1
|
Shivers L, Goodyear J, Taylor SD. Total Synthesis of LL-A0341β 1. Org Lett 2025; 27:450-454. [PMID: 39745062 DOI: 10.1021/acs.orglett.4c04487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The first total synthesis of cyclic depsipeptide antibiotic LL-A0341β1 (LL) is described. The configuration of the β-methyltryptophan (β-MeTrp) residue was established by preparing all four stereoisomers of Fmoc-β-MeTrp which were used for the synthesis of LL via Fmoc solid phase peptide synthesis. The most active of the four peptides was the one containing (2R,3R)-β-MeTrp. The activity of LL was strongly inhibited by cardiolipin (CL), but not other common phospholipids found in bacterial cell membranes, suggesting that LL interacts with CL in the lipid membrane.
Collapse
Affiliation(s)
- Lindsey Shivers
- Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada N2L3G1
| | - Jeremy Goodyear
- Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada N2L3G1
| | - Scott D Taylor
- Department of Chemistry, University of Waterloo, 200 University Ave. West, Waterloo, Ontario, Canada N2L3G1
| |
Collapse
|
2
|
Xie F, Zhao H, Liu J, Yang X, Neuber M, Agrawal AA, Kaur A, Herrmann J, Kalinina OV, Wei X, Müller R, Fu C. Autologous DNA mobilization and multiplication expedite natural products discovery from bacteria. Science 2024; 386:eabq7333. [PMID: 39666857 DOI: 10.1126/science.abq7333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/10/2024] [Indexed: 12/14/2024]
Abstract
The transmission of antibiotic-resistance genes, comprising mobilization and relocation events, orchestrates the dissemination of antimicrobial resistance. Inspired by this evolutionarily successful paradigm, we developed ACTIMOT, a CRISPR-Cas9-based approach to unlock the vast chemical diversity concealed within bacterial genomes. ACTIMOT enables the efficient mobilization and relocation of large DNA fragments from the chromosome to replicative plasmids within the same bacterial cell. ACTIMOT circumvents the limitations of traditional molecular cloning methods involving handling and replicating large pieces of genomic DNA. Using ACTIMOT, we mobilized and activated four cryptic biosynthetic gene clusters from Streptomyces, leading to the discovery of 39 compounds across four distinct classes. This work highlights the potential of ACTIMOT for accelerating the exploration of biosynthetic pathways and the discovery of natural products.
Collapse
Affiliation(s)
- Feng Xie
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Haowen Zhao
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Jiaqi Liu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Xiaoli Yang
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Markus Neuber
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Amay Ajaykumar Agrawal
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Amninder Kaur
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Jennifer Herrmann
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- PharmaScienceHub, Saarbrücken, Germany
| | - Olga V Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- PharmaScienceHub, Saarbrücken, Germany
- Faculty of Medicine, Saarland University, Homburg, Germany
| | - Xiaoyi Wei
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
- Department of Pharmacy, Saarland University, Saarbrücken, Germany
- German Center for Infection Research (DZIF), Braunschweig, Germany
| | - Chengzhang Fu
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
- Helmholtz International Lab for Anti-Infectives, Helmholtz Centre for Infection Research, Braunschweig, Germany
- PharmaScienceHub, Saarbrücken, Germany
| |
Collapse
|
3
|
Ji CH, Park S, Lee K, Je HW, Kang HS. Lipidation Engineering in Daptomycin Biosynthesis. J Am Chem Soc 2024; 146:30434-30442. [PMID: 39465544 DOI: 10.1021/jacs.4c10966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Lipopeptides are an important family of natural products, some of which are clinically used as antibiotics to treat multidrug-resistant pathogens. Although the lipid moieties play a crucial role in balancing antibacterial activity and hemolytic toxicity, modifying the lipid moieties has been challenging due to the complexity of the lipidation process in lipopeptide biosynthesis. Here, we show that the lipid profile can be altered by engineering both secondary and primary metabolisms, using daptomycin as an example. First, swapping the fatty acyl AMP ligase (FAAL) gene dptF with foreign FAAL homologs improved the fatty acyl specificity of the lipidation process for decanoic acid. Then, the introduction of Mycobacterium type I fatty acid synthase operon (MvFAS-Ib/MvAcpS) and Cryptosporidium thioesterase (CpTEII) enriched the fatty acid pool with decanoic acid in Streptomyces roseosporus. The engineered fatty acid metabolism eliminates the need for external decanoic acid supplementation by enabling S. roseosporus to biosynthesize decanoic acid. By complete engineering of the lipidation process, we achieved, for the first time, high-purity, natural production of daptomycin. The lipidation engineering approach we demonstrate here lays the foundation for the lipidation control in lipopeptide biosynthesis.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sehong Park
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Kunwoo Lee
