1
|
Su LH, Qian HL, Xu ST, Yang C, Wang Z, Yan XP. Designing flexible aliphatic linker based molecular imprinted covalent organic framework for rapid and selective extraction and detection of trace zearalenone. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137778. [PMID: 40037192 DOI: 10.1016/j.jhazmat.2025.137778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/24/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Food and environment contaminations by zearalenone (ZEN) has aroused serious issues in public health. Sensitive and accurate detection of ZEN remains a daunting challenge due to complex interference and low residue in real samples. Herein, we report a novel molecular imprinted covalent organic framework with flexible aliphatic linkers (ALCOF-MIP) for rapid and selective extraction of ZEN in real samples. Flexible aliphatic linkers were employed to regulate the molecular conformation and enhance hydrophily, enabling ALCOF-MIP to possess high selectivity and fast kinetics for ZEN extraction. ALCOF-MIP with selective imprinting sites displayed the maximum adsorption capacity for ZEN (1250 mg g-1, exceeding most of reported adsorbents). Furthermore, the ALCOF-MIP based solid-phase extraction coupled with high-performance liquid chromatography gave a wide linear range (1-500 ng mL-1), low detection limit (0.06 ng mL-1) and high precision (≤3.2 %). The recovery of spiked ZEN in real samples ranged from 90.7 % to 99.1 %. The proposed method is promising for monitoring mycotoxin residues and assessing food safety without matrix interferences.
Collapse
Affiliation(s)
- Li-Hong Su
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Shu-Ting Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cheng Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution control, and School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Qi Y, Ayinla M, Yang Z, Ramström O. Odd-Even Effects Leading to Alternating Polymerization and Macrocyclization in Nitroaldol Reaction Systems. Chemistry 2025; 31:e202404720. [PMID: 40192202 PMCID: PMC12080299 DOI: 10.1002/chem.202404720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
Alternating macrocyclization and polymerization was observed in dynamic nitroaldol reaction systems. The reaction of an aromatic dialdehyde reacting with linear α,ω-dinitroalkanes with even numbers of carbon atoms favored the formation of lowellane macrocycles, while the reactions involving dinitrocompounds consisted of odd numbers of carbon atoms promoted polymerization. The folding patterns of the alkyl chains played an important factor in determining the outcome of the reactions.
Collapse
Affiliation(s)
- Yunchuan Qi
- Department of ChemistryUniversity of Massachusetts Lowell, One University Ave.LowellMA01854USA
| | - Mubarak Ayinla
- Department of ChemistryUniversity of Massachusetts Lowell, One University Ave.LowellMA01854USA
| | - Zhen Yang
- Department of ChemistryUniversity of Massachusetts Lowell, One University Ave.LowellMA01854USA
| | - Olof Ramström
- Department of ChemistryUniversity of Massachusetts Lowell, One University Ave.LowellMA01854USA
- Department of Chemistry and Biomedical SciencesLinnaeus UniversityKalmarSE‐39182Sweden
| |
Collapse
|
3
|
Du C, Na W, Huang H, Liu Y, Chen J. Solid-State Photoluminescent Imine-Linked Two-Dimensional Covalent Organic Frameworks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501607. [PMID: 40272041 DOI: 10.1002/smll.202501607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/16/2025] [Indexed: 04/25/2025]
Abstract
The development of efficient solid-state luminescent covalent organic frameworks (COFs) is crucial for advancing applications in sensing, imaging, and optoelectronics. However, achieving high photoluminescent quantum yields (PLQY) in imine-linked COFs remains challenging due to the presence of complex nonradiative quenching pathways. Here, the design and synthesis of a novel series of solid-state photoluminescent imine-linked 2D covalent organic frameworks (2D COFs) are reported through condensation of rigid building blocks. These COFs display high crystallinity and porosity, and with a remarkable PLQY of up to 39% in the solid state. The high luminescent efficiency is attributed to the donor-acceptor-donor structure within the aldehyde moieties, which facilitates selective charge transfer excitation between the donor moiety, triphenylamine, and the acceptor moiety, benzothiadiazole, bypassing the imine bonds, suppressing nonradiative quenching pathways associated with imine bond rotation in the excited states. Furthermore, the obtained COF shows potential for bioimaging applications.
Collapse
Affiliation(s)
- Changsheng Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenjing Na
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Protein & Peptide Pharmaceutical Laboratory, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Wei P, Gu N, Gu Q, Jiang J, Chen J, Du J. Preparation and Mechanism Insight of Biodegradable Kippah Vesicles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2501838. [PMID: 40264332 DOI: 10.1002/smll.202501838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/22/2025] [Indexed: 04/24/2025]
Abstract
Kippah vesicles, fully collapsed polymersomes formed during the self-assembly process, are characterized by a bowl-shaped nanostructure with a large specific surface area, high loading capacity, and an internal void. Current research shows that these structural features have primarily been achieved using non-biodegradable block copolymers, while the fundamental mechanism behind their formation is not well understood. Thus, designing biodegradable kippah vesicles and elucidating their formation mechanism is critical. In this study, a tetraphenylethylene (TPE) moiety - a luminogen with aggregation-induced emission (AIE) properties - is strategically introduced into the block copolymer side chain-, yielding the novel polypeptide poly(ethylene glycol)45-block-poly[(glutamic acid-TPE)26-stat-(glutamic acid)29] [PEG₄₅-b-P(GATPE₂₆-stat-GA₂₉)]. This polypeptide could self-assemble into kippah vesicles driven by hydrophobic interactions and hydrogen bonding, as confirmed by Fourier-transform infrared (FTIR) spectroscopy, ultraviolet-visible (UV-vis) absorption, photoluminescence spectroscopy, and morphological characterization across different aggregation states. Notably, the intrinsic fluorescence of these kippah vesicles exhibited high cellular internalization efficiency and excellent cytocompatibility, highlighting their potential for biomedical applications such as bioimaging and targeted cellular delivery.
