1
|
Lin X, Zhou P, An M, Zhu C, Pang Y, Xiao R. Ligand-Driven Annular-Epitaxial Growth of CuS-Au Heterostructures as Trinity Plasmonic Nanozyme for Multimode Diagnosis of Pathogenic Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2500134. [PMID: 40270443 DOI: 10.1002/advs.202500134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/23/2025] [Indexed: 04/25/2025]
Abstract
This study presents a novel method to control the site-selective growth of Au nanostars on CuS nanodisc substrate, it indicates that the surfactant ligands play a key role in the architecture control, only CTAC and homologous series with appropriate affinity to CuS can direct the annular-epitaxial growth of Au nanoparticles on the CuS, which demonstrates superior peroxidase (POD)-mimic and SERS activity. Mechanistic studies indicate that plasmon-enhanced catalytic and SERS activity can be attributed to the spatially separated CuS-Au heterostructure, which supports the light-triggered hot electron-hole pairs production and localized surface plasmon resonance hotspots. For practical biosensing, the CuS-Au heterostructures assembled lateral flow assay (LFA) was used for SERS/catalytic colorimetric/photothermal three-mode detection of Streptococcus pneumoniae and Klebsiella pneumoniae, with visually colorimetric mode at 103 CFU/mL and quantitative SERS/photothermal modes at 2-102 CFU/mL within 15 min, 15 clinical samples were used to validate the assay, the result was 100% concordant to the results of quantitative real-time PCR. This study provides a unique avenue to controllably produce plasmon-enhanced nanozyme, which can provide multi-mode signals for LFA application and meet the requirements of different scenarios.
Collapse
Affiliation(s)
- Xiaorui Lin
- Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Pengyou Zhou
- Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Miao An
- Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Chenyi Zhu
- Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Yuanfeng Pang
- Capital Medical University, No.10 Xitoutiao, You An Men, Beijing, 100069, China
| | - Rui Xiao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, 100071, China
| |
Collapse
|
2
|
Wang Y, Wang J, Liu S, Zhang X, Jin L, Feng L, Kong D, Zhang C, Wei Y, Zhang J. Cerium Dioxide-Induced Abundant Cu +/Cu 0 Sites for Electrocatalytic Reduction of Carbon Dioxide to C 2+ Products. CHEMSUSCHEM 2025; 18:e202402097. [PMID: 39557637 DOI: 10.1002/cssc.202402097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/20/2024]
Abstract
In recent years, the electrochemical reduction of carbon dioxide (CO2RR) has made many advances in C2+ production. Cu+/Cu0 site is beneficial for C-C coupling process, but the oxidation state of copper cannot be well maintained during the reaction process, resulting in a decrease in catalyst activity. Based on this consideration, in this work, transition metal oxide CeO2 with a hollow cube structure and oxygen vacancies was introduced to stabilize and increase Cu+/Cu0 active sites (Ce1Cu2). The catalyst exhibits excellent CO2RR performance, with FEC2+ achieving 73.52 % and jC2+ >280 mA/cm2 at 1.26 V (vs. RHE). Ethanol is the main C2+ product and FEethanol reaches 39 % at 1.26 V. The experimental results indicate that the presence of CeO2 provides a large number of oxygen vacancies and forming Cu+-O2--Ce4+ structure by the strong interaction of CeO2 and Cu NPs. The structure of Cu+-O2--Ce4+ and abundant oxygen vacancies lay a good foundation for the CO2 adsorption. Moreover, it increases the content of Cu+/Cu0 sites, effectively inhibiting hydrogen evolution reaction, promoting the C-C coupling interaction, thereby facilitating the generation of C2+ products. The DFT theoretical calculation further demonstrates that Ce1Cu2 is more inclined towards the ethanol pathway, confirming its high selectivity for ethanol.
Collapse
Affiliation(s)
- Yuwen Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Jiajun Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Shuang Liu
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Xuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Lin Jin
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Lanlan Feng
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Demeng Kong
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Chenxi Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Yajuan Wei
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| | - Jingbo Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin, 300387, China
| |
Collapse
|
3
|
Wang J, Tang W, Zhu Z, Lin Y, Zhao L, Chen H, Qi X, Niu X, Chen JS, Wu R. Stabilizing Lattice Oxygen of Bi 2O 3 by Interstitial Insertion of Indium for Efficient Formic Acid Electrosynthesis. Angew Chem Int Ed Engl 2025; 64:e202423658. [PMID: 39803713 DOI: 10.1002/anie.202423658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025]
Abstract
Bismuth oxide (Bi2O3) emerges as a potent catalyst for converting CO2 to formic acid (HCOOH), leveraging its abundant lattice oxygen and the high activity of its Bi-O bonds. Yet, its durability is usually impeded by the loss of lattice oxygen causing structure alteration and destabilized active bonds. Herein, we report an innovative approach via the interstitial incorporation of indium (In) into the Bi2O3, significantly enhancing bond stability and preserving lattice oxygen. The optimized In-Bi2O3-100 catalyst achieves over 90 % Faradaic efficiency for HCOOH production across a wide potential range, in both H-cells and flow cells, maintaining robust stability after 100 hours of continuous operation. In situ surface-enhanced infrared absorption spectroscopy and theoretical calculations reveal that the interstitial In doping precisely tunes the adsorption of CO2* and OCHO* intermediate, facilitating rapid conversion. Further in situ Raman spectroscopy confirms the role of In bolstering the oxidized structure's stability within Bi2O3, critical for sustaining lattice oxygen during electrochemical CO2 reduction.
