1
|
Liu X, Sun N, Wu Z, Luo Z, Zhang A, Wang L. Advanced development of finite element analysis for electrochemical catalytic reactions. Chem Commun (Camb) 2025; 61:5212-5227. [PMID: 40091809 DOI: 10.1039/d5cc00230c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The development of robust simulation techniques is crucial for elucidating electrochemical catalytic mechanisms and can even provide guidance for the tailored design and regulation of highly efficient catalysts. Finite element analysis (FEA), as a powerful numerical simulation tool, can effectively simulate and analyze the sophisticated processes involved in electrochemical catalytic reactions and unveil the underlying microscopic mechanisms. By employing FEA, researchers can gain better insights into reaction kinetics and transport processes, optimize electrode design, and predict electrochemical performance under various reaction conditions. Consequently, the application of FEA in electrochemical catalytic reactions has emerged as a critical area of current research and a summary of the advanced development of FEA for electrochemical catalytic reactions is urgently required. This review focuses on exploring the applications of FEA in investigating the crystal structure effect, tip effect, multi-shell effect, porous structure effect, and mass transfer phenomena in electrochemical reactions. Particularly emphasized are its applications in the fields of CO2 reduction, oxygen evolution reaction, and nitrogen reduction reaction. Finally, the challenges encountered by this research field are discussed, along with future directions for further advancement. We aim to provide comprehensive theoretical and practical guidance on FEA methods for researchers in the field of electrochemical catalysis, thereby fostering the advancement and wider implementation of FEA within this domain.
Collapse
Affiliation(s)
- Xianya Liu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Ning Sun
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Zefei Wu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Zhongzhong Luo
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Anlei Zhang
- College of Science, Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications (NJUPT), Nanjing 210023, Jiangsu, P. R. China.
| |
Collapse
|
2
|
Du H, He S, Li B, Wang K, Zhou Z, Li J, Wang T, Du Z, Ai W, Huang W. Cascade Reaction Enables Heterointerfaces-Enriched Nanoarrays for Ampere-Level Hydrogen Production. Angew Chem Int Ed Engl 2025; 64:e202422393. [PMID: 39648314 DOI: 10.1002/anie.202422393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
Designing high-performance electrocatalysts with superior catalytic activity and stability is essential for large-scale hydrogen production via water electrolysis. Heterostructure nanoarrays are promising candidates, though achieving both high activity and stability simultaneously, especially under high current densities, remains challenging. To this end, we have developed a cascade reaction process that constructs a series of heterostructure nanoarrays with rich heterointerfaces. This process involves treating nickel foam (NF) with molten KSCN and transition metal salts. Initially, NF reacts with KSCN to form Ni9S8 nanoarrays and S2- ions, which are subsequently captured by transition metal ions to form sulfides that are directly integrated onto the nanoarrays, resulting in abundant heterointerfaces. Both experimental and theoretical results indicate that these rich heterointerfaces significantly enhance the interfacial interaction between Ni9S8 and RuS2 within the nanoarrays (termed RH-Ni9S8/RuS2), markedly improving both the intrinsic activity and stability for the hydrogen evolution reaction (HER). Impressively, the RH-Ni9S8/RuS2 demonstrates exceptional HER performance, achieving a low overpotential of just 180 mV at 1000 mA cm-2 and maintaining stability for up to 500 h under such high-current-density conditions. This innovative approach paves the way for the interfacial design and synthesis of high-performance catalysts for ampere-level hydrogen production.
Collapse
Affiliation(s)
- Hongfang Du
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| | - Song He
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Boxin Li
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Ke Wang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhenkai Zhou
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Junhui Li
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tingfeng Wang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhuzhu Du
- School of Materials Science and Engineering & Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University, Xi'an 710048, China
| | - Wei Ai
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics & Shaanxi Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, China
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou 350117, China
| |
Collapse
|
3
|
Niu Y, Wang J, Zhang Z, Liu T. Design of Wood-Based Gd (III)-Hemoporphyrin Monomethyl Ether Eco-Material for Optical Oxygen Sensing with a Wide Detection Range. SENSORS (BASEL, SWITZERLAND) 2025; 25:1670. [PMID: 40292757 PMCID: PMC11946767 DOI: 10.3390/s25061670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/30/2025]
Abstract
Gaseous oxygen detection is essential in numerous production and manufacturing sectors. To meet the varying oxygen detection requirements across different fields, techniques that offer a wide oxygen detection range should be developed. In this study, a wood-based oxygen sensing material was designed using balsa wood as the supporting matrix and gadolinium hemoporphyrin monomethyl ether (Gd-HMME) as the oxygen-sensitive indicator. The wood-based Gd-HMME exhibits a cellular porous structure, which not only facilitates the loading of a substantial number of indicator molecules but also enables the rapid interaction between indicators and oxygen molecules. OP is defined as the ratio of the phosphorescence intensity of the oxygen-sensing material in the anaerobic and aerobic environment. A linear relationship between OP and oxygen partial pressure ([O2]) was obtained within the whole range of [O2] (0-100 kPa). The wood-based Gd-HMME exhibited excellent resistance to photobleaching, along with a rapid response time (3.9 s) and recovery time (4.4 s). It was demonstrated that the measurement results obtained using wood-based Gd-HMME were not influenced by other gaseous components present in the air. An automatic oxygen detection system was developed using LabVIEW for practical use, and the limit of detection was determined to be 0.01 kPa.
Collapse
Affiliation(s)
| | | | | | - Ting Liu
- Department of Physics, Northeast Forestry University, Harbin 150040, China; (Y.N.); (J.W.); (Z.Z.)
| |
Collapse
|
4
|
Li Y, Gao J, Wang Z, Li H, Li L, Zhang X, Fan X, Lin L, Li Y, Li K, Zhang C, Li L, Wang R, Su Y, Tian D. Rice leaves microstructure-inspired high-efficiency electrodes for green hydrogen production. NANOSCALE 2025; 17:5812-5822. [PMID: 39931804 DOI: 10.1039/d4nr05151c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2025]
Abstract
Hydrogen production via water electrolysis is deemed a prime candidate for large-scale commercial green hydrogen generation. However, during the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), bubble accumulation on the electrode surface substantially elevates the required voltage and diminishes electrolysis efficiency. In this work, we demonstrated a rice leaves-inspired anisotropic microstructured gas conduction electrode (Ni-conduction) that can rapidly detach bubbles from the anisotropic microstructure. The microstructured grooves on the electrode surface lower the interface energy and modify bubble detachment dynamics, enabling swift bubble release and directed bubble flow along the microstructured channels. As a result, the Ni-conduction achieves a reduction in HER/OER overpotential, reaching values of 92/123 mV at 10 mA cm-2. This performance significantly surpasses the performance of a flat nickel electrode (Ni-smooth), necessitating an overpotential of 183/176 mV under identical conditions. Furthermore, the assembled Ni-conduction||Ni-conduction overall water-splitting device only needs a cell voltage of 1.53 V to reach 10 mA cm-2. Our research emphasizes the significance of wettability design in electrode microstructure to enhance mass transfer and optimize water splitting efficiency, presenting novel strategies for the development of superior gas-evolution electrodes.
Collapse
Affiliation(s)
- Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Jinxin Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Zhaoyang Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Honghao Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Lu Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing, Beijing 100083, P. R. China.
| | - Xiaoyang Fan
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Longyun Lin
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Yan Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Chunyu Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Linyang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Ran Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Yunting Su
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing 100191, P. R. China.
| |
Collapse
|
5
|
Chen T, Ma J, Liang C, Luo Y, Xu X, Hu J, Chen J, Ding W. 3D-Porous Electrocatalyst with Tip-Enhanced Electric Field Effect Enables High-Performance Proton Exchange Membrane Water Electrolyzer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418527. [PMID: 39801204 DOI: 10.1002/adma.202418527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Indexed: 03/06/2025]
Abstract
Hydrogen evolution reaction (HER), as one of the most advanced methods for the green production of hydrogen, is greatly impeded by inefficient mass transfer. Here we present an efficiently reactant enriched and mass traffic system by integrating high-curvature Pt nanocones with 3D porous TiAl framework to enhance mass transfer rate. Theoretical simulations, in situ Raman spectroscopy and potential-dependent Fourier transform infrared spectroscopy results disclose that the strong local electric field induced by high-curvature Pt can greatly promote the H3O+ supply rate during HER, resulting in ∼1.6 times higher H3O+ concentration around the Pt nanocone than that in electrolyte. X-ray computed tomography and molecular dynamic simulation demonstrate the diffusion coefficient of H3O+ in 3D TiAl framework surpasses that in commercial carbon support by more than 16.7 times. Consequently, Pt/TiAl-nanocone exhibits a high mass activity of 17.2 mA cm-2 Pt at an overpotential of 100 mV with an ultrahigh TOF value of 42.9 atom-1 s-1. In a proton exchange membrane water electrolyzer, the Pt/TiAl-nanocone cathode achieves an industrial-scale current density of 1.0 A cm-2 with a cell voltage of 1.88 V at 60 °C and can operate stably for at least 800 h with a sluggish voltage decay rate of 137 µV h-1.
Collapse
Affiliation(s)
- Teng Chen
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Jun Ma
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Chenjia Liang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| | - Yi Luo
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Xin Xu
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Jianqiang Hu
- Air Force Logistics Academy, Xuzhou, Jiangsu, 221000, China
| | - Jie Chen
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu, 221000, China
| | - Weiping Ding
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
6
|
Zhang Q, Shan Y, Pan J, Kumar P, Keevers MJ, Lasich J, Kour G, Daiyan R, Perez-Wurf I, Thomsen L, Cheong S, Jiang J, Wu KH, Chiang CL, Grayson K, Green MA, Amal R, Lu X. A photovoltaic-electrolysis system with high solar-to-hydrogen efficiency under practical current densities. SCIENCE ADVANCES 2025; 11:eads0836. [PMID: 40009670 PMCID: PMC11864181 DOI: 10.1126/sciadv.ads0836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 01/24/2025] [Indexed: 02/28/2025]
Abstract
The photovoltaic-alkaline water (PV-AW) electrolysis system offers an appealing approach for large-scale green hydrogen generation. However, current PV-AW systems suffer from low solar-to-hydrogen (STH) conversion efficiencies (e.g., <20%) at practical current densities (e.g., >100 mA cm-2), rendering the produced H2 not economical. Here, we designed and developed a highly efficient PV-AW system that mainly consists of a customized, state-of-the-art AW electrolyzer and concentrator photovoltaic (CPV) receiver. The highly efficient anodic oxygen evolving catalyst, consisting of an iron oxide/nickel (oxy)hydroxide (Fe2O3-NiOxHy) composite, enables the customized AW electrolyzer with unprecedented catalytic performance (e.g., 1 A cm-2 at 1.8 V and 0.37 kgH2/m-2 hour-1 at 48 kWh/kgH2). Benefiting from the superior water electrolysis performance, the integrated CPV-AW electrolyzer system reaches a very high STH efficiency of up to 29.1% (refer to 30.3% if the lead resistance losses are excluded) at large current densities, surpassing all previously reported PV-electrolysis systems.
Collapse
Affiliation(s)
- Qingran Zhang
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yihao Shan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jian Pan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- Shanghai WarpEnergy Co. Ltd., Building 24, 1818 Chengbei Road, Shanghai 201807, China
| | - Priyank Kumar
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark J. Keevers
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - John Lasich
- RayGen Resources Pty. Ltd., 8 Cato Street, Hawthorn East, Victoria 3123, Australia
| | - Gurpreet Kour
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Rahman Daiyan
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Ivan Perez-Wurf
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lars Thomsen
- Australian Synchrotron, Australian Nuclear Science and Technology Organization, 800 Blackburn Road, Clayton, Victoria 3168, Australia
| | - Soshan Cheong
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Junjie Jiang
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kuang-Hsu Wu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Chao-Lung Chiang
- Material Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Kristian Grayson
- RayGen Resources Pty. Ltd., 8 Cato Street, Hawthorn East, Victoria 3123, Australia
| | - Martin A. Green
- School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rose Amal
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Xunyu Lu
- Particles and Catalysis Research Group, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
7
|
Gao Y, Xu Y, Guo H, Li J, Ding L, Wang T, He J, Chang K, Wu ZS. A 17.73 % Solar-To-Hydrogen Efficiency with Durably Active Catalyst in Stable Photovoltaic-Electrolysis Seawater System. Angew Chem Int Ed Engl 2025; 64:e202420814. [PMID: 39714398 DOI: 10.1002/anie.202420814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/01/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Developing durably active catalysts to tackle harsh voltage polarization and seawater corrosion is pivotal for efficient solar-to-hydrogen (STH) conversion, yet remains a challenge. We report a durably active catalyst of NiCr-layered double hydroxide (RuldsNiCr-LDH) with highly exposed Ni-O-Ru units, in which low-loading Ru (0.32 wt %) is locked precisely at defect lattice site (Rulds) by Ni and Cr. The Cr site electron equilibrium reservoir and Cl- repulsion by intercalated CO3 2- ensure the highly durable activity of Ni-O-Ru units. The RuldsNiCr-LDH‖RuldsNiCr-LDH electrolyzer based on anion exchange membrane water electrolysis (AEM-WE) shows ultrastable seawater electrolysis at 1000 mA cm-2. Employing RuldsNiCr-LDH both as anode and cathode, a photovoltaic-electrolysis seawater system achieves a 17.73 % STH efficiency, corresponding photovoltaic-to-hydrogen (PVTH) efficiency is 72.37 %. Further, we elucidate the dynamic evolutionary mechanism involving the interfacial water dissociation-oxidation, establishing the correlation between the dynamic behavior of interfacial water with the kinetics, activity of RuldsNiCr-LDH catalytic water electrolysis. Our work is a breakthrough step for achieving economically scalable production of green hydrogen.
Collapse
Affiliation(s)
- Yong Gao
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Yunyun Xu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Hu Guo
- School of New Energy, Nanjing University of Science and Technology, Nanjing, 214400, PR China
| | - Jingjing Li
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Lingling Ding
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Tao Wang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Jianping He
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Kun Chang
- Centre for Hydrogenergy, College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, PR China
| | - Zhong-Shuai Wu
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| |
Collapse
|
8
|
Su Z, Chen X, Sun M, Yang X, Kang J, Cai Z, Guo L. Amorphous Nanobelts for Efficient Electrocatalytic Ammonia Production. Angew Chem Int Ed Engl 2025; 64:e202416878. [PMID: 39363749 DOI: 10.1002/anie.202416878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
One-dimensional (1D) amorphous nanomaterials combine the advantages of high active site concentration of amorphous structure, high specific surface area and efficient charge transfer of 1D materials, so they present promising opportunities for catalysis. However, how to achievie the balance between the high orientation of 1D morphology and the isotropy of amorphous structure is a significant challenge, which severely obstructs the controllable preparation of 1D amorphous materials. Guided by the hard-soft acids-bases theory, here we develop a general strategy for preparing 1D amorphous nanomaterials through the precise modulation of bond strength between metal ions and organic ligands for a moderated fastness. The soft base dodecanethiol (DT) is multifunctionally served as both structure-regulating agent and morphology-directing agent. Compared with the borderline acids (e.g. Fe2+, Co2+, Ni2+) to construct amorphous structure, soft acid of Cu+ which produced crystalline nanobelts can still be amorphized by reducing the hardness of Cu ions through redox reaction to weak Cu-SR bond. Due to the combined advantages of amorphous structure and one-dimensional morphology, amorphous CuDT nanobelts exhibited excellent electrocatalytic activity in electrochemical nitrate reduction, outperformed most of the reported Cu-based catalysts. This work will effectively bridge the gap between traditional 1D crystalline nanomaterials synthesis and their amorphization preparation.
Collapse
Affiliation(s)
- Ziming Su
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Xiangyu Chen
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Mingke Sun
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Xiuyi Yang
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Jianxin Kang
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Zhi Cai
- School of Chemistry, Beihang University, 100191, Beijing, China
| | - Lin Guo
- School of Chemistry, Beihang University, 100191, Beijing, China
| |
Collapse
|
9
|
Liu X, Deng K, Liu P, Lv X, Tian W, Ji J. A hierarchical WC/NiCoW hollow nanotube array as a highly efficient electrocatalyst for hydrogen evolution. Chem Commun (Camb) 2024; 60:15027-15030. [PMID: 39606855 DOI: 10.1039/d4cc04910a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
The hydrogen evolution reaction (HER) holds great potential for sustainable hydrogen production but developing efficient and cost-effective electrocatalysts remains challenging. Here, we report the synthesis of a hierarchical WC/NiCoW hollow nanotube array electrocatalyst, featuring rapid gas release to minimize bubble aggregation and reaction retardation. Mechanistic insights into the HER kinetics reveal enhanced electron transfer at the WC-NiCoW interface and an accelerated Volmer step. The optimized WC/NCW-600 exhibits superior HER activity and remarkable long-term stability for over 72 h in alternated acidic, neutral, and alkaline electrolytes. This work highlights new insights into the rational structural design of durable electrocatalysts for hydrogen production.
Collapse
Affiliation(s)
- Xuesong Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Kuan Deng
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Peng Liu
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xingbin Lv
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, Sichuan 610041, P. R. China
| | - Wen Tian
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Junyi Ji
- School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
10
|
Chandra S, Mustafa MA, Ghadir K, Bansal P, Deorari M, Alhameedi DY, Alubiady MHS, Al-Ani AM, Rab SO, Jumaa SS, Abosaoda MK. Synthesis, characterization, and practical applications of perovskite quantum dots: recent update. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9633-9674. [PMID: 39073420 DOI: 10.1007/s00210-024-03309-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/16/2024] [Indexed: 07/30/2024]
Abstract
This review paper provides an in-depth analysis of Perovskite quantum dots (PQDs), a class of nanomaterials with unique optical and electronic properties that hold immense potential for various technological applications. The paper delves into the structural characteristics, synthesis methods, and characterization techniques of PQDs, highlighting their distinct advantages over other Quantum Dots (QDs). Various applications of PQDs in fields such as solar cells, LEDs, bioimaging, photocatalysis, and sensors are discussed, showcasing their versatility and promising capabilities. The ongoing advancements in PQD research and development point towards a bright future for these nanostructures in revolutionizing diverse industries and technologies.
Collapse
Affiliation(s)
- Subhash Chandra
- Department of Electrical Engineering, GLA University, Mathura, 281406, India
| | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Baghdad, Iraq.
| | - Kamil Ghadir
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, 247341, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, 831001, India
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-Be) University, Bengaluru, Karnataka, 560069, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, 303012, India
| | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Dheyaa Yahaia Alhameedi
- Department of Anesthesia, College of Health & Medical Technology, Sawa University, Almuthana, Iraq
| | | | | | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Sally Salih Jumaa
- Department of Medical Engineering, National University of Science and Technology, Dhi Qar, Iraq
| | - Munther Kadhim Abosaoda
- College of Pharmacy, the Islamic University, Najaf, Iraq
- College of Pharmacy, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, the Islamic University of Babylon, Al Diwaniyah, Iraq
| |
Collapse
|
11
|
Liu Y, Hu Q, Yang X, Kang J. Unveiling the potential of amorphous nanocatalysts in membrane-based hydrogen production. MATERIALS HORIZONS 2024; 11:4885-4910. [PMID: 39086327 DOI: 10.1039/d4mh00589a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Hydrogen, as a clean and renewable energy source, is a promising candidate to replace fossil fuels and alleviate the environmental crisis. Compared with the traditional H-type cells with a finite-gap, the design of membrane electrodes can reduce the gas transmission resistance, enhance the current density, and improve the efficiency of hydrogen production. However, the harsh environment in the electrolyser makes the membrane electrode based water electrolysis technology still limited by the lack of catalyst activity and stability under the working conditions. Due to the abundant active sites and structural flexibility, amorphous nanocatalysts are alternatives. In this paper, we review the recent research progress of amorphous nanomaterials as electrocatalysts for hydrogen production by electrolysis at membrane electrodes, illustrate and discuss their structural advantages in membrane electrode catalytic systems, as well as explore the significance of the amorphous structure for the development of membrane electrode systems. Finally, the article also looks at future opportunities and adaptations of amorphous catalysts for hydrogen production at membrane electrodes. The authors hope that this review will deepen the understanding of the potential of amorphous nanomaterials for application in electrochemical hydrogen production, facilitating future nanomaterials research and new sustainable pathways for hydrogen production.
Collapse
Affiliation(s)
- Yifei Liu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Qi Hu
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Xiuyi Yang
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Jianxin Kang
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
12
|
Ahmad S, Khan M, Khan SB, Asiri AM. Exploring the potential of surface-modified alginate beads for catalytic removal of environmental pollutants and hydrogen gas generation. Int J Biol Macromol 2024; 277:133697. [PMID: 38996882 DOI: 10.1016/j.ijbiomac.2024.133697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024]
Abstract
In this study, hydrogel beads were fabricated using alginate (Algt) polymer containing dispersed nickel phthalocyanine (NTC) nanomaterial. The viscous solution of Algt and NTC was poured dropwise into a divalent Ca2+ ions, resulting in the formation of hydrogel beads known as NTC@Algt-BDs. The surface of the NTC@Algt-BDs was further modified by coating them with different types of metal ions, yielding metal-coated M+/NTC@Algt-BDs. The adsorbed metal ions i.e., Cu+2, Ag+, Ni+2, Co+2, and Fe+3 were subsequently reduced to zero-valent metal nanoparticles (M0) by NaBH4. The prepared beads were characterized using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Initially, M0/NTC@Algt-BDs were examined for the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). Among them, Cu0/NTC@Algt-BDs catalyst exhibited the highest reduction rate and therefore, investigated for reduction of different nitrophenols (NPs) and dyes, including 2-nitrophenol (2-NP), 2,6-dinitrophenol (2,6-DNP), methyl orange (MO), potassium ferrocyanide (PFC), congo red (CR), and acridine orange (ArO). The highest reduction rates of 2.019 and 1.394 min-1 were observed for MO and 2-NP, respectively. Furthermore, the fabricated catalysts were employed for the efficient production of H2 gas by NaBH4 methanolysis. Among which the Ag0/NTC@Algt-BDs catalyst showed excellent catalytic production of H2 gas, exhibiting the lowest activation energy (Ea) of 25.169 kJ/mol at ambient temperature. Furthermore, the impact of NaBH4 amount, and catalyst dosage on the reduction of 2-NP and H2 gas production was conducted whereas the effect of temperature on methanolysis of NaBH4 for evolution of H2 gas was studied. The amount of H2 gas was confirmed by GC-TCD system. Additionally, the recyclability of the catalyst was investigated, as it garnered significant research interest.
Collapse
Affiliation(s)
- Shahid Ahmad
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mansoor Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Shar Bahadar Khan
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| | - Abdullah M Asiri
- Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
13
|
Li Y, Li K, Li L, Gao J, Wang Z, Zou W, Li H, Zhang Q, Li Y, Zhang X, Tian D, Jiang L. Bubble-Guidance Breaking Gas Shield for Highly Efficient Overall Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405493. [PMID: 39136062 DOI: 10.1002/adma.202405493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/14/2024] [Indexed: 10/11/2024]
Abstract
Overall water splitting is a promising technology for sustainable hydrogen production, but the primary challenge is removing bubbles from the electrode surface quickly to increase hydrogen production. Inspired by the directional fluid transport properties of natural biological surfaces like Nepenthes peristome and Morpho butterfly's wings, here a strategy is demonstrated to achieve highly efficient overall water splitting by a bubble-guidance electrode, that is, an anisotropic groove-micro/nanostructured porous electrode (GMPE). Gradient groove micro/nanostructures on the GMPE serve as high-speed bubble transmission channels and exhibit superior bubble-guidance capabilities. The synergistic effect of the asymmetric Laplace pressure generated between microscale porous structure and groove patterns and the buoyancy along the groove patterns pushes the produced bubbles directionally to spread, transport, and detach from the electrode surface in time. Moreover, the low adhesive nanosheet arrays are beneficial to reduce bubble size and increase bubble release frequency, which cooperatively improve mass transfer with the microscale structure. Notably, GMPE outperforms planar-micro/nanostructured porous electrode (PMPE) in hydrogen/oxygen evolution reactions, with GMPE||GMPE showing better water splitting performance than commercially available RuO2||20 wt.% Pt/C. This work improves electrodes for better mass transfer and kinetics in electrochemical reactions at solid-liquid-gas interfaces, offering insight for designing and preparing gas-involved photoelectrochemical electrodes.
Collapse
Affiliation(s)
- Yuliang Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Ke Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lu Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Jinxin Gao
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Zhaoyang Wang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Wentao Zou
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Honghao Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Qiuya Zhang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Yan Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Xiaofang Zhang
- School of Mathematics and Physics, University of Science & Technology Beijing, Beijing, 100083, P. R. China
| | - Dongliang Tian
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, School of Chemistry, Beihang University, Beijing, 100191, P. R. China
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100191, P. R. China
| |
Collapse
|
14
|
Gong Z, Chen P, Gong H, Huang K, Ye G, Fei H. General Design of Aligned-Channel Porous Carbon Electrodes for Efficient High-Current-Density Gas-Evolving Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409292. [PMID: 39221668 DOI: 10.1002/adma.202409292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/18/2024] [Indexed: 09/04/2024]
Abstract
Gas-evolving reactions (GERs) are important in many electrochemical energy conversion technologies and chemical industries. The operation of GERs at high current densities is critical for their industrial implementation but remains challenging as it poses stringent requirements on the electrodes in terms of reaction kinetics, mass transfer, and electron transport. Here the general and rational design of self-standing carbon electrodes with vertically aligned porous channels, appropriate pore size distribution, and high surface area as supports for loading a variety of catalytic species by facile electrodeposition are reported. These electrodes simultaneously possess high intrinsic activity, large numbers of active sites, and efficient transport highways for ions, gases, and electrons, resulting in significant performance improvements at high current densities in diverse GERs such as urea oxidation, hydrogen evolution, and oxygen evolution reactions, as well as overall urea/water electrolyzers. As an example, the carbon electrode decorated with Ni(OH)2 demonstrates a record-high current density of 1000 mA cm-2 at 1.360 V versus the reversible hydrogen electrode, largely outperforming the conventional nickel foam-based counterpart and the state-of-the-art electrodes.
Collapse
Affiliation(s)
- Zhichao Gong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Pengzhao Chen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Haisheng Gong
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Kang Huang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Gonglan Ye
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Huilong Fei
- State Key Laboratory for Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
15
|
Ebrahimi M, Luo B, Wang Q, Attarilar S. Enhanced Multifaceted Properties of Nanoscale Metallic Multilayer Composites. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4004. [PMID: 39203182 PMCID: PMC11355961 DOI: 10.3390/ma17164004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024]
Abstract
This study explored the fascinating field of high-performance nanoscale metallic multilayer composites, focusing on their magnetic, optical, and radiation tolerance properties, as well as their thermal and electrical properties. In general, nanoscale metallic multilayer composites have a wide range of outstanding properties, which differ greatly from those observed in monolithic films. Their exceptional properties are primarily due to the large number of interfaces and nanoscale layer thicknesses. Through a comprehensive review of existing literature and experimental data, this paper highlights the remarkable performance enhancements achieved by the precise control of layer thicknesses and interfaces in these composites. Furthermore, it will discuss the underlying mechanisms responsible for their exceptional properties and provide insights into future research directions in this rapidly evolving field. Many studies have investigated these materials, focusing on their magnetic, mechanical, optical, or radiation-tolerance properties. This paper summarizes the findings in each area, including a description of the general attributes, the adopted synthesis methods, and the most common characterization techniques used. The paper also covers related experimental data, as well as existing and promising applications. The paper also covers other phenomena of interest, such as thermal stability studies, self-propagating reactions, and the progression from nanomultilayers to amorphous and/or crystalline alloys. Finally, the paper discusses challenges and future perspectives relating to nanomaterials. Overall, this paper is a valuable resource for researchers and engineers interested in harnessing the full potential of nanoscale metallic multilayer composites for advanced technological applications.
Collapse
Affiliation(s)
- Mahmoud Ebrahimi
- Department of Mechanical Engineering, Faculty of Engineering, University of Maragheh, Maragheh 83111-55181, Iran;
- National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Bangcai Luo
- Ningbo Major Draft Beer Equipment Co., Ltd., Ningbo 315033, China;
| | - Qudong Wang
- National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Shokouh Attarilar
- National Engineering Research Center of Light Alloy Net Forming and Key State Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- Department of Materials Engineering, Faculty of Engineering, University of Maragheh, Maragheh 83111-55181, Iran
| |
Collapse
|
16
|
Faisal M, Alam MM, Ahmed J, Asiri AM, Algethami JS, Altholami RH, Harraz FA, Rahman MM. Efficient nitrite determination by electrochemical approach in liquid phase with ultrasonically prepared gold-nanoparticle-conjugated conducting polymer nanocomposites. Front Chem 2024; 12:1358353. [PMID: 39165336 PMCID: PMC11333211 DOI: 10.3389/fchem.2024.1358353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/26/2024] [Indexed: 08/22/2024] Open
Abstract
An electrochemical nitrite sensor probe is introduced herein using a modified flat glassy carbon electrode (GCE) and SrTiO3 material doped with spherical-shaped gold nanoparticles (Au-NPs) and polypyrrole carbon (PPyC) at a pH of 7.0 in a phosphate buffer solution. The nanocomposites (NCs) containing Au-NPs, PPyC, and SrTiO3 were synthesized by ultrasonication, and their properties were thoroughly characterized through structural, elemental, optical, and morphological analyses with various conventional spectroscopic methods, such as field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy, high-resolution transmission electron microscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy, and Brunauer-Emmett-Teller method. The peak currents due to nitrite oxidation were characterized in detail and analyzed using conventional cyclic voltammetry (CV) as well as differential pulse voltammetry (DPV) under ambient conditions. The sensor response increased significantly from 0.15 to 1.5 mM of nitrite ions, and the sensor was fabricated by coating a conducting agent (PEDOT:PSS) on the GCE to obtain the Au-NPs/PPyC/SrTiO3 NCs/PEDOT:PSS/GCE probe. The sensor's sensitivity was determined as 0.5 μA/μM∙cm2 from the ratio of the slope of the linear detection range by considering the active surface area (0.0316 cm2) of the flat GCE. In addition, the limit of detection was determined as 20.00 ± 1.00 µM, which was found to be satisfactory. The sensor's stability, pH optimization, and reliability were also evaluated in these analyses. Overall, the sensor results were found to be satisfactory. Real environmental samples were then analyzed to evaluate the sensor's reliability through DPV, and the results showed that the proposed novel electrochemical sensor holds great promise for mitigating water contamination in the real samples with the lab-made Au-NPs/PPyC/SrTiO3 NC. Thus, this study provides valuable insights for improving sensors for broad environmental monitoring applications using the electrochemical approach.
Collapse
Affiliation(s)
- M. Faisal
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
| | - M. M. Alam
- Department of Chemical Engineering, Faculty of Engineering and Technology, Z. H. Sikder University of Science and Technology (ZHSUST), Shariatpur, Bangladesh
| | - Jahir Ahmed
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jari S. Algethami
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts, Najran University, Najran, Saudi Arabia
| | - Raed H. Altholami
- Department of Chemistry, College of Art and Science, Prince Sattam bin Abdulaziz University, Wadi Al Dawasir, Saudi Arabia
| | - Farid A. Harraz
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano-Research Centre, Najran University, Najran, Saudi Arabia
- Department of Chemistry, Faculty of Science and Arts at Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Mohammed M. Rahman
- Center of Excellence for Advanced Materials Research (CEAMR), King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
17
|
Xie L, Wang L, Liu X, Chen J, Wen X, Zhao W, Liu S, Zhao Q. Flexible tungsten disulfide superstructure engineering for efficient alkaline hydrogen evolution in anion exchange membrane water electrolysers. Nat Commun 2024; 15:5702. [PMID: 38977693 PMCID: PMC11231348 DOI: 10.1038/s41467-024-50117-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
Anion exchange membrane (AEM) water electrolysis employing non-precious metal electrocatalysts is a promising strategy for achieving sustainable hydrogen production. However, it still suffers from many challenges, including sluggish alkaline hydrogen evolution reaction (HER) kinetics, insufficient activity and limited lifetime of non-precious metal electrocatalysts for ampere-level-current-density alkaline HER. Here, we report an efficient alkaline HER strategy at industrial-level current density wherein a flexible WS2 superstructure is designed to serve as the cathode catalyst for AEM water electrolysis. The superstructure features bond-free van der Waals interaction among the low Young's modulus nanosheets to ensure excellent mechanical flexibility, as well as a stepped edge defect structure of nanosheets to realize high catalytic activity and a favorable reaction interface micro-environment. The unique flexible WS2 superstructure can effectively withstand the impact of high-density gas-liquid exchanges and facilitate mass transfer, endowing excellent long-term durability under industrial-scale current density. An AEM electrolyser containing this catalyst at the cathode exhibits a cell voltage of 1.70 V to deliver a constant catalytic current density of 1 A cm-2 over 1000 h with a negligible decay rate of 9.67 μV h-1.
Collapse
Affiliation(s)
- Lingbin Xie
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| | - Xia Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, Shandong, PR China
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Xixing Wen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Weiwei Zhao
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China
| | - Shujuan Liu
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| | - Qiang Zhao
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
- Institute of Advanced Materials (IAM) & Institute of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, PR China.
| |
Collapse
|
18
|
Xiao Y, Lu J, Chen K, Cao Y, Gong C, Ke FS. Linkage Engineering in Covalent Organic Frameworks for Metal-Free Electrocatalytic C 2H 4 Production from CO 2. Angew Chem Int Ed Engl 2024; 63:e202404738. [PMID: 38634674 DOI: 10.1002/anie.202404738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/30/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
Electrocatalytic carbon dioxide reduction reaction (CO2RR) to produce ethylene (C2H4) is conducive to sustainable development of energy and environment. At present, most electrocatalysts for C2H4 production are limited to the heavy metal copper, meanwhile, achieving metal-free catalysis remains a challenge. Noted piperazine with sp3 N hybridization is beneficial to CO2 capture, but CO2RR performance and mechanism have been lacking. Herein, based on linkage engineering, we construct a novel high-density sp3 N catalytic array via introducing piperazine into the crystalline and microporous aminal-linked covalent organic frameworks (COFs). Thanks to its high sp3 N density, strong CO2 capture capacity and great hydrophilicity, aminal-linked COF successfully achieves the conversion of CO2 to C2H4 with a Faraday efficiency up to 19.1 %, which is stand out in all reported metal-free COF electrocatalysts. In addition, a series of imine-linked COFs are synthesized and combined with DFT calculations to demonstrate the critical role of sp3 N in enhancing the kinetics of CO2RR. Therefore, this work reveals the extraordinary potential of linkage engineering in COFs to break through some catalytic bottlenecks.
Collapse
Affiliation(s)
- Yang Xiao
- Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Jie Lu
- Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Kean Chen
- Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Yuliang Cao
- Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Chengtao Gong
- Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| | - Fu-Sheng Ke
- Hubei Key Laboratory of Electrochemical Power Sources, Hubei Key Lab on Organic and Polymeric Opto-Electronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
19
|
Liu Y, Liu G, Chen X, Xue C, Sun M, Liu Y, Kang J, Sun X, Guo L. Achieving Negatively Charged Pt Single Atoms on Amorphous Ni(OH) 2 Nanosheets with Promoted Hydrogen Absorption in Hydrogen Evolution. NANO-MICRO LETTERS 2024; 16:202. [PMID: 38782778 PMCID: PMC11116366 DOI: 10.1007/s40820-024-01420-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Single-atom (SA) catalysts with nearly 100% atom utilization have been widely employed in electrolysis for decades, due to the outperforming catalytic activity and selectivity. However, most of the reported SA catalysts are fixed through the strong bonding between the dispersed single metallic atoms with nonmetallic atoms of the substrates, which greatly limits the controllable regulation of electrocatalytic activity of SA catalysts. In this work, Pt-Ni bonded Pt SA catalyst with adjustable electronic states was successfully constructed through a controllable electrochemical reduction on the coordination unsaturated amorphous Ni(OH)2 nanosheet arrays. Based on the X-ray absorption fine structure analysis and first-principles calculations, Pt SA was bonded with Ni sites of amorphous Ni(OH)2, rather than conventional O sites, resulting in negatively charged Ptδ-. In situ Raman spectroscopy revealed that the changed configuration and electronic states greatly enhanced absorbability for activated hydrogen atoms, which were the essential intermediate for alkaline hydrogen evolution reaction. The hydrogen spillover process was revealed from amorphous Ni(OH)2 that effectively cleave the H-O-H bond of H2O and produce H atom to the Pt SA sites, leading to a low overpotential of 48 mV in alkaline electrolyte at -1000 mA cm-2 mg-1Pt, evidently better than commercial Pt/C catalysts. This work provided new strategy for the controllable modulation of the local structure of SA catalysts and the systematic regulation of the electronic states.
Collapse
Affiliation(s)
- Yue Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
- School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China
| | - Gui Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Xiangyu Chen
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Chuang Xue
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Mingke Sun
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Yifei Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China
| | - Jianxin Kang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China.
| | - Xiujuan Sun
- School of Chemistry, Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, Xiangtan University, Xiangtan, 411105, Hunan, People's Republic of China.