Collapse
Affiliation(s)
- Ping Wei
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Nannan Gu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Qianxi Gu
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
5
|
Liu SH, Zhao K, Zhou JH, Dong K, Ai H, Liu P, Cui JW, Zhang YH, Puigmartí-Luis J, Sun JK. Cooperative Multiscale-Assembly for Directional and Hierarchical Growth of Highly Oriented Porous Organic Cage Single-Crystal Microtubes and Arrays. Angew Chem Int Ed Engl 2025; 64:e202421523. [PMID: 39688886 DOI: 10.1002/anie.202421523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
The directional assembly of porous organic molecules into long-range ordered architectures, featuring controlled hierarchical porosity and oriented pore channels with defined spatial arrangements, is a fundamental challenge in chemistry and materials science. Herein, using porous organic cages as starting units, we present a cooperative multiscale-assembly strategy enabling the simultaneous alignment of pore channels and directional hierarchical growth in a single step. At the microscopic level, we employed double solvents to manipulate the intermolecular packing of microporous tetrahedral [4+6] imine cages (CC1 and CC3), resulting in pore channel orientation. Concurrently, at the mesoscopic level, convective flow in the double-solvent system directed the spatial distribution of nuclei species, followed by diffusion limited growth, leading to the directional formation of single-crystal microtubes. By precisely controlling the direction of convective flow, the nanocages were successfully organized into 2D and 3D single-crystal microtube arrays while maintaining oriented micropores. This hierarchical porous architecture enhanced mass transfer, as confirmed by adsorption measurements. Interestingly, such 3D hierarchical microtube arrays can be utilized to immobilize Pd clusters and enzymes (lipase or Glucose oxidase) within the micro- and macropores, respectively, showing a 3.8- to 4-fold enhancement in one-pot tandem reaction activity compared to physical mixtures of individual analogues.
Collapse
Affiliation(s)
- Si-Hua Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Ke Zhao
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jun-Hao Zhou
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Kang Dong
- Multi-Disciplinary Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hui Ai
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Pai Liu
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Jing-Wang Cui
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Yun-Hong Zhang
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| | - Josep Puigmartí-Luis
- Departament de Ciència dels Materials i Química Física, Institut de Química Teòrica i Computacional, University of Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Jian-Ke Sun
- MOE Key Laboratory of Cluster Science, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China
| |
Collapse
|
6
|
Yang Y, Wang S, Duan Y, Wang T, Wang F, Zhu H, Wang Z, Zhang K, Cheng P, Zhang Z. Flux Synthesis of Robust Polyimide Covalent Organic Frameworks with High-Density Redox Sites for Efficient Proton Batteries. Angew Chem Int Ed Engl 2025; 64:e202418394. [PMID: 39585117 DOI: 10.1002/anie.202418394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/06/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
Aqueous proton batteries are attracting increasing attention in the large-scale next-generation energy storage field. However, the electrode materials for proton batteries often suffer from low specific capacity and unsatisfactory cycle durability. Herein, we synthesize two highly crystalline and robust polyimide covalent organic frameworks (COFs) through a solvent-free flux synthesis approach with benzoic acid as a flux and catalyst. The as-synthesized COFs possess enriched redox-active sites for proton storage and intrinsic Grotthuss proton conduction, rendering them ideal candidates for proton electrode materials. The optimal COF electrodes achieve a high specific capacity of 180 mAh/g at 0.1 A/g, among the highest COF-based proton batteries, and exhibit an outstanding rate capability of up to 100 A/g and long-term cycling stability with capacity retention of 99 % after 5000 cycles at 5 A/g. The assembled full cells deliver a specific capacity of 150 mAh/g at 0.2 A/g with a maximum energy density of 72 Wh/kg and a maximum supercapacitor-level power density of 64 kW/kg, surpassing all reported COF-based systems. This work paves a new avenue for the design of electrode materials for aqueous proton batteries with high energy density, power density, rate capability and long-term cycling stability.
Collapse
Affiliation(s)
- Yi Yang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Sa Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Yuqing Duan
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Ting Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Fengdong Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haitao Zhu
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhifang Wang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Kai Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Peng Cheng
- College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicine Chemistry Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Centre for New Organic Matter, Renewable Energy Conversion and Storage Centre, Nankai University, Tianjin, 300071, China
| | - Zhenjie Zhang
- College of Chemistry, Nankai University, Tianjin, 300071, China
- State Key Laboratory of Medicine Chemistry Biology, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, 300071, China
- Frontiers Science Centre for New Organic Matter, Renewable Energy Conversion and Storage Centre, Nankai University, Tianjin, 300071, China
- Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin, 300071, China
| |
Collapse
|
7
|
Liu X, Lin W, Bader Al Mohawes K, Khashab NM. Ultrahigh Proton Selectivity by Assembled Cationic Covalent Organic Framework Nanosheets. Angew Chem Int Ed Engl 2025; 64:e202419034. [PMID: 39676036 DOI: 10.1002/anie.202419034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Ionic covalent organic framework (COF) nanosheets are becoming increasingly attractive as promising two-dimensional (2D) materials for proton transport due to their ionic functionality and tailor-made pores. However, most synthetic methods for nanosheets rely on surface-assisted methods or phase transformation often yielding nanosheets with low aspect ratios. In this study, we present a bottom-up approach utilizing an oil-oil-water triphase system to achieve the large-scale synthesis of ionic COF nanosheets. The intermediate oil layer in this system modulates the diffusion rate of monomers from the top oil phase into the aqueous phase, enabling in-plane anisotropic secondary growth from the initial discrete fibrous structure into large and crystalline COF nanosheets. The ionic COF nanosheets exhibit excellent proton permeability while simultaneously excluding other cations by casting into crack-free membranes, demonstrating efficient HCl extraction from acidic water waste. This strategy for larger-scale COF nanosheet growth will offer an alternative platform for designing multifunctional COF membranes with applications in sophisticated separation technologies.
Collapse
Affiliation(s)
- Xin Liu
- Department Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Weibin Lin
- Department Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Khozama Bader Al Mohawes
- Department Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University (PNU), Riyadh, 11671, Kindom of Saudi Arabia
| | - Niveen M Khashab
- Department Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
8
|
Hou B, Wang K, Jiang C, Guo Y, Zhang X, Liu Y, Cui Y. Homochiral Covalent Organic Frameworks with Superhelical Nanostructures Enable Efficient Chirality-Induced Spin Selectivity. Angew Chem Int Ed Engl 2024; 63:e202412380. [PMID: 39180764 DOI: 10.1002/anie.202412380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 08/26/2024]
Abstract
Despite significant advancements in fabricating covalent organic frameworks (COFs) with diverse morphologies, creating COFs with superhelical nanostructures remains challenging. We report here the controlled synthesis of homochiral superhelical COF nanofibers by manipulating pendent alkyl chain lengths in organic linkers. This approach yields homochiral 3D COFs 13-OR with a 10-fold interpenetrated diamondoid structure (R=H, Me, Et, nPr, nBu) from enantiopure 1,1'-bi-2-naphthol (BINOL)-based tetraaldehydes and tetraamine. COF-13-OEt exhibits macroscopic chirality as right-handed and left-handed superhelical fibers, whereas others adopt spherical or non-helical morphologies. Time-tracking shows a self-assembly process from non-helical strands to single-stranded helical fibers and intertwined superhelices. Ethoxyl substituents, being of optimal size, balance solvophobic effects and intermolecular interactions, driving the formation of superhelical nanostructures, with handedness determined by BINOL chirality. The superhelical nature of these materials is evident in their chiral recognition and spin-filter properties, showing significantly improved enantiodiscrimination in carbohydrate binding (up to six times higher enantioselectivity) and a remarkable chiral-induced spin selectivity (CISS) effect with a 48-51 % spin polarization ratio, a feature absent in non-helical analogs.
Collapse
Affiliation(s)
- Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Kaixuan Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yu Guo
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaofeng Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
9
|
Ge S, Wang X, Zhao X, Yuan L, Bao X, Sun C, Gong Z, Guo J, Yuan S, Hu D, Yang J, Yuan B, Zhang G. Responsive Multi-Arm PEG-Modified COF Nanocomposites: Dynamic Photothermal, pH/ROS Dual-Responsive, Targeted Carriers for Rheumatoid Arthritis Treatment. Adv Healthc Mater 2024; 13:e2401744. [PMID: 38885286 DOI: 10.1002/adhm.202401744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic immune disease characterized by the infiltration of immune cells and the proliferation of fibroblast-like synoviocytes (FLS) at the joint site, leading to inflammation and joint destruction. However, the available treatment options targeting both inflammatory and proliferative FLS are limited. Herein, this work presents three covalent organic frameworks (COFs) photothermal composite systems modified with multi-armed polyethylene glycols (PEG) for the treatment of RA. These systems exhibit a dual response under low pH and high reactive oxygen species (ROS) conditions at the site of inflammation, with a specific focus on delivering the protein drug ribonuclease A (RNase A). Notably, molecular docking studies reveal the interaction between RNase A and NF-κB p65 protein, and Western blotting confirm its inhibitory effect on NF-κB activity. In vitro and in vivo experiments verify the significant reduction in joint swelling and deformities in adjuvant-induced arthritis (AIA) rats after treatment with RNase A delivered by multi-armed PEG-modified COF ligands, restoring joint morphology to normal. These findings underscore the promising therapeutic potential of COFs for the treatment of RA, highlighting their unique capabilities in addressing both inflammatory and proliferative aspects of the disease and expanding the scope of biomedical applications for COFs.
Collapse
MESH Headings
- Animals
- Polyethylene Glycols/chemistry
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/therapy
- Rats
- Reactive Oxygen Species/metabolism
- Nanocomposites/chemistry
- Nanocomposites/therapeutic use
- Hydrogen-Ion Concentration
- Metal-Organic Frameworks/chemistry
- Metal-Organic Frameworks/pharmacology
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/chemistry
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/therapy
- Arthritis, Experimental/metabolism
- Humans
- Drug Carriers/chemistry
- Male
- Molecular Docking Simulation
- Synoviocytes/metabolism
- Synoviocytes/drug effects
Collapse
Affiliation(s)
- Saisai Ge
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinru Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lingling Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xuewei Bao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Caidie Sun
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zehua Gong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
10
|
Mahapatra S, Qian D, Zhang R, Yang S, Li P, Feng Y, Zhang L, Wu H, Seale JSW, Das PJ, Jha PK, Kohlstedt KL, Olvera de la Cruz M, Stoddart JF. Hydrogen-Bonded Fibrous Nanotubes Assembled from Trigonal Prismatic Building Blocks. J Am Chem Soc 2024; 146:21689-21699. [PMID: 39073091 DOI: 10.1021/jacs.4c05804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
In reticular chemistry, molecular building blocks are designed to create crystalline open frameworks. A key principle of reticular chemistry is that the most symmetrical networks are the likely outcomes of reactions, particularly when highly symmetrical building blocks are involved. The strategy of synthesizing low-dimensional networks aims to reduce explicitly the symmetry of the molecular building blocks. Here we report the spontaneous formation of hydrogen-bonded fibrous structures from trigonal prismatic building blocks, which were designed to form three-dimensional crystalline networks on account of their highly symmetrical structures. Utilizing different microscopic and spectroscopic techniques, we identify the structures at the early stages of the assembly process in order to and understand the growth mechanism. The symmetrical molecular building blocks are incorporated preferentially in the longitudinal direction, giving rise to anisotropic hydrogen-bonded porous organic nanotubes. Entropy-driven anisotropic growth provides micrometer-scale unidirectional nanotubes with high porosity. By combining experimental evidence and theoretical modeling, we have obtained a deep understanding of the nucleation and growth processes. Our findings offer fundamental insight into the molecular design of tubular structures. The nanotubes evolve further in the transverse directions to provide extended higher-order fibrous structures [nano- and microfibers], ultimately leading to large-scale interconnected hydrogen-bonded fiber-like structures with twists and turns. Our work provides fundamental understanding and paves the way for innovative molecular designs in low-dimensional networks.
Collapse
Affiliation(s)
- Sayantan Mahapatra
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Dingwen Qian
- Applied Physics Graduate Program, Northwestern University, Evanston, Illinois 60208, United States
| | - Ruihua Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Shuliang Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Penghao Li
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677, United States
| | - Yuanning Feng
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry and Biochemistry, The University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Long Zhang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Huang Wu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
| | - James S W Seale
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Partha Jyoti Das
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Prateek K Jha
- Department of Chemical Engineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Kevin Lee Kohlstedt
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Monica Olvera de la Cruz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - J Fraser Stoddart
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemistry, The University of Hong Kong, Hong Kong SAR 999077, China
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
11
|
Koner K, Sasmal HS, Shetty D, Banerjee R. Thickness-Driven Synthesis and Applications of Covalent Organic Framework Nanosheets. Angew Chem Int Ed Engl 2024; 63:e202406418. [PMID: 38726702 DOI: 10.1002/anie.202406418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Indexed: 06/21/2024]
Abstract
Covalent organic frameworks (COFs) are two-dimensional, crystalline porous framework materials with numerous scopes for tunability, such as porosity, functionality, stability and aspect ratio (thickness to length ratio). The manipulation of π-stacking in COFs results in truly 2D materials, namely covalent organic nanosheets (CONs), adds advantages in many applications. In this Minireview, we have discussed both top-down (COFs→CONs) and bottom-up (molecules→CONs) approaches with precise information on thickness and lateral growth. We have showcased the research progress on CONs in a few selected applications, such as batteries, catalysis, sensing and biomedical applications. This Minireview specifically highlights the reports where the authors compare the performance of CONs with COFs by demonstrating the impact of the thickness and lateral growth of the nanosheets. We have also provided the possible scope of exploration of CONs research in terms of inter-dimensional conversion, such as graphene to carbon nanotube and future technologies.
Collapse
Affiliation(s)
- Kalipada Koner
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Himadri Sekhar Sasmal
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
| | - Dinesh Shetty
- Department of Chemistry & Center for Catalysis and Separations (CeCaS), Khalifa University of Science & Technology, PO Box 127788, Abu Dhabi, United Arab Emirates
| | - Rahul Banerjee
- Centre for Advanced Functional Materials, Department of Chemical Science, Indian Institute of Science Education and Research, Kolkata, Mohanpur, 741246, India
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro Seongbuk-gu, Seoul, Korea
| |
Collapse
|
12
|
Xu T, Wang Z, Zhang W, An S, Wei L, Guo S, Huang Y, Jiang S, Zhu M, Zhang YB, Zhu WH. Constructing Photocatalytic Covalent Organic Frameworks with Aliphatic Linkers. J Am Chem Soc 2024; 146:20107-20115. [PMID: 38842422 DOI: 10.1021/jacs.4c04244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
Photocatalytic covalent organic frameworks (COFs) are typically constructed with rigid aromatic linkers for crystallinity and extended π-conjugation. However, the essential hydrophobicity of the aromatic backbone can limit their performances in water-based photocatalytic reactions. Here, we for the first time report the synthesis of hydrophilic COFs with aliphatic linkers [tartaric acid dihydrazide (TAH) and butanedioic acid dihydrazide] that can function as efficient photocatalysts for H2O2 and H2 evolution. In these hydrophilic aliphatic linkers, the specific multiple hydrogen bonding networks not only enhance crystallization but also ensure an ideal compatibility of crystallinity, hydrophilicity, and light harvesting. The resulting aliphatic linker COFs adopt an unusual ABC stacking, giving rise to approximately 0.6 nm nanopores with an improved interaction with water guests. Remarkably, both aliphatic linker-based COFs show strong visible light absorption, along with a narrow optical band gap of ∼1.9 eV. The H2O2 evolution rate for TAH-COF reaches up to 6003 μmol h-1 g-1, in the absence of sacrificial agents, surpassing the performance of all previously reported COF-based photocatalysts. Theoretical calculations reveal that the TAH linker can enhance the indirect two-electron oxygen reduction reaction for H2O2 production by improving the O2 adsorption and stabilizing the *OOH intermediate. This study opens a new avenue for constructing semiconducting COFs using nonaromatic linkers.
Collapse
Affiliation(s)
- Ting Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Weiwei Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuhao An
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Lei Wei
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shaomeng Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yanlin Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wei-Hong Zhu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Shanghai Key Laboratory of Functional Materials Chemistry, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Dey K, Koner K, Mukhopadhyay RD, Shetty D, Banerjee R. Porous Organic Nanotubes: Chemistry of One-Dimensional Space. Acc Chem Res 2024; 57:1839-1850. [PMID: 38886130 DOI: 10.1021/acs.accounts.4c00224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
ConspectusOne-dimensional organic nanotubes feature unique properties, such as confined chemical environments and transport channels, which are highly desirable for many applications. Advances in synthetic methods have enabled the creation of different types of organic nanotubes, including supramolecular, hydrogen-bonded, and carbon nanotube analogues. However, challenges associated with chemical and mechanical stability along with difficulties in controlling aspect ratios remain a significant bottleneck. The fascination with structured porous materials has paved the way for the emergence of reticular solids such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and organic cages. Reticular materials with tubular morphology promise architectural stability with the additional benefit of permeant porosity. Despite this, the current synthetic approaches to these reticular nanotubes focus more on structural design resulting in less reliable morphological uniformity. This Account, highlights the design motivation behind various classes of organic nanotubes, emphasizing their porous interior space. We explore the strategic assembly of organic nanotubes based on their bonding characteristics, from weak supramolecular to robust covalent interactions. Special attention is given to reticular nanotubes, which have gained prominence over the past two decades due to their distinctive micro and mesoporous structures. We examine the synergy of covalent and noncovalent interactions in constructing assembly of these nanotube structures.This Account furnishes a comprehensive overview of our efforts and advancements in developing porous covalent organic nanotubes (CONTs). We describe a general synthetic approach for creating robust imine-linked nanotubes based on the reticular chemistry principles. The use of spatially oriented tetratopic triptycene-based amine and linear ditopic aldehyde building blocks facilitates one-dimensional nanotube growth. The interplay between directional covalent bonds and solvophobic interactions is crucial for forming uniform, well-defined, and high aspect ratio nanotubes. The nanotubes derive their permeant porosity and thermal and chemical stability from their covalent architecture. We also highlight the adaptability of our synthetic methodology to guide the transformation of one-dimensional nanotubes to toroidal superstructures and two-dimensional thin fabrics. Such morphological transformation can be directed by tuning the reaction time or incorporating additional intermolecular interactions to control the intertwining behavior of individual nanotubes. The cohesion of covalent and noncovalent interactions in the tubular nanostructures manifests superior viscoelastic mechanical properties in the assembled CONT fabrics. We establish a strong correlation between structural framework design and nanostructures by translating reticular synthesis to morphological space and gaining insights into the assembly processes. We anticipate that the present Account will lay the foundation for exploring new designs and chemistry of organic nanotubes for many application platforms.
Collapse
Affiliation(s)
- Kaushik Dey
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Kalipada Koner
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
| | - Rahul Dev Mukhopadhyay
- Department of Chemistry, Faculty of Engineering & Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Tamil Nadu India
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University Science and Technology, Abu Dhabi, 127788 United Arab Emirates
- Center for Catalysis & Separations (CeCaS), Khalifa University Science and Technology, Abu Dhabi, 127788 United Arab Emirates
| | - Rahul Banerjee
- Department of Chemical Sciences, Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur Campus, Mohanpur 741246, India
- College of Science, Korea University, 145 Anam-ro Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
14
|
Fang Y, Liu Y, Huang H, Sun J, Hong J, Zhang F, Wei X, Gao W, Shao M, Guo Y, Tang Q, Liu Y. Design and synthesis of broadband absorption covalent organic framework for efficient artificial photocatalytic amine coupling. Nat Commun 2024; 15:4856. [PMID: 38849337 PMCID: PMC11161580 DOI: 10.1038/s41467-024-49036-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Developing highly active materials that efficiently utilize solar spectra is crucial for photocatalysis, but still remains a challenge. Here, we report a new donor-acceptor (D-A) covalent organic framework (COF) with a wide absorption range from 200 nm to 900 nm (ultraviolet-visible-near infrared light). We find that the thiophene functional group is accurately introduced into the electron acceptor units of TpDPP-Py (TpDPP: 5,5'-(2,5-bis(2-ethylhexyl)-3,6-dioxo-2,3,5,6-tetrahydropyrrolo [3,4-c]pyrrole-1,4-diyl)bis(thiophene-2-carbaldehyde), Py: 1,3,6,8-tetrakis(4-aminophenyl)pyrene) COFs not only significantly extends its spectral absorption capacity but also endows them with two-photon and three-photon absorption effects, greatly enhancing the utilization rate of sunlight. The selective coupling of benzylamine as the target reactant is used to assess the photocatalytic activity of TpDPP-Py COFs, showing high photocatalytic conversion of 99% and selectivity of 98% in 20 min. Additionally, the TpDPP-Py COFs also exhibit the universality of photocatalytic selective coupling of other imine derivatives with ~100% conversion efficiency. Overall, this work brings a significant strategy for developing COFs with a wide absorption range to enhance photocatalytic activity.
Collapse
Affiliation(s)
- Yuanding Fang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jianzhe Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Jiaxing Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Fan Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Xiaofang Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Mingchao Shao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China.
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 130024, Changchun, China.
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry Chinese Academy of Sciences, 100190, Beijing, China.
| |
Collapse
|
15
|
Su Y, Li B, Wang Z, Legrand A, Aoyama T, Fu S, Wu Y, Otake KI, Bonn M, Wang HI, Liao Q, Urayama K, Kitagawa S, Huang L, Furukawa S, Gu C. Quasi-Homogeneous Photocatalysis in Ultrastiff Microporous Polymer Aerogels. J Am Chem Soc 2024; 146:15479-15487. [PMID: 38780095 DOI: 10.1021/jacs.4c03862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The development of efficient and low-cost catalysts is essential for photocatalysis; however, the intrinsically low photocatalytic efficiency as well as the difficulty in using and recycling photocatalysts in powder morphology greatly limit their practical performance. Herein, we describe quasi-homogeneous photocatalysis to overcome these two limitations by constructing ultrastiff, hierarchically porous, and photoactive aerogels of conjugated microporous polymers (CMPs). The CMP aerogels exhibit low density but high stiffness beyond 105 m2 s-2, outperforming most low-density materials. Extraordinary stiffness ensures their use as robust scaffolds for scaled photocatalysis and recycling without damage at the macroscopic level. A challenging but desirable reaction for direct deaminative borylation is demonstrated using CMP aerogel-based quasi-homogeneous photocatalysis with gram-scale productivity and record-high efficiency under ambient conditions. Combined terahertz and transient absorption spectroscopic studies unveil the generation of high-mobility free carriers and long-lived excitonic species in the CMP aerogels, underlying the observed superior catalytic performance.
Collapse
Affiliation(s)
- Yan Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, PR China
| | - Bo Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Zaoming Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
- Unité de Catalyse et Chimie du Solide (UCCS), CNRS, Centrale Lille, Université de Lille, Université d'Artois, UMR 8181, Lille F-59000, France
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shuai Fu
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
| | - Yishi Wu
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
| | - Hai I Wang
- Max Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55122, Germany
- Nanophotonics, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 1, Utrecht 3584 CC, The Netherlands
| | - Qing Liao
- Beijing Key Laboratory for Optical Materials and Photonic Devices, Department of Chemistry, Capital Normal University, Beijing 100048, PR China
| | - Kenji Urayama
- Department of Material Chemistry, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Liangbin Huang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, PR China
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Cheng Gu
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, No. 381 Wushan Road, Tianhe District, Guangzhou 510640, PR China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|
16
|
Sadhukhan A, Karmakar A, Koner K, Karak S, Sharma RK, Roy A, Sen P, Dey KK, Mahalingam V, Pathak B, Kundu S, Banerjee R. Functionality Modulation Toward Thianthrene-based Metal-Free Electrocatalysts for Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310938. [PMID: 38245860 DOI: 10.1002/adma.202310938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/08/2024] [Indexed: 01/22/2024]
Abstract
The development of metal-free bifunctional electrocatalysts for hydrogen and oxygen evolution reactions (HER and OER) is significant but rarely demonstrated. Porous organic polymers (POPs) with well-defined electroactive functionalities show superior performance in hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Precise control of the active sites' local environment requires careful modulation of linkers through the judicious selection of building units. Here, a systematic strategy is introduced for modulating functionality to design and synthesize a series of thianthrene-based bifunctional sp2 C═C bonded POPs with hollow spherical morphologies exhibiting superior electrocatalytic activity. This precise structural tuning allowed to gain insight into the effects of heteroatom incorporation, hydrophilicity, and variations in linker length on electrocatalytic activity. The most efficient bifunctional electrocatalyst THT-PyDAN achieves a current density of 10 mA cm─2 at an overpotential (η10) of ≈65 mV (in 0.5 m H2SO4) and ≈283 mV (in 1 m KOH) for HER and OER, respectively. THT-PyDAN exhibits superior activity to all previously reported metal-free bifunctional electrocatalysts in the literature. Furthermore, these investigations demonstrate that THT-PyDAN maintains its performance even after 36 h of chronoamperometry and 1000 CV cycling. Post-catalytic characterization using FT-IR, XPS, and microscopic imaging techniques underscores the long-term durability of THT-PyDAN.
Collapse
Affiliation(s)
- Arnab Sadhukhan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research Ghaziabad 201002 India, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Kalipada Koner
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Rahul Kumar Sharma
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Avishek Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Prince Sen
- Department of Physics, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - Krishna Kishor Dey
- Department of Physics, Dr. Harisingh Gour Vishwavidyalaya, Sagar, Madhya Pradesh, 470003, India
| | - Venkataramanan Mahalingam
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research Ghaziabad 201002 India, Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
- Centre for Advance Functional Materials, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| |
Collapse
|
17
|
Wu X, Tang X, Zhang K, Harrod C, Li R, Wu J, Yang X, Zheng S, Fan J, Zhang W, Li X, Cai S. Tuning the Topology of Two-Dimensional Covalent Organic Frameworks through Site-Selective Synthetic Strategy. Chemistry 2024; 30:e202303781. [PMID: 38196025 DOI: 10.1002/chem.202303781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Tuning the topology of two-dimensional (2D) covalent organic frameworks (COFs) is of paramount scientific interest but remains largely unexplored. Herein, we present a site-selective synthetic strategy that enables the tuning of 2D COF topology by simply adjusting the molar ratio of an amine-functionalized dihydrazide monomer (NH2 -Ah) and 4,4',4''-(1,3,5-triazine-2,4,6-triyl)tribenzaldehyde (Tz). This approach resulted in the formation of two distinct COFs: a clover-like 2D COF with free amine groups (NH2 -Ah-Tz) and a honeycomb-like COF without amine groups (Ah-Tz). Both COFs exhibited good crystallinity and moderate porosity. Remarkably, the clover-shaped NH2 -Ah-Tz COF, with abundant free amine groups, displayed significantly enhanced adsorption capacities toward crystal violet (CV, 261 mg/g) and congo red (CR, 1560 mg/g) compared to the non-functionalized honeycomb-like Ah-Tz COF (123 mg/g for CV and 1340 mg/g for CR), underscoring the pivotal role of free amine functional groups in enhancing adsorption capacities for organic dyes. This work highlights that the site-selective synthetic strategy paves a new avenue for manipulating 2D COF topology by adjusting the monomer feeding ratio, thereby modulating their adsorption performances toward organic dyes.
Collapse
Affiliation(s)
- Xueying Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chelsea Harrod
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Rui Li
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jialin Wu
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Xi Yang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| | - Xinle Li
- Department of Chemistry, Clark Atlanta University, Atlanta, Georgia, 30314, United States
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, and Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, Guangzhou, 510006, China
- Guangdong Longsmall Biochemical Technology Co. Ltd., Qingyuan, 511517, China
| |
Collapse
|
18
|
Mabuchi H, Irie T, Sakai J, Das S, Negishi Y. Covalent Organic Frameworks: Cutting-Edge Materials for Carbon Dioxide Capture and Water Harvesting from Air. Chemistry 2024; 30:e202303474. [PMID: 38078517 DOI: 10.1002/chem.202303474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Indexed: 01/12/2024]
Abstract
The implacable rise of carbon dioxide (CO2 ) concentration in the atmosphere and acute water stress are one of the central challenges of our time. Present-day chemistry is strongly inclined towards more sustainable solutions. Covalent organic frameworks (COFs), attributable to their structural designability with atomic precision, functionalizable chemical environment and robust extended architectures, have demonstrated promising performances in CO2 trapping and water harvesting from air. In this Review, we discuss the major developments in this field as well as sketch out the opportunities and shortcomings that remain over large-scale COF synthesis, device engineering, and long-term performance in real environments.
Collapse
Affiliation(s)
- Haruna Mabuchi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Tsukasa Irie
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo, 162-8601, Japan
| |
Collapse
|
19
|
Yang Y, Lin E, Wang S, Wang T, Wang Z, Zhang Z. Single-Crystal One-Dimensional Porous Ladder Covalent Polymers. J Am Chem Soc 2024; 146:782-790. [PMID: 38165084 DOI: 10.1021/jacs.3c10812] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The synthesis of single-crystal, one-dimensional (1D) polymers is of great importance but a formidable challenge. Herein, we report the synthesis of single-crystal 1D ladder polymers in solution by dynamic covalent chemistry. The three-dimensional electron diffraction technique was used to rigorously solve the structure of the crystalline polymers, unveiling that each polymer chain is connected by double covalent bridges and all polymer chains are packed in a staggered and interlaced manner by π-π stacking and hydrogen bonding interactions, making the crystalline polymers highly robust in both thermal and chemical stability. The synthesized single-crystal polymers possess permanent micropores and can efficiently remove CO2 from the C2H2/CO2 mixture to obtain high-purity C2H2, validated by dynamic breakthrough experiments. This work demonstrates the first example of constructing single-crystal 1D porous ladder polymers with double covalent bridges in solution for efficient C2H2/CO2 separation.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - En Lin
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Sa Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhifang Wang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhenjie Zhang
- State Key Laboratory of Medicine Chemistry Biology, College of Chemistry, Nankai University, Tianjin 300071, China
- Key Laboratory of Advanced Energy Materials Chemistry, Ministry of Education, Nankai University, Tianjin 300071, China
- Frontiers Science Center for New Organic Matter, Tianjin 300071, China
- Renewable Energy Conversion and Storage Center, Nankai University, Tianjin 300071, China
| |
Collapse
|
20
|
Paul S, Gupta M, Kumar Mahato A, Karak S, Basak A, Datta S, Banerjee R. Covalent Organic Frameworks for the Purification of Recombinant Enzymes and Heterogeneous Biocatalysis. J Am Chem Soc 2024; 146:858-867. [PMID: 38159294 DOI: 10.1021/jacs.3c11169] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Recombinant enzymes have gained prominence due to their diverse functionalities and specificity and are often a greener alternative in biocatalysis. This context makes purifying recombinant enzymes from host cells and other impurities crucial. The primary goal is to isolate the pure enzyme of interest and ensure its stability under ambient conditions. Covalent organic frameworks (COFs), renowned for their well-ordered structure and permeability, offer a promising approach for purifying histidine-tagged (His-tagged) enzymes. Furthermore, immobilizing enzymes within COFs represents a growing field in heterogeneous biocatalysis. In this study, we have developed a flow-based technology utilizing a nickel-infused covalent organic framework (Ni-TpBpy COF) to combine two distinct processes: the purification of His-tagged enzymes and the immobilization of enzymes simultaneously. Our work primarily focuses on the purification of three His-tagged enzymes β-glucosidase, cellobiohydrolase, and endoglucanase as well as two proteins with varying molecular weights, namely, green fluorescent protein (27 kDa) and BG Rho (88 kDa). We employed Ni-TpBpy as a column matrix to showcase the versatility of our system. Additionally, we successfully obtained a Ni-TpBpy COF immobilized with enzymes, which can serve as a heterogeneous catalyst for the hydrolysis of p-nitrophenyl-β-d-glucopyranoside and carboxymethylcellulose. These immobilized enzymes demonstrated catalytic activity comparable to that of their free counterparts, with the added advantages of recyclability and enhanced stability under ambient conditions for an extended period, ranging from 60 to 90 days. This contrasts with the free enzymes, which do not maintain their activity as effectively over time.
Collapse
Affiliation(s)
- Satyadip Paul
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Mani Gupta
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ashok Kumar Mahato
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Shayan Karak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Ananda Basak
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Supratim Datta
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Department of Biological Sciences and Center for the Climate and Environmental Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| | - Rahul Banerjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research, Kolkata, Mohanpur 741246, India
| |
Collapse
|
21
|
Wang F, Chen Y, Gong T, Gong J. From 3D to 2D: Directional Morphological Evolution of a Three-Dimensional Covalent Organic Framework. ACS Macro Lett 2023; 12:1576-1582. [PMID: 37934863 DOI: 10.1021/acsmacrolett.3c00424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The morphology of materials has a huge impact on their properties and functions; however, the precise control and direct evolution toward specific morphologies remains challenging. Herein, we outline a novel strategy for the morphology modulation of covalent organic frameworks based on COF-300 with the diamond structure, which usually exhibits a three-dimensional shuttle morphology. A monofunctional structural regulator has been designed to break the continuity of the three-dimensional structure. As the proportion of the monofunctional structural regulator increases, the morphology of COF-300 shows a directional evolution from a shuttle morphology to a two-dimensional nanosheet, while still retaining the consistency of the crystal structure. Our study reports the first two-dimensional nanosheet based on a three-dimensional structured COF to date and will inspire future research into the traced morphological evolution in materials by predesign.
Collapse
Affiliation(s)
- Fan Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yifu Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Yiheyuan Road 5, Beijing 100871, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Tingting Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
22
|
Gong Y, Huang S, Lei Z, Wayment L, Chen H, Zhang W. Double-Walled Covalent Organic Frameworks with High Stability. Chemistry 2023; 29:e202302135. [PMID: 37556201 DOI: 10.1002/chem.202302135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/10/2023]
Abstract
Double-walled covalent organic frameworks, consisting of two same building blocks parallel to each other forming ladder-shape linkers, could enhance the stability of the frameworks and increase the density of functional sites, thus making them suitable for various applications. In this study, two double-walled covalent organic frameworks, namely DW-COF-1 and DW-COF-2, were successfully synthesized via imine condensation. The resulting DW-COFs exhibited a honeycomb topology, high crystallinity and stability. Particularly, DW-COF-2 showed excellent resistance toward boiling water, strong acid, and strong base, due to its double-walled structure, which limits the exposure of labile imine bonds to external chemical environments. The DW-COFs showed high porosity near 900 m2 /g, making them suitable for gas storage/separation. The selective gas adsorption experiments showed that at 273 K and 1 atm pressure, DW-COF-1 and DW-COF-2 exhibited a good IAST selectivity towards CO2 /N2 (15/85) adsorption, with selectivity values of 121.3 and 56.4 for CO2 over N2 , respectively.
Collapse
Affiliation(s)
- Yu Gong
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Lacey Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| |
Collapse
|
23
|
Bora H, Borpatra Gohain R, Barman P, Biswas S, Sen Sarma N, Kalita A. Assessing CO 2 Adsorption Behavior onto Free-Standing, Flexible Organic Framework-PVDF Composite Membrane: An Empirical Modeling and Validation of an Experimental Data Set. ACS OMEGA 2023; 8:36065-36075. [PMID: 37810656 PMCID: PMC10552478 DOI: 10.1021/acsomega.3c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023]
Abstract
Covalent organic framework (COF) materials have greatly expanded their range in a variety of applications since the cognitive goal of a highly organized and durable adsorbent is quite rational. The characteristics of a conjugated organic framework are combined with an industrially relevant polymer to produce a composite membrane optimized for selectively adsorbing carbon dioxide (CO2) gas across a wide temperature range. Additionally, treatment of the composite membrane with cold atmospheric plasma (CAP) that specifically enhanced the parent membrane's surface area by 36% is established. Following CAP treatment, the membrane accelerates the CO2 uptake by as much as 66%. This is primarily due to a Lewis acid-base interaction between the electron-deficient carbon atom of CO2 and the newly acquired functionalities on the COFs@PVDF membrane's surface. In particular, the C-N bonds, which appear to be a higher electron density site, play a key role in this interaction. Moreover, the empirical model proposed here has confirmed CO2 adsorption phenomena in the COF@PVDF composite membrane, which closely matches the findings from the experimental data set under designated operating conditions. As a result, the current study may pave the way for future design work as well as refine the covalent framework polymer composite membrane's features, revealing a more sophisticated approach to addressing CO2 capture problems.
Collapse
Affiliation(s)
- Hridoy
Jyoti Bora
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Reetesh Borpatra Gohain
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Pranjal Barman
- Technology
Innovation and Development Foundation, Indian
Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Subir Biswas
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Neelotpal Sen Sarma
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | - Anamika Kalita
- Physical
Sciences Division, Institute of Advanced
Study in Science and Technology, Paschim Boragaon, Guwahati, Assam 781035, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
24
|
Zhang ZW, Yang Y, Wu H, Zhang T. Advances in the two-dimensional layer materials for cancer diagnosis and treatment: unique advantages beyond the microsphere. Front Bioeng Biotechnol 2023; 11:1278871. [PMID: 37840663 PMCID: PMC10576562 DOI: 10.3389/fbioe.2023.1278871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023] Open
Abstract
In recent years, two-dimensional (2D) layer materials have shown great potential in the field of cancer diagnosis and treatment due to their unique structural, electronic, and chemical properties. These non-spherical materials have attracted increasing attention around the world because of its widely used biological characteristics. The application of 2D layer materials like lamellar graphene, transition metal dichalcogenides (TMDs), and black phosphorus (BPs) and so on have been developed for CT/MRI imaging, serum biosensing, drug targeting delivery, photothermal therapy, and photodynamic therapy. These unique applications for tumor are due to the multi-variable synthesis of 2D materials and the structural characteristics of good ductility different from microsphere. Based on the above considerations, the application of 2D materials in cancer is mainly carried out in the following three aspects: 1) In terms of accurate and rapid screening of tumor patients, we will focus on the enrichment of serum markers and sensitive signal transformation of 2D materials; 2) The progress of 2D nanomaterials in tumor MRI and CT imaging was described by comparing the performance of traditional contrast agents; 3) In the most important aspect, we will focus on the progress of 2D materials in the field of precision drug delivery and collaborative therapy, such as photothermal ablation, sonodynamic therapy, chemokinetic therapy, etc. In summary, this review provides a comprehensive overview of the advances in the application of 2D layer materials for tumor diagnosis and treatment, and emphasizes the performance difference between 2D materials and other types of nanoparticles (mainly spherical). With further research and development, these multifunctional layer materials hold great promise in the prospects, and challenges of 2D materials development are discussed.
Collapse
Affiliation(s)
- Zheng-Wei Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| | - Yang Yang
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
- Department of Hepatopancreatobiliary Surgery, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu, China
| | - Han Wu
- Department of Hepatobiliary Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Tong Zhang
- Department of Hepatopancreatobiliary Surgery, Xinghua People’s Hospital, Yangzhou University, Xinghua, Jiangsu, China
| |
Collapse
|
25
|
Li WJ, Li YM, Ren H, Ji CY, Cheng L. Improving the Bioactivity and Stability of Embedded Enzymes by Covalent Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:43580-43590. [PMID: 37672761 DOI: 10.1021/acsami.3c09459] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
De novo embedding enzymes within reticular chemistry materials have shown the enhancement of physical and chemical stability for versatile catalytic reactions. Compared to metal-organic frameworks (MOFs), covalent organic frameworks (COFs) are usually considered to be the more superior host of enzymes because of their large channels with low diffusion barriers, outstanding chemical/thermal stability, and metal-free nature. However, detailed investigations on the comparison of COFs and MOFs in enhancing biocatalytic performance have not been explored. Here, we de novo encapsulated enzymes within two COFs via a mechanochemical strategy, which avoided the extreme synthetic conditions of COFs and highly maintained the biological activities of the embedded enzymes. The enzymes@COFs biocomposites exhibited a much higher activity (3.4-14.7 times higher) and enhanced stability than those in MOFs (ZIF-8, ZIF-67, HKUST-1, MIL-53, and CaBDC), and the rate parameter (kcat/Km) of enzyme@COFs was 41.3 times higher than that of enzyme@ZIF-8. Further explorations showed that the conformation of enzymes inside MOFs was disrupted, owing to the harmful interfacial interactions between enzymes and metal ions as confirmed by ATR-FTIR, fluorescence spectroscopy, and XPS data. In contrast, enzymes that were embedded in metal-free COFs highly preserved the natural conformation of free enzymes. This study provides a better understanding of the interfacial interactions between reticular supports and enzymes, which paves a new road for optimizing the bioactivities of immobilized enzymes.
Collapse
Affiliation(s)
- Wen-Jing Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yi-Ming Li
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
- School of Chemistry and Chemical Engineering, Anhui University, Hefei 230601, P. R. China
| | - Hao Ren
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Chun-Yan Ji
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Lin Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|