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
4
|
Abdelaziz R, Abd El-Hamid MI, El-Wafaei N, Ghaly MF, Askora A, El-Didamony G, AboElmaaty SA, Ismail TA, Ibrahim D, Eissa SA. Phage-resistant Streptomyces abietis and its telomycin bioactive metabolite as a possible alternative to antibiotics. Microb Pathog 2024; 194:106822. [PMID: 39047802 DOI: 10.1016/j.micpath.2024.106822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Multidrug-resistant pathogens are now thought to be the primary global causes of disease and death. Therefore, it is imperative to develop new effective bioactive compounds from microbial sources, such as Streptomyces species. Nevertheless, the pharmaceutical industry suffered financial losses and low-quality end products as a result of Streptomyces bacteriophage contamination. To reduce the likelihood of phage-induced issues in the medical industry, it is crucial to develop a method for finding phage-resistant strains. Hence, we aimed to isolate and characterize Streptomyces spp. and Streptomyces phages from various rhizospheric soil samples in Egypt and to investigate their antibacterial activities. Moreover, we targeted development of a Streptomyces phage-resistant strain to extract its active metabolites and further testing its antibacterial activity. Herein, the antibacterial activities of the isolated 58 Streptomyces isolates showed that 10 (17.2 %) Streptomyces isolates had antibacterial activities against the tested bacteria including Listeria monocytogenes, E. coli O157, Acinetobacter baumannii, methicillin resistant-vancomycin-intermediate Staphylococcus aureus (MRSA-VISA) and Micrococcus luteus. Three lytic bacteriophages (ϕPRSC1, ϕPRSC2, and ϕPRSC4) belonging to the families Siphoviridae and Podoviridae were obtained from the rhizospheric soil samples using the most potent S. abietis isolate as the host strain. The three isolated Streptomyces phages were thermostable, ultraviolet stable, infectious, and had a wide range of hosts against the 10 tested Streptomyces isolates with antibacterial activities. The DNA of the ϕPRSC1 and ϕPRSC4 phages were resistant to digestion by EcoRI and HindIII, but the DNA of ϕPRSC2 was resistant to digestion by EcoRI and sensitive to digestion by HindIII. Of note, we developed a S. abietis strain resistant to the three isolated phages and its antibacterial activities were twice that of the wild strain. Finally, telomycin was recognized as an antibacterial metabolite extracted from phage-resistant S. abietis strain, which was potent against the tested Gram-positive bacteria including L. monocytogenes, MRSA-VISA, and M. luteus. Thus, our findings open new horizons for researching substitute antimicrobial medications for both existing and reemerging illnesses.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Ain Shams University, Faculty of Science, 11566, Egypt.
| | - Marwa I Abd El-Hamid
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, 44511, Egypt.
| | - Nahed El-Wafaei
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, 44511, Egypt.
| | - Mohamed F Ghaly
- Department of Botany and Microbiology, Zagazig University, Faculty of Science, Zagazig, 44519, Egypt.
| | - Ahmed Askora
- Department of Botany and Microbiology, Zagazig University, Faculty of Science, Zagazig, 44519, Egypt.
| | - Gamal El-Didamony
- Department of Botany and Microbiology, Zagazig University, Faculty of Science, Zagazig, 44519, Egypt.
| | - Sabah A AboElmaaty
- Department of Botany and Microbiology, Banha University, Faculty of Science, Banha, 44519, Egypt.
| | - Tamer A Ismail
- Department of Clinical Laboratory Sciences, Turabah University College, Taif University, Taif, 21944, Saudi Arabia.
| | - Doaa Ibrahim
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Egypt.
| | - Samar A Eissa
- Department of Medical Microbiology and Immunology, Faculty of Medicine-Kafrelsheikh University, 31511, Egypt.
| |
Collapse
|
5
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
6
|
Dini S, Oz F, Bekhit AEDA, Carne A, Agyei D. Production, characterization, and potential applications of lipopeptides in food systems: A comprehensive review. Compr Rev Food Sci Food Saf 2024; 23:e13394. [PMID: 38925624 DOI: 10.1111/1541-4337.13394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024]
Abstract
Lipopeptides are a class of lipid-peptide-conjugated compounds with differing structural features. This structural diversity is responsible for their diverse range of biological properties, including antimicrobial, antioxidant, and anti-inflammatory activities. Lipopeptides have been attracting the attention of food scientists due to their potential as food additives and preservatives. This review provides a comprehensive overview of lipopeptides, their production, structural characteristics, and functional properties. First, the classes, chemical features, structure-activity relationships, and sources of lipopeptides are summarized. Then, the gene expression and biosynthesis of lipopeptides in microbial cell factories and strategies to optimize lipopeptide production are discussed. In addition, the main methods of purification and characterization of lipopeptides have been described. Finally, some biological activities of the lipopeptides, especially those relevant to food systems along with their mechanism of action, are critically examined.