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-inspired Smart Interfacial Science and Technology, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
20
|
Chen X, Lv S, Gu H, Cui H, Liu G, Liu Y, Li Z, Xu Z, Kang J, Teobaldi G, Liu LM, Guo L. Amorphous Bismuth-Tin Oxide Nanosheets with Optimized C-N Coupling for Efficient Urea Synthesis. J Am Chem Soc 2024; 146:13527-13535. [PMID: 38691638 DOI: 10.1021/jacs.4c03156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Closing the carbon and nitrogen cycles by electrochemical methods using renewable energy to convert abundant or harmful feedstocks into high-value C- or N-containing chemicals has the potential to transform the global energy landscape. However, efficient conversion avenues have to date been mostly realized for the independent reduction of CO2 or NO3-. The synthesis of more complex C-N compounds still suffers from low conversion efficiency due to the inability to find effective catalysts. To this end, here we present amorphous bismuth-tin oxide nanosheets, which effectively reduce the energy barrier of the catalytic reaction, facilitating efficient and highly selective urea production. With enhanced CO2 adsorption and activation on the catalyst, a C-N coupling pathway based on *CO2 rather than traditional *CO is realized. The optimized orbital symmetry of the C- (*CO2) and N-containing (*NO2) intermediates promotes a significant increase in the Faraday efficiency of urea production to an outstanding value of 78.36% at -0.4 V vs RHE. In parallel, the nitrogen and carbon selectivity for urea formation is also enhanced to 90.41% and 95.39%, respectively. The present results and insights provide a valuable reference for the further development of new catalysts for efficient synthesis of high-value C-N compounds from CO2.
Collapse
Affiliation(s)
- Xiangyu Chen
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Shuning Lv
- School of Physics, Beihang University, Beijing 100191, China
| | - Hongfei Gu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Hanke Cui
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Gui Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Yifei Liu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Zhaoyu Li
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Ziyan Xu
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Jianxin Kang
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| | - Gilberto Teobaldi
- Scientific Computing Department, STFC UKRI, Rutherford Appleton Laboratory, Didcot OX11 0QX, U.K
| | - Li-Min Liu
- School of Physics, Beihang University, Beijing 100191, China
| | - Lin Guo
- School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Beihang University, Beijing 100191, China
| |
Collapse
|
21
|
Wang Y, Wang T, Arandiyan H, Song G, Sun H, Sabri Y, Zhao C, Shao Z, Kawi S. Advancing Catalysts by Stacking Fault Defects for Enhanced Hydrogen Production: A Review. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313378. [PMID: 38340031 DOI: 10.1002/adma.202313378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Green hydrogen, derived from water splitting powered by renewable energy such as solar and wind energy, provides a zero-emission solution crucial for revolutionizing hydrogen production and decarbonizing industries. Catalysts, particularly those utilizing defect engineering involving the strategical introduction of atomic-level imperfections, play a vital role in reducing energy requirements and enabling a more sustainable transition toward a hydrogen-based economy. Stacking fault (SF) defects play an important role in enhancing the electrocatalytic processes by reshaping surface reactivity, increasing active sites, improving reactants/product diffusion, and regulating electronic structure due to their dense generation ability and profound impact on catalyst properties. This review explores SF in metal-based materials, covering synthetic methods for the intentional introduction of SF and their applications in hydrogen production, including oxygen evolution reaction, photo- and electrocatalytic hydrogen evolution reaction, overall water splitting, and various other electrocatalytic processes such as oxygen reduction reaction, nitrate reduction reaction, and carbon dioxide reduction reaction. Finally, this review addresses the challenges associated with SF-based catalysts, emphasizing the importance of a detailed understanding of the properties of SF-based catalysts to optimize their electrocatalytic performance. It provides a comprehensive overview of their various applications in electrocatalytic processes, providing valuable insights for advancing sustainable energy technologies.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Tian Wang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Guoqiang Song
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Hongyu Sun
- DENSsolutions B.V., Informaticalaan 12, 2628 ZD, Delft, Netherlands
| | - Ylias Sabri
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA, 6845, Australia
| | - Sibudjing Kawi
- Department of Chemical & Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
22
|
Wei L, Fang N, Xue F, Liu S, Huang WH, Pao CW, Hu Z, Xu Y, Geng H, Huang X. Amorphous-crystalline RuTi nanosheets enhancing OH species adsorption for efficient hydrogen oxidation catalysis. Chem Sci 2024; 15:3928-3935. [PMID: 38487225 PMCID: PMC10935717 DOI: 10.1039/d3sc06705j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
Anion exchange membrane fuel cells are a potentially cost-effective energy conversion technology, however, the electrocatalyst for the anodic hydrogen oxidation reaction (HOR) suffers from sluggish kinetics under alkaline conditions. Herein, we report that Ru-based nanosheets with amorphous-crystalline heterointerfaces of Ru and Ti-doped RuO2 (a/c-Ru/Ti-RuO2) can serve as a highly efficient HOR catalyst with a mass activity of 4.16 A mgRu-1, which is 19.8-fold higher than that of commercial Pt/C. Detailed characterization studies show that abundant amorphous-crystalline heterointerfaces of a/c-Ru/Ti-RuO2 nanosheets provide oxygen vacancies and unsaturated coordination bonds for balancing adsorption of hydrogen and hydroxyl species on Ru active sites to elevate HOR activity. Moreover, Ti doping can facilitate CO oxidation, leading to enhanced strength to CO poisoning. This work provides a strategy for enhancing alkaline HOR performance over Ru-based catalysts with heteroatom and heterointerface dual-engineering, which will attract immediate interest in chemistry, materials science and beyond.
Collapse
Affiliation(s)
- Licheng Wei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Nan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Fei Xue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Shangheng Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center 101 Hsin-Ann Road Hsinchu 30076 Taiwan
| | - Zhiwei Hu
- Max Planck Institute for Chemical Physics of Solids Nothnitzer Strasse 40 Dresden 01187 Germany
| | - Yong Xu
- i-Lab Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS) 398 Ruoshui Road Suzhou 215123 China
| | - Hongbo Geng
- School of Materials Engineering, Changshu Institute of Technology Changshu 215500 China
| | - Xiaoqing Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|