Collapse
Affiliation(s)
- Junjie Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wu Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Zhaozhao Zhu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Yingxi Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lei Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Haiyuan Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Xiaobin Niu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Jun Song Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518000, China
| | - Rui Wu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 610054, China
| |
Collapse
|
4
|
Wang J, Bui HTD, Wang X, Lv Z, Hu H, Kong S, Wang Z, Liu L, Chen W, Bi H, Yang M, Brinck T, Wang J, Huang F. A Copper-Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction. J Am Chem Soc 2025; 147:8012-8023. [PMID: 39964092 PMCID: PMC11887442 DOI: 10.1021/jacs.5c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 03/06/2025]
Abstract
The electrocatalytic nitrite reduction (NO2RR) converts nitrogen-containing pollutants to high-value ammonia (NH3) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH3 selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper-zinc cyanamide (Cu0.8Zn0.2NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO2-. It exhibits outstanding NO2RR performance with a Faradaic efficiency of ∼100% and an NH3 yield of 22 mg h-1 cm-2, among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu-Zn sites coordinated with linear polarized [NCN]2- could transform symmetric [Cu-O-N-O-Cu] in CuNCN-NO2- to a [Cu-N-O-Zn] asymmetric configuration in Cu0.8Zn0.2NCN-NO2-, thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu0.8Zn0.2NCN cathode reaches 2000 mA cm-2 at 2.36 V and remains fully operational at industrial-level 400 mA cm-2 for >140 h with a NH3 production rate of ∼30 mgNH3 h-1 cm-2. Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.
Collapse
Affiliation(s)
- Jiacheng
Jayden Wang
- The
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
- Center
of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huong T. D. Bui
- Department
of Chemistry, CBH, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden
| | - Xunlu Wang
- School
of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhuoran Lv
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huashuai Hu
- School
of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuyi Kong
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiqiang Wang
- Department
of Chemistry, Western University, 1151 Richmond Street, London, ON N6A5B7, Canada
| | - Lijia Liu
- Department
of Chemistry, Western University, 1151 Richmond Street, London, ON N6A5B7, Canada
| | - Wei Chen
- Department
of Materials Design and Innovation, University
at Buffalo, The State University of New York, Buffalo, New York 14260, United States
| | - Hui Bi
- The
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
| | - Minghui Yang
- School
of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tore Brinck
- Department
of Chemistry, CBH, KTH Royal Institute of
Technology, SE-100 44 Stockholm, Sweden
| | - Jiacheng Wang
- The
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
- Zhejiang
Key Laboratory for Island Green Energy and New Materials, Institute
of Electrochemistry, School of Materials Science and Engineering, Taizhou University, Taizhou 318000, China
- Key
Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Fuqiang Huang
- The
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of
Sciences, Shanghai 200050, China
- State
Key Laboratory of Metal Matrix Composites, School of Materials Science
and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Liu C, Wang L, Yang H, Ding Y, Zhao Z, Zhang P, Li F, Sun L, Li F. Construction of an Indium-Based Coordination Polymer with Redox Non-Innocent Ligand for High-Efficient Electrochemical CO 2 Reduction. CHEMSUSCHEM 2025:e202500020. [PMID: 39828640 DOI: 10.1002/cssc.202500020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 01/18/2025] [Indexed: 01/22/2025]
Abstract
Developing high-activity and long-term stable electrocatalysts for electrochemical CO2 reduction reaction (eCO2RR) to valuable products is still a challenge. An in-depth understanding of reaction mechanisms and the structure-function relationship is required for the development of an advanced catalytic eCO2RR system. Herein, a coordination polymer of indium(III) and benzenehexathiol (BHT) was developed as an electrocatalyst (In-BHT) for eCO2RR to HCOO-, which displayed an outstanding catalytic performance over the entire pH range. However, experimental results revealed significantly different catalytic pathways in the acid and neutral/alkaline solutions, which are attributed to the influence of redox non-innocent ligands on the rate-determining step (RDS). In the acid solution, the RDS is the formation of *OCOH intermediate through the proton transfer that originates from H2O in the solution, leading to relatively sluggish kinetics. But in the neutral or alkaline solution, the thiolate groups could be protonated during the catalytic process, and such proton can attack on carbon of absorbed CO2 via an intramolecular proton transfer, promoting the formation of *OCHO intermediate, resulting in faster kinetics. Our findings revealed the pivotal roles of the redox non-innocent ligands of metal active sites for eCO2RR, providing a new idea for designing highly efficient electrocatalysts.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Linqin Wang
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Hao Yang
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
| | - Ziqi Zhao
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Peili Zhang
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Fei Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| | - Licheng Sun
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Fusheng Li
- State Key Laboratory of Fine Chemicals, Frontier Science Center for Smart Materials, Dalian University of Technology, Dalian, Liaoning, 116024, China
| |
Collapse
|
6
|
Zheng Y, Sun P, Liu S, Nie W, Bao H, Men L, Li Q, Su Z, Wan Y, Xia C, Xie H. Solar energy powered electrochemical reduction of CO 2 on In 2O 3 nanosheets with high energy conversion efficiency at a large current density. J Colloid Interface Sci 2025; 678:722-731. [PMID: 39217688 DOI: 10.1016/j.jcis.2024.08.177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/22/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Electrochemical CO2 reduction (ECO2R) to value-added chemicals offers a promising approach to both mitigate CO2 emission and facilitate renewable energy conversion. We demonstrate a solar energy powered ECO2R system operating at a relatively large current density (57 mA cm-2) using In2O3 nanosheets (NSs) as the cathode and a commercial perovskite solar cell as the electricity generator, which achieves the high solar to formate energy conversion efficiency of 6.6 %. The significantly enhanced operative current density with a fair solar energy conversion efficiency on In2O3 NSs can be ascribed to their high activity and selectivity for formate production, as well as the fast kinetics for ECO2R. The Faradic efficiencies (FEs) of formate In2O3 NSs are all above 93 %, with the partial current density of formate ranging from 2.3 to 342 mA cm-2 in a gas diffusion flow cell, which is among the widest for formate production on In-based catalysts. In-situ Raman spectroscopy and density functional theory simulations reveal that the exceptional performances of formate production on In2O3 NSs originates from the presence of abundant low coordinated edge sites, which effectively promote the selective adsorption of *OCHO while inhibiting *H adsorption.
Collapse
Affiliation(s)
- Yan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Pengting Sun
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Shuxia Liu
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Wenzheng Nie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Huihui Bao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Linglan Men
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhongti Su
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yangyang Wan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Huan Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
7
|
Li RY, Yuan W, Wang S, Zhang P, Wu H, Su YM, Wen EL, Zhu X, Zhai QG. Controllable Regulation of CO 2 Adsorption Behavior via Precise Charge Donation Modulation for Highly Selective CO 2 Electroreduction to Formic Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408351. [PMID: 39449203 DOI: 10.1002/smll.202408351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/13/2024] [Indexed: 10/26/2024]
Abstract
The synthesis of value-added products via CO2 electroreduction (CO2ER) is of great significance, but the development of efficient and versatile strategies for the controllable selectivity tuning is extremely challenging. Herein, the tuning of CO2ER selectivity through the modulation of CO2 adsorption behavior is proposed. Using the constructed zeolitic MOF (SNNU-339), CO2 adsorption behavior is controllably changed from *CO2 to CO2* via the precise ligand-to-metal charge donation (LTMCD) regulation. It is confirmed that the high electronegativity of the coordinate ligand directly restricts the LTMCD, reduces the charge density on the metal sites, lowers the Gibbs free energy for CO2* adsorption, and leads to the transformation of CO2 adsorption mode from *CO2 to CO2*. Owing to the modulated CO2 adsorption behavior and regulated kinetics, SNNU-339 exhibits superior HCOOH selectivity (≈330% promotion, 85.6% Faradaic efficiency) and high CO2ER activity. The wide applicability of the proposed approach sheds light on the efficient CO2ER. This study provides a competitive strategy for rational catalyst design and underscores the significance of adsorption behavior tuning in electrocatalysis.
Collapse
Affiliation(s)
- Rou-Yu Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normsal University, Xi'an, Shaanxi, 710062, China
| | - Wenyu Yuan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normsal University, Xi'an, Shaanxi, 710062, China
| | - Shuo Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normsal University, Xi'an, Shaanxi, 710062, China
| | - Peng Zhang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Heng Wu
- Qinghai Photovoltaic Industry Innovation Centre Co. Ltd, State Power Investment Corporation, Xining, Qinghai, 810000, China
| | - Yi-Min Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normsal University, Xi'an, Shaanxi, 710062, China
| | - En-Lei Wen
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normsal University, Xi'an, Shaanxi, 710062, China
| | - Xiaolin Zhu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normsal University, Xi'an, Shaanxi, 710062, China
| | - Quan-Guo Zhai
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normsal University, Xi'an, Shaanxi, 710062, China
| |
Collapse
|
8
|
Kong Y, Jiang B, Tian Y, Liu R, Shaik F. Tailoring vinegar residue-derived all-carbon electrodes for efficient electrocatalytic carbon dioxide reduction to formate through heteroatom doping and defect enrichment. J Colloid Interface Sci 2024; 676:283-297. [PMID: 39029254 DOI: 10.1016/j.jcis.2024.07.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/28/2024] [Accepted: 07/10/2024] [Indexed: 07/21/2024]
Abstract
Electrocatalytic carbon dioxide reduction (ECO2R) to formate is the most technically and economically feasible approach to achieve electrochemical CO2 value addition. Here, a few-layer graphene is prepared from vinegar residue. Then a series of heteroatom-doped vertical graphene electrodes (X-rGO, X=P/S/N/B/, NS/NP/NB, NSP/NSB/NPB/NSPB) are prepared. The NS-rGO has improved ECO2R to formate selectivity (Faraday Efficiency (FEHCOO-) = 78.7 %) thanks to the synergistic effect between N and S. Carbon quantum dots (CQDs) are introduced into the electrode, the doped heteroatoms are further removed by high-temperature to form the defects-rich electrode (NS-CQDs-rGO-1100), which has better catalytic performance (FEHCOO-=90 %, stability over 10 h) with electrochemical double layer capacitance of 12.5 mF cm-2. The intrinsic effect of heteroatom doping and defects on the ECO2R activity of the electrodes are explored by density functional theory calculation. This work broadens the field of preparation of graphene and opens the door to the development of cost-effective electrocatalysts for efficient ECO2R.
Collapse
Affiliation(s)
- Yun Kong
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Bin Jiang
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China; Shaanxi Provincial Key Laboratory of Carbon Neutrality Technology, Carbon Neutrality College (YULIN), Northwest University, Xi'an, Shaanxi 710127, People's Republic of China.
| | - Yuchen Tian
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Rong Liu
- Shaanxi Provincial Key Laboratory of Earth Surface System and Environmental Carrying Capacity, and College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi 710127, People's Republic of China
| | - Firdoz Shaik
- Department of Biotechnology, Vignan's Foundation for Science, Technology, and Research, Vadlamudi, Guntur 522213, India
| |
Collapse
|
9
|
Liu QW, He BL, Zheng DS, Zhou XQ, Zhang X, Huang JM, Wang Y, Lai WC, Gu ZY. Delocalization State-Stabilized Zn δ+ Active Sites for Highly Selective and Durable CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406604. [PMID: 39434483 DOI: 10.1002/smll.202406604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/19/2024] [Indexed: 10/23/2024]
Abstract
Zinc (Zn)-based materials are cost-effective and promising single-metal catalysts for CO2 electroreduction to CO but is still challenged by low selectivity and long-term stability. Undercoordinated Zn (Znδ+) sites have been demonstrated to be powerful active centers with appropriate *COOH affinity for efficient CO production However, electrochemical reduction conditions generally cause the inevitable reduction of Znδ+, resulting in the decline of CO efficiency over prolonged operation. Herein, a Zn cyanamide (ZnNCN) catalyst is constructed for highly selective and durable CO2 electroreduction, wherein the delocalized Zn d-electrons and resonant structure of cyanamide ligand prevent the self-reduction of ZnNCN and maintain Znδ+ sites under cathodic conditions. The mechanism studies based on density functional theory and operando spectroscopies indicate that delocalized Znδ+ site can stabilize the key *COOH intermediate through hard-soft acid-base theory, therefore thermodynamically promoting CO2-to-CO conversion. Consequently, ZnNCN delivers a CO Faradaic efficiency (FE) of up to 93.9% and further exhibits a remarkable stability lifespan of 96 h, representing a significant advancement in developing robust Zn-based electrocatalysts. Beyond expanding the variety of CO2 reduction catalysts, this work also offers insights into understanding the structure-function sensitivity and controlling dynamic active sites.
Collapse
Affiliation(s)
- Qian-Wen Liu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Bing-Ling He
- Photoelectric energy catalytic materials and Devices Institute, School of Electronic Engineering, Chaohu University, Hefei, 238000, China
| | - De-Sheng Zheng
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xue-Qin Zhou
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xin Zhang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jian-Mei Huang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yu Wang
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Wen-Chuan Lai
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
10
|
Hurtado R, Lou L, Klerner L, Inaloo ID, Heineman FW, Harder S, Schmid G, Dorta R. Diarylformamides as a Safe Reservoir and Room Temperature Source of Ultra-Pure CO in the Context of a 'Green' rWGS Reaction. CHEMSUSCHEM 2024; 17:e202400308. [PMID: 38875288 PMCID: PMC11587692 DOI: 10.1002/cssc.202400308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 06/16/2024]
Abstract
Diphenylformamide 1 and bisformamide 9 are shown to be safe reservoirs and sources of CO. Their perfectly selective decarbonylations are achieved in solution at room temperature with potassium and cesium diarylamide catalysts. 1 is obtained in excellent yields directly from triethylammonium formate, which may be the product of CO2 scrubbing with NEt3 and catalytic hydrogenation. 1 thus represents a key intermediate in a low-temperature rWGS reaction sequence. Moreover, solvent-free decarbonylations of 1 may be run either in the melt at 70 °C or with 9 even in the solid state at 88 °C with improved atom economy. These simple and practical transition-metal-free decarbonylations afford ultra-pure (i. e. dry and solvent-free) CO at moderate temperatures and the diarylamines byproducts are recycled as pure compounds. In the absence of catalysts, diarylformamides 1 and 9 are long-term stable at >200 °C. DFT-calculations indicate a reaction pathway with a rate-determining deprotonation of Ph2NC(O)H and barrier-free CO elimination from Ph2NC(O)-.
Collapse
Affiliation(s)
- Royel Hurtado
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Lisha Lou
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Lukas Klerner
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Iman Dindarloo Inaloo
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Frank W. Heineman
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Sjoerd Harder
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| | - Günter Schmid
- Siemens Energy Global GmbH & Co. KG, New Energy Business – Technology & ProductsFreyeslebenstraße 191058ErlangenGermany
| | - Romano Dorta
- Department of Chemistry and PharmacyChair of Inorganic and General Chemistry and Chair of Inorganic and Organometallic ChemistryFriedrich Alexander Universität Erlangen – NürnbergEgerlandstraße 191058ErlangenGermany
| |
Collapse
|
11
|
Sun Y, Dai L, Sui NLD, Li Y, Tian M, Duan J, Chen S, Lee JM. Direct parallel electrosynthesis of high-value chemicals from atmospheric components on symmetry-breaking indium sites. Proc Natl Acad Sci U S A 2024; 121:e2409620121. [PMID: 39546577 PMCID: PMC11588137 DOI: 10.1073/pnas.2409620121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/03/2024] [Indexed: 11/17/2024] Open
Abstract
To tackle significant environmental and energy challenges from increased greenhouse gas emissions in the atmosphere, we propose a method that synergistically combines cost-efficient integrated systems with parallel catalysis to produce high-value chemicals from CO2, NO, and other gases. We employed asymmetrically stretched InO5S with symmetry-breaking indium sites as a highly efficient trifunctional catalysts for NO reduction, CO2 reduction, and O2 reduction. Mechanistic studies reveal that the symmetry-breaking at indium sites substantially improves d-band center interactions and adsorption of intermediates, thereby enhancing trifunctional catalytic activity. Employed in a flow electrolysis system, the catalyst achieves continuous and flexible production of NH3, HCOO-, and H2O2, maintaining over 90% Faradaic efficiency at industrial scales. Notably, the parallel electrolysis device reported in this study effectively produces high-value products like NH4COOH directly from greenhouse gases in pure water, offering an economically efficient solution for small molecule synthesis and unique insights for the sustainable conversion of inexhaustible gases into valuable products. Therefore, this work possesses considerable potential for future practical applications in sustainable industrial processes.
Collapse
Affiliation(s)
- Yuntong Sun
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore637459, Singapore
| | - Liming Dai
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Nicole L. D. Sui
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore637459, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, Singapore637141, Singapore
| | - Yinghao Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore637459, Singapore
| | - Meng Tian
- Interdisciplinary Center for Fundamental and Frontier Sciences, Nanjing University of Science and Technology, Jiangyin, Jiangsu214443, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing210094, China
| | - Jong-Min Lee
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore637459, Singapore
| |
Collapse
|
12
|
Feng J, Liu C, Qiao L, An K, Lin S, Ip WF, Pan H. Electrolyte-Assisted Structure Reconstruction Optimization of Sn-Zn Hybrid Oxide Boosts the Electrochemical CO 2-to-HCOO - Conversion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407019. [PMID: 39158940 PMCID: PMC11497031 DOI: 10.1002/advs.202407019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/02/2024] [Indexed: 08/20/2024]
Abstract
Electrolyte plays crucial roles in electrochemical CO2 reduction reaction (e-CO2RR), yet how it affects the e-CO2RR performance still being unclarified. In this work, it is reported that Sn-Zn hybrid oxide enables excellent CO2-to-HCOO- conversion in KHCO3 with a HCOO- Faraday efficiency ≈89%, a yield rate ≈0.58 mmol cm-2 h-1 and a stability up to ≈60 h at -0.93 V, which are higher than those in NaHCO3 and K2SO4. Systematical characterizations unveil that the surface reconstruction on Sn-Zn greatly depends on the electrolyte using: the Sn-SnO2/ZnO, the ZnO encapsulated Sn-SnO2/ZnO and the Sn-SnO2/Zn-ZnO are reconstructed on the surface by KHCO3, NaHCO3 and K2SO4, respectively. The improved CO2-to-HCOO- performance in KHCO3 is highly attributed to the reconstructed Sn-SnO2/ZnO, which can enhance the charge transportation, promote the CO2 adsorption and optimize the adsorption configuration, accumulate the protons by enhancing water adsorption/cleavage and limit the hydrogen evolution. The findings may provide insightful understanding on the relationship between electrolyte and surface reconstruction in e-CO2RR and guide the design of novel electrocatalyst for effective CO2 reduction.
Collapse
Affiliation(s)
- Jinxian Feng
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
| | - Chunfa Liu
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
| | - Lulu Qiao
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
| | - Keyu An
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and EnvironmentCollege of ChemistryFuzhou UniversityFuzhou350108China
| | - Weng Fai Ip
- Department of Physics and ChemistryFaculty of Science and TechnologyUniversity of MacauMacao SAR999078China
| | - Hui Pan
- Institute of Applied Physics and Materials EngineeringUniversity of MacauMacao SAR999078China
- Department of Physics and ChemistryFaculty of Science and TechnologyUniversity of MacauMacao SAR999078China
| |
Collapse
|
13
|
Yue K, Qin Y, Huang H, Lv Z, Cai M, Su Y, Huang F, Yan Y. Stabilized Cu 0 -Cu 1+ dual sites in a cyanamide framework for selective CO 2 electroreduction to ethylene. Nat Commun 2024; 15:7820. [PMID: 39242556 PMCID: PMC11379946 DOI: 10.1038/s41467-024-52022-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024] Open
Abstract
Electrochemical reduction of carbon dioxide to produce high-value ethylene is often limited by poor selectivity and yield of multi-carbon products. To address this, we propose a cyanamide-coordinated isolated copper framework with both metallic copper (Cu0) and charged copper (Cu1+) sites as an efficient electrocatalyst for the reduction of carbon dioxide to ethylene. Our operando electrochemical characterizations and theoretical calculations reveal that copper atoms in the Cuδ+NCN complex enhance carbon dioxide activation by improving surface carbon monoxide adsorption, while delocalized electrons around copper sites facilitate carbon-carbon coupling by reducing the Gibbs free energy for *CHC formation. This leads to high selectivity for ethylene production. The Cuδ+NCN catalyst achieves 77.7% selectivity for carbon dioxide to ethylene conversion at a partial current density of 400 milliamperes per square centimeter and demonstrates long-term stability over 80 hours in membrane electrode assembly-based electrolysers. This study provides a strategic approach for designing catalysts for the electrosynthesis of value-added chemicals from carbon dioxide.
Collapse
Affiliation(s)
- Kaihang Yue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyang Qin
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Honghao Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Zhuoran Lv
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingzhi Cai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- State Key Laboratory of Rare Earth Materials Chemistry and Applications College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yaqiong Su
- School of Chemistry, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Fuqiang Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
14
|
Liu H, Bai Y, Wu M, Yang Y, Wang Y, Li L, Hao J, Yan W, Shi W. A Regenerable Bi-Based Catalyst for Efficient and Stable Electrochemical CO 2 Reduction to Formate at Industrial Current Densities. Angew Chem Int Ed Engl 2024:e202411575. [PMID: 39171892 DOI: 10.1002/anie.202411575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Renewable electricity shows immense potential as a driving force for the carbon dioxide reduction reaction (CO2RR) in production of formate (HCOO-) at industrial current density, providing a promising path for value-added chemicals and chemical manufacturing. However, achieving high selectivity and stable production of HCOO- at industrial current density remains a challenge. Here, we present a robust Bi0.6Cu0.4 NSs catalyst capable of regenerating necessary catalytic core (Bi-O) through cyclic voltammetry (CV) treatment. Notably, at 260 mA cm-2, faradaic efficiency of HCOO- reaches an exceptional selectivity to 99.23 %, maintaining above 90 % even after 400 h, which is longest reaction time reported at the industrial current density. Furthermore, in stability test, the catalyst was constructed by CV reconstruction to achieve stable and efficient production of HCOO-. In 20 h reaction test, the catalyst has a rate of HCOO- production of 13.24 mmol m-2 s-1, a HCOO- concentration of 1.91 mol L-1, and an energy consumption of 129.80 kWh kmol-1. In situ Raman spectroscopy reveals the formation of Bi-O structure during the gradual transformation of catalyst from Bi0.6Cu0.4 NBs to Bi0.6Cu0.4 NSs. Theoretical studies highlight the pivotal role of Bi-O structure in modifying the adsorption behavior of reaction intermediates, which further reduces energy barrier for *OCHO conversion in CO2RR.
Collapse
Affiliation(s)
- Hong Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Ye Bai
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Meng Wu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Yingchen Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Yaoxuan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Longhua Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Jinhui Hao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Weicheng Yan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| | - Weidong Shi
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Materials Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China
| |
Collapse
|
15
|
Chen L, Chen J, Fu W, Chen J, Wang D, Xiao Y, Xi S, Ji Y, Wang L. Energy-efficient CO (2) conversion to multicarbon products at high rates on CuGa bimetallic catalyst. Nat Commun 2024; 15:7053. [PMID: 39147764 PMCID: PMC11327302 DOI: 10.1038/s41467-024-51466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Electrocatalytic CO2 reduction to multi-carbon products is a promising approach for achieving carbon-neutral economies. However, the energy efficiency of these processes remains low, particularly at high current densities. Herein, we demonstrate that the low energy efficiencies are, in part, sometimes significantly, attributed to the high concentration overpotential resulting from the instability (i.e., flooding) of catalyst-layer during electrolysis. To tackle this challenge, we develop copper/gallium bimetallic catalysts with reduced activation energies for the formation of multi-carbon products. Consequently, the reduced activation overpotential allows us to achieve practical-relevant current densities for CO2 reduction at low cathodic potentials, ensuring good stability of the catalyst-layer and thereby minimizing the undesired concentration overpotential. The optimized bimetallic catalyst achieves over 50% cathodic energy efficiency for multi-carbon production at a high current density of over 1.0 A cm - 2 . Furthermore, we achieve current densities exceeding 2.0 A cm - 2 in a zero-gap membrane-electrode-assembly reactor, with a full-cell energy efficiency surpassing 30%.
Collapse
Affiliation(s)
- Lei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Junmei Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Weiwei Fu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Jiayi Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Di Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yukun Xiao
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Shibo Xi
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR, Singapore, Singapore
| | - Yongfei Ji
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, Guangdong, China.
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Hydrogen Innovations, National University of Singapore, E8, Singapore, Singapore.
| |
Collapse
|
16
|
Jiang Z, Ren S, Cao X, Fan Q, Yu R, Yang J, Mao J. pH-Universal Electrocatalytic CO 2 Reduction with Ampere-Level Current Density on Doping-Engineered Bismuth Sulfide. Angew Chem Int Ed Engl 2024; 63:e202408412. [PMID: 38801019 DOI: 10.1002/anie.202408412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/25/2024] [Accepted: 05/25/2024] [Indexed: 05/29/2024]
Abstract
The practical application of the electrocatalytic CO2 reduction reaction (CO2RR) to form formic acid fuel is hindered by the limited activation of CO2 molecules and the lack of universal feasibility across different pH levels. Herein, we report a doping-engineered bismuth sulfide pre-catalyst (BiS-1) that S is partially retained after electrochemical reconstruction into metallic Bi for CO2RR to formate/formic acid with ultrahigh performance across a wide pH range. The best BiS-1 maintains a Faraday efficiency (FE) of ~95 % at 2000 mA cm-2 in a flow cell under neutral and alkaline solutions. Furthermore, the BiS-1 catalyst shows unprecedentedly high FE (~95 %) with current densities from 100 to 1300 mA cm-2 under acidic solutions. Notably, the current density can reach 700 mA cm-2 while maintaining a FE of above 90 % in a membrane electrode assembly electrolyzer and operate stably for 150 h at 200 mA cm-2. In situ spectra and density functional theory calculations reveals that the S doping modulates the electronic structure of Bi and effectively promotes the formation of the HCOO* intermediate for formate/formic acid generation. This work develops the efficient and stable electrocatalysts for sustainable formate/formic acid production.
Collapse
Affiliation(s)
- Zinan Jiang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Shan Ren
- Center for Materials and Interfaces, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, 1068 Xueyuan Avenue, Shenzhen, Guangdong, 518055, China
| | - Xi Cao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Qikui Fan
- Ministry of Education Key Laboratory for Non-equilibrium Synthesis and Modulation of Condensed Matter, Shaanxi Province Key Laboratory of Advanced Functional Materials and Mesoscopic Physics, School of Physics, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Rui Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Jian Yang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| | - Junjie Mao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, Anhui, China
| |
Collapse
|
17
|
Huang H, Yue K, Liu C, Zhan K, Dong H, Yan Y. CuO (111) Microcrystalline Evoked Indium-Organic Framework for Efficient Electroreduction of CO 2 to Formate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400441. [PMID: 38593335 DOI: 10.1002/smll.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/28/2024] [Indexed: 04/11/2024]
Abstract
Electrochemical reduction of carbon dioxide (CO2RR) to formate is economically beneficial but suffers from poor selectivity and high overpotential. Herein, enriched microcrystalline copper oxide is introduced on the surface of indium-based metal-organic frameworks. Benefiting from the CuO (111) microcrystalline shell and formed catalytic active In-Cu interfaces, the obtained MIL-68(In)/CuO heterostructure display excellent CO2RR to formate with a Faradaic efficiency (FE) as high as 89.7% at low potential of only -0.7 V vs. RHE in a flow cell. Significantly, the membrane electrode assembly (MEA) cell based on MIL-68(In)/CuO exhibit a remarkable current density of 640.3 mA cm-2 at 3.1 V and can be stably operated for 180 h at 2.7 V with a current density of 200 mA cm-2. The ex/in situ electrochemical investigations reveal that the introduction of CuO increases the formation rate of the carbon dioxide reduction intermediate *HCOO- and inhibits the competitive hydrogen evolution reaction. This work not only provides an in-depth study of the mechanism of the CO2RR pathways on In/Cu composite catalyst but also offers an effective strategy for the interface design of electrocatalytic carbon dioxide reduction reaction.
Collapse
Affiliation(s)
- Honghao Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Kaihang Yue
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| | - Chaofan Liu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Ke Zhan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, China
| | - Ya Yan
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), 585 Heshuo Road, Shanghai, 200050, China
| |
Collapse
|
18
|
Wang Z, Xu L, Zhou Y, Liang Y, Yang J, Wu D, Zhang S, Han X, Shi X, Li J, Yuan Y, Deng P, Tian X. Stabilizing the oxidation state of catalysts for effective electrochemical carbon dioxide conversion. Chem Soc Rev 2024; 53:6295-6321. [PMID: 38722208 DOI: 10.1039/d3cs00887h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
In the electrocatalytic CO2 reduction reaction (CO2RR), metal catalysts with an oxidation state generally demonstrate more favorable catalytic activity and selectivity than their corresponding metallic counterparts. However, the persistence of oxidative metal sites under reductive potentials is challenging since the transition to metallic states inevitably leads to catalytic degradation. Herein, a thorough review of research on oxidation-state stabilization in the CO2RR is presented, starting from fundamental concepts and highlighting the importance of oxidation state stabilization while revealing the relevance of dynamic oxidation states in product distribution. Subsequently, the functional mechanisms of various oxidation-state protection strategies are explained in detail, and in situ detection techniques are discussed. Finally, the prevailing and prospective challenges associated with oxidation-state protection research are discussed, identifying innovative opportunities for mechanistic insights, technology upgrades, and industrial platforms to enable the commercialization of the CO2RR.
Collapse
Affiliation(s)
- Zhitong Wang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Lizhi Xu
- Hainan Provincial Ecological and Environmental Monitoring Centre, Haikou 571126, China
| | - Yansong Zhou
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Ying Liang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jinlin Yang
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Daoxiong Wu
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Shuyu Zhang
- State Key Laboratory of Photovoltaic Science and Technology, Institute for Electric Light Sources, School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Xingqi Han
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xiaodong Shi
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Jing Li
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Yuliang Yuan
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Peilin Deng
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| | - Xinlong Tian
- School of Marine Science and Engineering, Hainan Provincial Key Lab of Fine Chemistry, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
19
|
Zhao ZH, Huang JR, Huang DS, Zhu HL, Liao PQ, Chen XM. Efficient Capture and Electroreduction of Dilute CO 2 into Highly Pure and Concentrated Formic Acid Aqueous Solution. J Am Chem Soc 2024; 146:14349-14356. [PMID: 38742424 DOI: 10.1021/jacs.4c04841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
High-purity CO2 rather than dilute CO2 (15 vol %, CO2/N2/O2 = 15:80:5, v/v/v) similar to the flue gas is currently used as the feedstock for the electroreduction of CO2, and the liquid products are usually mixed up with the cathode electrolyte, resulting in high product separation costs. In this work, we showed that a microporous conductive Bi-based metal-organic framework (Bi-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) can not only efficiently capture CO2 from the dilute CO2 under high humidity but also catalyze the electroreduction of the adsorbed CO2 into formic acid with a high current density of 80 mA cm-2 and a Faradaic efficiency of 90% at a very low cell voltage of 2.6 V. Importantly, the performance in a dilute CO2 atmosphere was close to that under a high-purity CO2 atmosphere. This is the first catalyst that can maintain exceptional eCO2RR performance in the presence of both O2 and N2. Moreover, by using dilute CO2 as the feedstock, a 1 cm-2 working electrode coating with Bi-HHTP can continuously produce a 200 mM formic acid aqueous solution with a relative purity of 100% for at least 30 h in a membrane electrode assembly (MEA) electrolyzer. The product does not contain electrolytes, and such a highly concentrated and pure formic acid aqueous solution can be directly used as an electrolyte for formic acid fuel cells. Comprehensive studies revealed that such a high performance might be ascribed to the CO2 capture ability of the micropores on Bi-HHTP and the lower Gibbs free energy of formation of the key intermediate *OCHO on the open Bi sites.
Collapse
Affiliation(s)
- Zhen-Hua Zhao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jia-Run Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Da-Shuai Huang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hao-Lin Zhu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Pei-Qin Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| |
Collapse
|
20
|
Zhang C, Hao X, Wang J, Ding X, Zhong Y, Jiang Y, Wu MC, Long R, Gong W, Liang C, Cai W, Low J, Xiong Y. Concentrated Formic Acid from CO 2 Electrolysis for Directly Driving Fuel Cell. Angew Chem Int Ed Engl 2024; 63:e202317628. [PMID: 38305482 DOI: 10.1002/anie.202317628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
The production of formic acid via electrochemical CO2 reduction may serve as a key link for the carbon cycle in the formic acid economy, yet its practical feasibility is largely limited by the quantity and concentration of the product. Here we demonstrate continuous electrochemical CO2 reduction for formic acid production at 2 M at an industrial-level current densities (i.e., 200 mA cm-2 ) for 300 h on membrane electrode assembly using scalable lattice-distorted bismuth catalysts. The optimized catalysts also enable a Faradaic efficiency for formate of 94.2 % and a highest partial formate current density of 1.16 A cm-2 , reaching a production rate of 21.7 mmol cm-2 h-1 . To assess the practicality of this system, we perform a comprehensive techno-economic analysis and life cycle assessment, showing that our approach can potentially substitute conventional methyl formate hydrolysis for industrial formic acid production. Furthermore, the resultant formic acid serves as direct fuel for air-breathing formic acid fuel cells, boasting a power density of 55 mW cm-2 and an exceptional thermal efficiency of 20.1 %.
Collapse
Affiliation(s)
- Chao Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
| | - Xiaobin Hao
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jiatang Wang
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan, Hubei, 430074, China
| | - Xiayu Ding
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Zhong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yawen Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering, Chang Gung University, Taoyuan, 33302, Taiwan
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Wanbing Gong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Changhao Liang
- Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, Anhui, 230031, China
| | - Weiwei Cai
- Sustainable Energy Laboratory, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo Road, Wuhan, Hubei, 430074, China
| | - Jingxiang Low
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, and National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui, 241002, China
| |
Collapse
|
21
|
Liu MF, Zhang C, Wang J, Han X, Hu W, Deng Y. Recent research progresses of Sn/Bi/In-based electrocatalysts for electroreduction CO 2 to formate. Chemistry 2024; 30:e202303711. [PMID: 38143240 DOI: 10.1002/chem.202303711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 12/26/2023]
Abstract
Carbon dioxide electroreduction reaction (CO2RR) can take full advantage of sustainable power to reduce the continuously increasing carbon emissions. Recycling CO2 to produce formic acid or formate is a technologically and economically viable route to accomplish CO2 cyclic utilization. Developing efficient and cost-effective electrocatalysts with high selectivity towards formate is prioritized for the industrialized applications of CO2RR electrolysis. From the previous explored CO2RR catalysts, Sn, Bi and In based materials have drawn increasing attentions due to the high selectivity towards formate. However, there are still confronted with several challenges for the practical applications of these materials. Therefore, a rational design of the catalysts for formate is urgently needed for the target of industrialized applications. Herein, we comprehensively summarized the recent development in the advanced electrocatalysts for the CO2RR to formate. Firstly, the reaction mechanism of CO2RR is introduced. Then the preparation and design strategies of the highly active electrocatalysts are presented. Especially the innovative design mechanism in engineering materials for promoting catalytic performance, and the efforts on mechanistic exploration using in situ (ex situ) characterization techniques are reviewed. Subsequently, some perspectives and expectations are proposed about current challenges and future potentials in CO2RR research.
Collapse
Affiliation(s)
- Ms Fei Liu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Chen Zhang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Jiajun Wang
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- Key Laboratory of Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, P. R. China
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, P. R. China
| |
Collapse
|
22
|
Wu W, Tong Y, Chen P. Regulation Strategy of Nanostructured Engineering on Indium-Based Materials for Electrocatalytic Conversion of CO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305562. [PMID: 37845037 DOI: 10.1002/smll.202305562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Indexed: 10/18/2023]
Abstract
Electrochemical carbon dioxide reduction (CO2 RR), as an emerging technology, can combine with sustainable energies to convert CO2 into high value-added products, providing an effective pathway to realize carbon neutrality. However, the high activation energy of CO2 , low mass transfer, and competitive hydrogen evolution reaction (HER) leads to the unsatisfied catalytic activity. Recently, Indium (In)-based materials have attracted significant attention in CO2 RR and a series of regulation strategies of nanostructured engineering are exploited to rationally design various advanced In-based electrocatalysts, which forces the necessary of a comprehensive and fundamental summary, but there is still a scarcity. Herein, this review provides a systematic discussion of the nanostructure engineering of In-based materials for the efficient electrocatalytic conversion of CO2 to fuels. These efficient regulation strategies including morphology, size, composition, defects, surface modification, interfacial structure, alloying, and single-atom structure, are summarized for exploring the internal relationship between the CO2 RR performance and the physicochemical properties of In-based catalysts. The correlation of electronic structure and adsorption behavior of reaction intermediates are highlighted to gain in-depth understanding of catalytic reaction kinetics for CO2 RR. Moreover, the challenges and opportunities of In-based materials are proposed, which is expected to inspire the development of other effective catalysts for CO2 RR.
Collapse
Affiliation(s)
- Wenbo Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Yun Tong
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| | - Pengzuo Chen
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China
| |
Collapse
|
23
|
Cao L, Huang J, Wu X, Ma B, Xu Q, Zhong Y, Wu Y, Sun M, Yu L. Active-site stabilized Bi metal-organic framework-based catalyst for highly active and selective electroreduction of CO 2 to formate over a wide potential window. NANOSCALE 2023. [PMID: 37991432 DOI: 10.1039/d3nr04962k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Bismuth-based materials have been validated to be a kind of effective electrocatalyst for electrocatalytic CO2 reduction (ECR) to formate (HCOO-). However, the established studies still encounter the problems of low current density, low selectivity, narrow potential window, and poor catalyst stability. Herein, a bismuth-terephthalate framework (Bi-BDC MOF) material was successfully synthesized. The optimized Bi-BDC-120 °C exhibited excellent activity, selectivity, and durability for formate production. At an operating potential of -1.1 V vs. RHE in 0.1 mol L-1 KHCO3 electrolyte, the ECR catalyzed by Bi-BDC-120 °C achieved a Faraday efficiency (FE) of 97.2% towards formate generation, and the total current density reached about 30 mA cm-2. The operating potential window with FEformate values > 95% ranged in -0.9 to -1.5 V vs. RHE. The density-functional theory (DFT) calculation demonstrated that the (001) crystalline planes of Bi-BDC are preferable for the adsorption of CO2 and the conversion of *OCHO intermediates, thus ultimately promoting the electrocatalytic production of formate. Although the MOF structure of Bi-BDC-120 °C was insufficiently stabilized, the FEformate could be maintained at around 90% after 36 h of ECR operation. The long-term durability for formate production was attributed to the fact that the in situ reconstructed Bi2O2CO3 could retain the Bi-O active sites in the structure. These results offer an opportunity to design CO2 reduction electrocatalysts with high activity and selectivity for potential applications.
Collapse
Affiliation(s)
- Leliang Cao
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
| | - Jie Huang
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
| | - Xueying Wu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
| | - Ben Ma
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
| | - Qingqing Xu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
| | - Yuanhong Zhong
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R.China
| | - Ying Wu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R.China
| | - Ming Sun
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R.China
| | - Lin Yu
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, Guangdong Engineering Technology Research Center of Modern Fine Chemical Engineering, School of Chemical Engineering and Light Industry, Guangdong University of Technology, 510006 Guangzhou, P. R.China.
- Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory (Rongjiang Laboratory), Jieyang 515200, P. R.China
| |
Collapse
|
24
|
Jia B, Li L, Xue C, Kang J, Liu LM, Guo T, Wang Z, Huang Q, Guo S. Restraining Interfacial Cu 2+ by using Amorphous SnO 2 as Sacrificial Protection Boosts CO 2 Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305587. [PMID: 37545026 DOI: 10.1002/adma.202305587] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/17/2023] [Indexed: 08/08/2023]
Abstract
The electrochemical carbon dioxide reduction reaction (CO2 RR) to formate is of great interest in the field of electrochemical energy. Cu-based material is an appealing electrocatalyst for the CO2 RR. However, retaining Cu2+ under the high cathodic potential of CO2 RR remains a great challenge, leading to low electrocatalytic selectivity, activity, and stability. Herein, inspired by corrosion science, a sacrificial protection strategy to stabilize interfacial crystalline CuO through embedding of active amorphous SnO2 (c-CuO/a-SnO2 ) is reported, which greatly boosts the electrocatalytic sensitivity, activity, and stability for CO2 RR to formate. The as-made hybrid catalyst can achieve superior high selectivity for CO2 RR to formate with a remarkable Faradaic efficiency (FE) of 96.7%, and a superhigh current density of over 1 A cm-2 that far outperforms industrial benchmarks (FE > 90%, current density > 300 mA cm-2 ). In situ X-ray absorption spectroscopy (XAS) and X-ray diffractionexperimental and theoretical calculation results reveal that the broadened s-orbital in interfacial a-SnO2 offers the lower orbital for extra electrons than Cu2+ , which can effectively retain nearby Cu2+ , and the high active interface significantly lowers the energy barrier of the limited step (* CO2 → * HCOO) and enhances the selectivity and activity for CO2 RR to formate.
Collapse
Affiliation(s)
- Binbin Jia
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Lidong Li
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Chuang Xue
- School of Physics, Beihang University, Beijing, 100191, China
| | - Jianxin Kang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianqi Guo
- School of Chemistry, Beihang University, Beijing, 100191, China
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Zhongchang Wang
- International Iberian Nanotechnology Laboratory (INL), Braga, 4715-330, Portugal
| | - Qizheng Huang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|