Collapse
Affiliation(s)
- Salome Dini
- Department of Food Science, University of Otago, Dunedin, New Zealand
| | - Fatih Oz
- Department of Food Engineering, Agriculture Faculty, Atatürk University, Erzurum, Turkey
| | | | - Alan Carne
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Dominic Agyei
- Department of Food Science, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Gonzales M, Jacquet P, Gaucher F, Chabrière É, Plener L, Daudé D. AHL-Based Quorum Sensing Regulates the Biosynthesis of a Variety of Bioactive Molecules in Bacteria. JOURNAL OF NATURAL PRODUCTS 2024; 87:1268-1284. [PMID: 38390739 DOI: 10.1021/acs.jnatprod.3c00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Bacteria are social microorganisms that use communication systems known as quorum sensing (QS) to regulate diverse cellular behaviors including the production of various secreted molecules. Bacterial secondary metabolites are widely studied for their bioactivities including antibiotic, antifungal, antiparasitic, and cytotoxic compounds. Besides playing a crucial role in natural bacterial niches and intermicrobial competition by targeting neighboring organisms and conferring survival advantages to the producer, these bioactive molecules may be of prime interest to develop new antimicrobials or anticancer therapies. This review focuses on bioactive compounds produced under acyl homoserine lactone-based QS regulation by Gram-negative bacteria that are pathogenic to humans and animals, including the Burkholderia, Serratia, Pseudomonas, Chromobacterium, and Pseudoalteromonas genera. The synthesis, regulation, chemical nature, biocidal effects, and potential applications of these identified toxic molecules are presented and discussed in light of their role in microbial interactions.
Collapse
Affiliation(s)
- Mélanie Gonzales
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
- Gene&GreenTK, Marseille 13005, France
| | | | | | - Éric Chabrière
- Aix Marseille Université, IRD, APHM, MEPHI, IHU-Méditerranée Infection, Marseille 13288, France
| | | | | |
Collapse
|
8
|
Pérez-Victoria I. Natural Products Dereplication: Databases and Analytical Methods. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 124:1-56. [PMID: 39101983 DOI: 10.1007/978-3-031-59567-7_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
The development of efficient methods for dereplication has been critical in the re-emergence of the research in natural products as a source of drug leads. Current dereplication workflows rapidly identify already known bioactive secondary metabolites in the early stages of any drug discovery screening campaign based on natural extracts or enriched fractions. Two main factors have driven the evolution of natural products dereplication over the last decades. First, the availability of both commercial and public large databases of natural products containing the key annotations against which the biological and chemical data derived from the studied sample are searched for. Second, the considerable improvement achieved in analytical technologies (including instrumentation and software tools) employed to obtain robust and precise chemical information (particularly spectroscopic signatures) on the compounds present in the bioactive natural product samples. This chapter describes the main methods of dereplication, which rely on the combined use of large natural product databases and spectral libraries, alongside the information obtained from chromatographic, UV-Vis, MS, and NMR spectroscopic analyses of the samples of interest.
Collapse
Affiliation(s)
- Ignacio Pérez-Victoria
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Parque Tecnológico de Ciencias de La Salud, Avda. del Conocimiento 34, 18016, Armilla, Granada, Spain.
| |
Collapse
|
9
|
Chen H, Zhong L, Zhou H, Bai X, Sun T, Wang X, Zhao Y, Ji X, Tu Q, Zhang Y, Bian X. Biosynthesis and engineering of the nonribosomal peptides with a C-terminal putrescine. Nat Commun 2023; 14:6619. [PMID: 37857663 PMCID: PMC10587159 DOI: 10.1038/s41467-023-42387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/09/2023] [Indexed: 10/21/2023] Open
Abstract
The broad bioactivities of nonribosomal peptides rely on increasing structural diversity. Genome mining of the Burkholderiales strain Schlegelella brevitalea DSM 7029 leads to the identification of a class of dodecapeptides, glidonins, that feature diverse N-terminal modifications and a uniform putrescine moiety at the C-terminus. The N-terminal diversity originates from the wide substrate selectivity of the initiation module. The C-terminal putrescine moiety is introduced by the unusual termination module 13, the condensation domain directly catalyzes the assembly of putrescine into the peptidyl backbone, and other domains are essential for stabilizing the protein structure. Swapping of this module to another two nonribosomal peptide synthetases leads to the addition of a putrescine to the C-terminus of related nonribosomal peptides, improving their hydrophilicity and bioactivity. This study elucidates the mechanism for putrescine addition and provides further insights to generate diverse and improved nonribosomal peptides by introducing a C-terminal putrescine.
Collapse
Affiliation(s)
- Hanna Chen
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- School of Medicine, Linyi University, Shuangling Road, 276000, Linyi, China
| | - Lin Zhong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xianping Bai
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Tao Sun
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xingyan Wang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Yiming Zhao
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Xiaoqi Ji
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
| | - Qiang Tu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Youming Zhang
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, 266237, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Zhang S, Chen Y, Zhu J, Lu Q, Cryle MJ, Zhang Y, Yan F. Structural diversity, biosynthesis, and biological functions of lipopeptides from Streptomyces. Nat Prod Rep 2023; 40:557-594. [PMID: 36484454 DOI: 10.1039/d2np00044j] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Covering: up to 2022Streptomyces are ubiquitous in terrestrial and marine environments, where they display a fascinating metabolic diversity. As a result, these bacteria are a prolific source of active natural products. One important class of these natural products is the nonribosomal lipopeptides, which have diverse biological activities and play important roles in the lifestyle of Streptomyces. The importance of this class is highlighted by the use of related antibiotics in the clinic, such as daptomycin (tradename Cubicin). By virtue of recent advances spanning chemistry and biology, significant progress has been made in biosynthetic studies on the lipopeptide antibiotics produced by Streptomyces. This review will serve as a comprehensive guide for researchers working in this multidisciplinary field, providing a summary of recent progress regarding the investigation of lipopeptides from Streptomyces. In particular, we highlight the structures, properties, biosynthetic mechanisms, chemical and chemoenzymatic synthesis, and biological functions of lipopeptides. In addition, the application of genome mining techniques to Streptomyces that have led to the discovery of many novel lipopeptides is discussed, further demonstrating the potential of lipopeptides from Streptomyces for future development in modern medicine.
Collapse
Affiliation(s)
- Songya Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yunliang Chen
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
- The Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 1000050, China.
| | - Jing Zhu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Qiujie Lu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Max J Cryle
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, 3800 Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800 Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800 Australia
| | - Youming Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| | - Fu Yan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
11
|
Ribeiro I, Antunes JT, Alexandrino DAM, Tomasino MP, Almeida E, Hilário A, Urbatzka R, Leão PN, Mucha AP, Carvalho MF. Actinobacteria from Arctic and Atlantic deep-sea sediments-Biodiversity and bioactive potential. Front Microbiol 2023; 14:1158441. [PMID: 37065153 PMCID: PMC10100589 DOI: 10.3389/fmicb.2023.1158441] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/07/2023] [Indexed: 04/18/2023] Open
Abstract
The deep-sea covers over 70% of the Earth's surface and harbors predominantly uncharacterized bacterial communities. Actinobacteria are the major prokaryotic source of bioactive natural products that find their way into drug discovery programs, and the deep-sea is a promising source of biotechnologically relevant actinobacteria. Previous studies on actinobacteria in deep-sea sediments were either regionally restricted or did not combine a community characterization with the analysis of their bioactive potential. Here we characterized the actinobacterial communities of upper layers of deep-sea sediments from the Arctic and the Atlantic (Azores and Madeira) ocean basins, employing 16S rRNA metabarcoding, and studied the biosynthetic potential of cultivable actinobacteria retrieved from those samples. Metabarcoding analysis showed that the actinobacterial composition varied between the sampled regions, with higher abundance in the Arctic samples but higher diversity in the Atlantic ones. Twenty actinobacterial genera were detected using metabarcoding, as a culture-independent method, while culture-dependent methods only allowed the identification of nine genera. Isolation of actinobacteria resulted on the retrieval of 44 isolates, mainly associated with Brachybacterium, Microbacterium, and Brevibacterium genera. Some of these isolates were only identified on a specific sampled region. Chemical extracts of the actinobacterial isolates were subsequently screened for their antimicrobial, anticancer and anti-inflammatory activities. Extracts from two Streptomyces strains demonstrated activity against Candida albicans. Additionally, eight extracts (obtained from Brachybacterium, Brevibacterium, Microbacterium, Rhodococcus, and Streptomyces isolates) showed significant activity against at least one of the tested cancer cell lines (HepG2 and T-47D). Furthermore, 15 actinobacterial extracts showed anti-inflammatory potential in the RAW 264.4 cell model assay, with no concomitant cytotoxic response. Dereplication and molecular networking analysis of the bioactive actinobacterial extracts showed the presence of some metabolites associated with known natural products, but one of the analyzed clusters did not show any match with the natural products described as responsible for these bioactivities. Overall, we were able to recover taxonomically diverse actinobacteria with different bioactivities from the studied deep-sea samples. The conjugation of culture-dependent and -independent methods allows a better understanding of the actinobacterial diversity of deep-sea environments, which is important for the optimization of approaches to obtain novel chemically-rich isolates.
Collapse
Affiliation(s)
- Inês Ribeiro
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- *Correspondence: Inês Ribeiro,
| | - Jorge T. Antunes
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Diogo A. M. Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Environmental Health, School of Health, Polytechnic of Porto, Porto, Portugal
| | - Maria Paola Tomasino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Eduarda Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Ana Hilário
- Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, Aveiro, Portugal
| | - Ralph Urbatzka
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Pedro N. Leão
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Ana P. Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, FCUP - Faculty of Sciences of the University of Porto, Porto, Portugal
| | - Maria F. Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
12
|
Tkachuk N, Zelena L. Inhibition of heterotrophic bacterial biofilm in the soil ferrosphere by Streptomyces spp. and Bacillus velezensis. BIOFOULING 2022; 38:916-925. [PMID: 36440643 DOI: 10.1080/08927014.2022.2151362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
The soil microbiome is involved in the processes of microbial corrosion, in particular, by the formation of biofilm. It has been proposed that an environmentally friendly solution to this corrosion might be through biological control. Bacillus velezensis NUChC C2b, Streptomyces gardneri ChNPU F3 and S. canus NUChC F2 were investigated as potentially 'green' biocides to prevent attachment to glass as a model surface and the formation of heterotrophic bacterial biofilm which participates in the corrosion process. Results showed high antagonistic and antibiofilm properties of S. gardneri ChNPU F3; which may be related to the formation of secondary antimicrobial metabolites by this strain. B. velezensis NUChC C2b and S. gardneri ChNPU F3 could be incorporated into green biocides - as components of antibiofilm agents that will protect material from bacterial corrosion or as agents that will prevent historical heritage damage.
Collapse
Affiliation(s)
- Nataliia Tkachuk
- Department of Biology, T.H. Shevchenko National University "Chernihiv Colehium", Chernihiv, Ukraine
| | - Liubov Zelena
- Department of Physiology of Industrial Microorganisms of the Danylo Zabolotny Institute of Microbiology and Virology, NAS of Ukraine, Kyiv, Ukraine
- Department of Biotechnology, Leather and Fur, Kyiv National University of Technologies and Design, Kyiv, Ukraine
| |
Collapse
|
13
|
Panda G, Dash S, Sahu SK. Harnessing the Role of Bacterial Plasma Membrane Modifications for the Development of Sustainable Membranotropic Phytotherapeutics. MEMBRANES 2022; 12:914. [PMID: 36295673 PMCID: PMC9612325 DOI: 10.3390/membranes12100914] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Membrane-targeted molecules such as cationic antimicrobial peptides (CAMPs) are amongst the most advanced group of antibiotics used against drug-resistant bacteria due to their conserved and accessible targets. However, multi-drug-resistant bacteria alter their plasma membrane (PM) lipids, such as lipopolysaccharides (LPS) and phospholipids (PLs), to evade membrane-targeted antibiotics. Investigations reveal that in addition to LPS, the varying composition and spatiotemporal organization of PLs in the bacterial PM are currently being explored as novel drug targets. Additionally, PM proteins such as Mla complex, MPRF, Lpts, lipid II flippase, PL synthases, and PL flippases that maintain PM integrity are the most sought-after targets for development of new-generation drugs. However, most of their structural details and mechanism of action remains elusive. Exploration of the role of bacterial membrane lipidome and proteome in addition to their organization is the key to developing novel membrane-targeted antibiotics. In addition, membranotropic phytochemicals and their synthetic derivatives have gained attractiveness as popular herbal alternatives against bacterial multi-drug resistance. This review provides the current understanding on the role of bacterial PM components on multidrug resistance and their targeting with membranotropic phytochemicals.
Collapse
Affiliation(s)
- Gayatree Panda
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| | - Sabyasachi Dash
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - Santosh Kumar Sahu
- Department of Biotechnology, Maharaja Sriram Chandra Bhanjadeo University (Erstwhile: North Orissa University), Baripada 757003, India
| |
Collapse
|
14
|
Kang S, Han J, Jang SC, An JS, Kang I, Kwon Y, Nam SJ, Shim SH, Cho JC, Lee SK, Oh DC. Epoxinnamide: An Epoxy Cinnamoyl-Containing Nonribosomal Peptide from an Intertidal Mudflat-Derived Streptomyces sp. Mar Drugs 2022; 20:md20070455. [PMID: 35877748 PMCID: PMC9321520 DOI: 10.3390/md20070455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/03/2022] Open
Abstract
Cinnamoyl-containing nonribosomal peptides (CCNPs) form a unique family of actinobacterial secondary metabolites and display various biological activities. A new CCNP named epoxinnamide (1) was discovered from intertidal mudflat-derived Streptomyces sp. OID44. The structure of 1 was determined by the analysis of one-dimensional (1D) and two-dimensional (2D) nuclear magnetic resonance (NMR) data along with a mass spectrum. The absolute configuration of 1 was assigned by the combination of advanced Marfey’s method, 3JHH and rotating-frame overhauser effect spectroscopy (ROESY) analysis, DP4 calculation, and genomic analysis. The putative biosynthetic pathway of epoxinnamide (1) was identified through the whole-genome sequencing of Streptomyces sp. OID44. In particular, the thioesterase domain in the nonribosomal peptide synthetase (NRPS) biosynthetic gene cluster was proposed as a bifunctional enzyme, which catalyzes both epimerization and macrocyclization. Epoxinnamide (1) induced quinone reductase (QR) activity in murine Hepa-1c1c7 cells by 1.6-fold at 5 μM. It also exhibited effective antiangiogenesis activity in human umbilical vein endothelial cells (IC50 = 13.4 μM).
Collapse
Affiliation(s)
- Sangwook Kang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Jaeho Han
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Sung Chul Jang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Ilnam Kang
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (I.K.); (J.-C.C.)
| | - Yun Kwon
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Kyungpook National University, Daegu 41566, Korea;
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea;
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Jang-Cheon Cho
- Department of Biological Sciences, Inha University, Incheon 22212, Korea; (I.K.); (J.-C.C.)
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Korea; (S.K.); (J.H.); (S.C.J.); (J.S.A.); (S.H.S.); (S.K.L.)
- Correspondence: ; Tel.: +82-880-2491; Fax: +82-762-8322
| |
Collapse
|
15
|
Abdelaziz R, Tartor YH, Barakat AB, El-Didamony G, El-Samadony HA, Amer SA, Gado MM. Streptomyces coeruleorubidus as a potential biocontrol agent for Newcastle disease virus. BMC Vet Res 2022; 18:241. [PMID: 35751117 PMCID: PMC9229119 DOI: 10.1186/s12917-022-03349-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/10/2022] [Indexed: 11/10/2022] Open
Abstract
Background Newcastle disease virus (NDV) is a severe disease that affects domestic and wild birds. Controlled antibiotics derived from probiotics have been examined as prospective solutions for preserving seroconversion in NDV-vaccinated fowl. In this study, the secondary metabolite “telomycin” was extracted from Streptomyces coeruleorubidus (S. coeruleorubidus) isolated from Egypt's cultivated soil. The structure of telomycin was determined by the elucidation of spectroscopic analysis, including nuclear magnetic resonance (NMR) and mass spectrometry (MS) spectra, and comparison with the literature. The antiviral activity of the secondary metabolite was tested by checking its effect on NDV hemagglutination activity (HA). Moreover, HA of NDV was tested after inoculation of NDV (control) and a combination of telomycin and NDV in 10- days- specific pathogen-free embryonated chicken eggs (SPF-ECE) daily candling. Histopathological examination was performed for chorioallantoic membranes and liver of SPF-ECE. Results S. coeruleorubidus secondary metabolite “telomycin” showed complete hemagglutination inhibition (HI) activity of NDV strain (MN635617) with log106 infectivity titers (EID50/mL). The HA of NDV strain was 8 log2 and 9 log2 with 0.5% and 0.75% of chicken RBCs, respectively. Preserved structures of chorioallantoic-membranes (CAM) with dilated capillary networks were observed in the treated group inoculated with telomycin and NDV. Histological changes in SPF-ECE liver were examined after inoculation in ova to further characterize the telomycin effect. Telomycin and NDV mixture inoculated group showed preserved cytoarchitecture of hepatocytes with the presence of perivascular foci of lymphocytes. The group that was inoculated with telomycin alone showed normal histology of hepatic acini, central veins, and portal triads. Conclusion S. coeruleorubidus telomycin is a promising bioactive agent that might be a biological weapon against a deadly chicken NDV that costs farmers a lot of money. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03349-7.
Collapse
Affiliation(s)
- Rewan Abdelaziz
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Yasmine H Tartor
- Department of Microbiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Ahmed B Barakat
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Gamal El-Didamony
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | - Hanaa A El-Samadony
- Department of Poultry, Dokki, Agriculture Research Center, Animal Health Research Institute, Giza, 44511, Egypt
| | - Shimaa A Amer
- Department of Nutrition & Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt.
| | - Marwa M Gado
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
16
|
Li X, Hu X, Sheng Y, Wang H, Tao M, Ou Y, Deng Z, Bai L, Kang Q. Adaptive Optimization Boosted the Production of Moenomycin A in the Microbial Chassis Streptomyces albus J1074. ACS Synth Biol 2021; 10:2210-2221. [PMID: 34470207 DOI: 10.1021/acssynbio.1c00094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Great efforts have been made to improve Streptomyces chassis for efficient production of targeted natural products. Moenomycin family antibiotics, represented by moenomycin (Moe) and nosokomycin, are phosphoglycolipid antibiotics that display extraordinary inhibition against Gram-positive bacteria. Herein, we assembled a completed 34 kb hybrid biosynthetic gene cluster (BGC) of moenomycin A (moe-BGC) based on a 24 kb nosokomycin analogue biosynthetic gene cluster (noso-BGC). The heterologous expression of the hybrid moe-BGC in Streptomyces albus J1074 achieved the production of moenomycin A in the recombinant strain LX01 with a yield of 12.1 ± 2 mg/L. Further strong promoter refactoring to improve the transcriptional levels of all of the functional genes in strain LX02 enhanced the production of moenomycin A by 58%. However, the yield improvement of moenomycin A resulted in a dramatic 38% decrease in the chassis biomass compared with the control strain. To improve the weak physiological tolerance to moenomycin A of the chassis, another copy of the gene salb-PBP2 (P238N&F200D), encoding peptidoglycan biosynthetic protein PBP2, was introduced into the chassis strain, producing strain LX03. Cell growth was restored, and the fermentation titer of moenomycin A was 130% higher than that of LX01. Additionally, the production of moenomycin A in strain LX03 was further elevated by 45% to 40.0 ± 3 mg/L after media optimization. These results suggested that the adaptive optimization strategy of strong promoter refactoring in the BGC plus physiological tolerance in the chassis was an efficient approach for obtaining the desired natural products with high titers.
Collapse
Affiliation(s)
- Xing Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaojing Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Sheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hengyu Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meifeng Tao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yixin Ou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianjin Kang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
17
|
Darcel L, Das S, Bonnard I, Banaigs B, Inguimbert N. Thirtieth Anniversary of the Discovery of Laxaphycins. Intriguing Peptides Keeping a Part of Their Mystery. Mar Drugs 2021; 19:md19090473. [PMID: 34564135 PMCID: PMC8471579 DOI: 10.3390/md19090473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Lipopeptides are a class of compounds generally produced by microorganisms through hybrid biosynthetic pathways involving non-ribosomal peptide synthase and a polyketyl synthase. Cyanobacterial-produced laxaphycins are examples of this family of compounds that have expanded over the past three decades. These compounds benefit from technological advances helping in their synthesis and characterization, as well as in deciphering their biosynthesis. The present article attempts to summarize most of the articles that have been published on laxaphycins. The current knowledge on the ecological role of these complex sets of compounds will also be examined.
Collapse
|
18
|
Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, Zherebker AY, Brylev VA, Chistov AA, Baranova AA, Biryukov MV, Ivanov IA, Prokhorenko IA, Grammatikova NE, Kravchenko TV, Isakova EB, Mirchink EP, Gladkikh EG, Svirshchevskaya EV, Mardanov AV, Beletsky AV, Kocharovskaya MV, Kulyaeva VV, Shashkov AS, Tsvetkov DE, Nifantiev NE, Apt AS, Majorov KB, Efimova SS, Ravin NV, Nikolaev EN, Ostroumova OS, Katrukha GS, Lapchinskaya OA, Dontsova OA, Terekhov SS, Osterman IA, Shenkarev ZO, Korshun VA. Gausemycins A,B: Cyclic Lipoglycopeptides from
Streptomyces
sp.**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
19
|
Gan BH, Gaynord J, Rowe SM, Deingruber T, Spring DR. The multifaceted nature of antimicrobial peptides: current synthetic chemistry approaches and future directions. Chem Soc Rev 2021; 50:7820-7880. [PMID: 34042120 PMCID: PMC8689412 DOI: 10.1039/d0cs00729c] [Citation(s) in RCA: 244] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Indexed: 12/13/2022]
Abstract
Bacterial infections caused by 'superbugs' are increasing globally, and conventional antibiotics are becoming less effective against these bacteria, such that we risk entering a post-antibiotic era. In recent years, antimicrobial peptides (AMPs) have gained significant attention for their clinical potential as a new class of antibiotics to combat antimicrobial resistance. In this review, we discuss several facets of AMPs including their diversity, physicochemical properties, mechanisms of action, and effects of environmental factors on these features. This review outlines various chemical synthetic strategies that have been applied to develop novel AMPs, including chemical modifications of existing peptides, semi-synthesis, and computer-aided design. We will also highlight novel AMP structures, including hybrids, antimicrobial dendrimers and polypeptides, peptidomimetics, and AMP-drug conjugates and consider recent developments in their chemical synthesis.
Collapse
Affiliation(s)
- Bee Ha Gan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Josephine Gaynord
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Sam M Rowe
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - Tomas Deingruber
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| | - David R Spring
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
20
|
Vaz B, Martínez C, Cruz F, Denis JG, de Lera ÁR, Aurrecoechea JM, Álvarez R. Palladium-Catalyzed Aminocyclization-Coupling Cascades: Preparation of Dehydrotryptophan Derivatives and Computational Study. J Org Chem 2021; 86:8766-8785. [PMID: 34125552 PMCID: PMC8929666 DOI: 10.1021/acs.joc.1c00636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 12/31/2022]
Abstract
Dehydrotryptophan derivatives have been prepared by palladium-catalyzed aminocyclization-Heck-type coupling cascades starting from o-alkynylaniline derivatives and methyl α-aminoacrylate. Aryl, alkyl (primary, secondary, and tertiary), and alkenyl substituents have been introduced at the indole C-2 position. Further variations at the indole benzene ring, as well as the C-2-unsubstituted case, have all been demonstrated. In the case of C-2 aryl substitution, the preparation of the o-alkynylaniline substrate by Sonogashira coupling and the subsequent cyclization-coupling cascade have been performed in a one-pot protocol with a single catalyst. DFT calculations have revealed significant differences in the reaction profiles of these reactions relative to those involving methyl acrylate or methacrylate, and between the reactions of the free anilines and their corresponding carbamates. Those calculations suggest that the nature of the alkene and of the acid HX released in the HX/alkene exchange step that precedes C-C bond formation could be responsible for the experimentally observed differences in reaction efficiencies.
Collapse
Affiliation(s)
- Belén Vaz
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Claudio Martínez
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Francisco Cruz
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - J. Gabriel Denis
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - Ángel R. de Lera
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| | - José M. Aurrecoechea
- Departamento
de Química Orgánica e Inorgánica, Facultad de
Ciencia y Tecnología, Universidad
del País Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain
| | - Rosana Álvarez
- Departamento
de Química Orgánica, Facultad de Química (CINBIO)
and Instituto de Investigación Biomédica de Vigo (IBIV), Universidade de Vigo, Lagoas-Marcosende, 36310 Vigo, Spain
| |
Collapse
|
21
|
Tyurin AP, Alferova VA, Paramonov AS, Shuvalov MV, Kudryakova GK, Rogozhin EA, Zherebker AY, Brylev VA, Chistov AA, Baranova AA, Biryukov MV, Ivanov IA, Prokhorenko IA, Grammatikova NE, Kravchenko TV, Isakova EB, Mirchink EP, Gladkikh EG, Svirshchevskaya EV, Mardanov AV, Beletsky AV, Kocharovskaya MV, Kulyaeva VV, Shashkov AS, Tsvetkov DE, Nifantiev NE, Apt AS, Majorov KB, Efimova SS, Ravin NV, Nikolaev EN, