneous catalysts.
Collapse
Affiliation(s)
- Changjian Zhou
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Jiahao Zhang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Yuqing Fu
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China; (C.Z.)
| | - Hui Dai
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
| |
Collapse
|