1
|
Yu X, An H, Wu W, Xue F, Jiang Y, Chan SY, Tu Z, Lu S. Enantioselective Cascade Annulation of 1,2,3-Triazoles and Enals Enabled by Sequential Rhodium and Oxidative NHC Catalysis Involving Cleavage, Migration, and Cyclization. Org Lett 2025; 27:2383-2388. [PMID: 40021472 DOI: 10.1021/acs.orglett.5c00242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2025]
Abstract
The in situ-generated pyrrolin-3-ones serve as novel and versatile synthons, being employed as intermediates for the efficient production of pyrrole-fused lactones with high yield and excellent enantioselectivity. Herein, we introduce emerging rhodium and oxidative N-heterocyclic carbene relay catalysis that enables a highly enantioselective cascade annulation between easily available 1,2,3-triazoles and enals. In this proof-of-concept study, the in situ-generated pyrrolin-3-ones engage α,β-unsaturated acylazolium intermediates generated from enals via oxidative N-heterocyclic carbene catalysis.
Collapse
Affiliation(s)
- Xiaoyi Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Hao An
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Wenbin Wu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Fei Xue
- Department of Chemistry and Material Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yina Jiang
- Department of Basic Medicine, Shaanxi University of Chinese Medicine, Xi'an 712046, China
| | - Siew Yin Chan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-01 Innovis, Singapore 138634
| | - Zhifeng Tu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| | - Shenci Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE), and Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
2
|
Qiu S, Mao Y, Yang Z, Liu J, Tang D, Huang Z, Luo M, Fan Z, Tang Z, Zhao Y, Liu X, Li X, Zhou H. Synergistic Cu(II)/Amine-Catalyzed Cyclization of Enynone: Assembly of Tetralone and Tetrahydronaphthylimine. Org Lett 2025; 27:995-999. [PMID: 39817403 DOI: 10.1021/acs.orglett.4c04536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
An unprecedented synergistic copper- and amine-catalyzed cyclization of enynone is reported. This reaction features an efficient and straightforward construction of multisubstituted tetralone through an amine-assisted regioselective oxygen atom transfer process and stereoselective intramolecular Michael addition cyclization. Under dehydrative reaction conditions, the synthesis of tetrahydronaphthylimine derivatives with ketone group tolerance is achieved, which could be challenging via traditional methods. The utility of this reaction is demonstrated by further transformations of obtained molecules toward a variety of valuable multisubstituted naphthyl skeletons.
Collapse
Affiliation(s)
- Shaotong Qiu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yangxin Mao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhicheng Yang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Jiangan Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Dan Tang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhe Huang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Mahong Luo
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhenming Fan
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Zhenqiang Tang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Yunhui Zhao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xiong Liu
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Xiaofang Li
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| | - Hu Zhou
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, China
| |
Collapse
|
3
|
Wen YH, Liu M, Wang YH, Gong QW, Li S, Song J, Gong LZ. Remote Enantioselective ϵ-Alkylation of Copper Ethynylallenylidenes: Precise Control of Central and Axial Chirality. Angew Chem Int Ed Engl 2025; 64:e202416089. [PMID: 39418168 DOI: 10.1002/anie.202416089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/19/2024]
Abstract
Chiral tetrasubstituted allenes have emerged as important architectures for engineering biologically active compounds. The construction of unique tetrasubstituted allene scaffolds with precise control of continuous central and axial chirality remains yet to be developed. Here, we report a remote enantioselective ϵ-alkylation of yne-propargylic acetates with enals enabled by NHC and copper cooperative catalysis, leading to a series of tetrasubstituted allenes with excellent enantioselectivities (up to >99 % ee) and diastereoselectivities (up to >95 : 5 dr). This method features high regioselectivity and simultaneous control of axial and central chirality. Mechanistic studies suggest a cooperative activation mode and synergistic control of distal chirality created from the copper ethynylallenylidenes.
Collapse
Affiliation(s)
- Yu-Hua Wen
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Minghao Liu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Hao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Qian-Wei Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shuai Li
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Jin Song
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Liu-Zhu Gong
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Huang Y, Han YF, Zhang CL, Ye S. Regioselective Alkylacylation of 1,3-Dienes by Merging N-Heterocyclic Carbene Catalysis with Photoinduced Palladium Catalysis. Org Lett 2025; 27:415-420. [PMID: 39689368 DOI: 10.1021/acs.orglett.4c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Herein, we develop a dual catalytic platform for the 1,2- or 1,4-alkylacylation reaction of 1,3-dienes with readily available alkyl halides and aldehydes by merging N-heterocyclic carbene catalysis with photoinduced palladium catalysis. A series of β,γ-unsaturated ketones are obtained in good to high yields. Mechanistic studies suggest that this reaction involves a radical process. The direct synthesis of flavanone from salicylaldehyde exemplified the potential capability of this dual catalytic platform.
Collapse
Affiliation(s)
- Ying Huang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - You-Feng Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Lin Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Song Ye
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Zhao Z, Zhu L, Song ZL, Qubi K, Ouyang Q, Du W, Chen YC. Nickel-Catalyzed Asymmetric (3 + 2) Annulations of Propargylic Carbonates and Vinylogous Donors via an Alkenylation Pathway. J Am Chem Soc 2024; 146:30678-30685. [PMID: 39439091 DOI: 10.1021/jacs.4c12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
The transition-metal-catalyzed alkenylation strategy of propargylic alcohol derivatives provides an efficient protocol to access multifunctional products in a double-nucleophilic attack pattern. While limited relevant asymmetric examples have been reported via palladium catalysis, here we first demonstrate that a nonprecious Ni(0)-based chiral complex can efficiently promote the tandem substitution process between propargylic carbonates and N-trifluoroethyl ketimines via consecutive aza-vinylogous activations, finally accomplishing a (3 + 2) annulation reaction to afford products embedding a 4-methylene-3,4-dihydro-2H-pyrrole framework with high regio-, diastereo-, and enantiocontrol. Their assemblies with a few all-carbon-based vinylogous precursors are also successful, and enantioenriched adducts containing a 3-methylenecyclopentene scaffold are furnished effectively. The substitution patterns for both types of substrates are substantial, and an array of synthetic elaborations is conducted to deliver more versatile architectures with high application potential. In addition, density functional theory calculations and control experiments have been conducted to rationalize the catalytic pathways and regio- and enantioselectivity control.
Collapse
Affiliation(s)
- Zhi Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lei Zhu
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Zhao-Li Song
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Keji Qubi
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Qin Ouyang
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| | - Wei Du
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ying-Chun Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
- College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China
| |
Collapse
|
6
|
Chang X, Zhang J, Cheng X, Lv X, Guo C. Ni/Cu Dual-Catalyzed Propargylation for the Stereodivergent Synthesis of Methohexital. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406764. [PMID: 39049712 PMCID: PMC11423103 DOI: 10.1002/advs.202406764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Indexed: 07/27/2024]
Abstract
The development of efficient methodologies for the controlled manufacture of specific stereoisomers bearing quaternary stereocenters has prompted advances in a variety of scientific disciplines including pharmaceutical chemistry, materials science, and chemical biology. However, complete control of the absolute and relative stereochemical configurations of alkyne derivatives remains an unmet synthetic challenge. Herein, a Ni/Cu dual-catalyzed asymmetric propargylic substitution reaction is presented to produce propargylated products with all-carbon quaternary stereocenters in high yields with significant diastereo- and enantioselectivities (up to >20:1 dr, >99% ee). The synthesis of all stereochemical variants of methohexital, a widely used sedative-hypnotic drug, exemplifies the efficacy of dual-catalyzed stereodivergent propargylation.
Collapse
Affiliation(s)
- Xihao Chang
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Jiayin Zhang
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Xiang Cheng
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xianhai Lv
- College of Materials and Chemistry & School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Chang Guo
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Wang H, Zhang R, Zi W. Synergistic Palladium/Copper-Catalyzed 1,4-Difunctionalization of 1,3-Dienes for Stereodivergent Construction of 1,5-Nonadjacent Stereocenters. Angew Chem Int Ed Engl 2024; 63:e202402843. [PMID: 38512004 DOI: 10.1002/anie.202402843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/13/2024] [Accepted: 03/21/2024] [Indexed: 03/22/2024]
Abstract
The construction of two distal stereocenters through a single catalytic process is of great interest in organic synthesis. While there are some successful reports regarding stereodivergent preparation of 1,3- or 1,4-stereocenters, the more challenged 1,5-nonadjacent stereocenters have never been achieved in a stereodivergent fashion. Herein we describe a synergistic palladium/copper catalysis for 1,4-difunctionalization reactions of 1,3-dienes, providing access to 1,5-nonadjacent quaternary stereocenters. Because each of the two catalysts separately controlled one of the newly formed stereocenters, stereodivergent synthesis of all four diastereomers of the products could readily be achieved simply by choosing an appropriate combination of chiral catalysts. Experimental and computational studies supported a mechanism involving a Heck/Tsuji-Trost cascade reaction, and the origins of the stereoselectivity were elucidated.
Collapse
Affiliation(s)
- Hongfa Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Ruiyuan Zhang
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
| | - Weiwei Zi
- State Key Laboratory and Institute of Elemento-Organic Chemistry College of Chemistry,Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300071, China
| |
Collapse
|
8
|
Li LJ, Zhang JC, Li WP, Zhang D, Duanmu K, Yu H, Ping Q, Yang ZP. Enantioselective Construction of Quaternary Stereocenters via Cooperative Photoredox/Fe/Chiral Primary Amine Triple Catalysis. J Am Chem Soc 2024; 146:9404-9412. [PMID: 38504578 DOI: 10.1021/jacs.4c01842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The catalytic and enantioselective construction of quaternary (all-carbon substituents) stereocenters poses a formidable challenge in organic synthesis due to the hindrance caused by steric factors. One conceptually viable and potentially versatile approach is the coupling of a C-C bond through an outer-sphere mechanism, accompanied by the realization of enantiocontrol through cooperative catalysis; however, examples of such processes are yet to be identified. Herein, we present such a method for creating different compounds with quaternary stereocenters by photoredox/Fe/chiral primary amine triple catalysis. This approach facilitates the connection of an unactivated alkyl source with a tertiary alkyl moiety, which is also rare. The scalable process exhibits mild conditions, does not necessitate the use of a base, and possesses a good functional-group tolerance. Preliminary investigations into the underlying mechanisms have provided valuable insights into the reaction pathway.
Collapse
Affiliation(s)
- Lian-Jie Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Jun-Chun Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Wei-Peng Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Dan Zhang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Kaining Duanmu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Hui Yu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| | - Ze-Peng Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, People's Republic of China
| |
Collapse
|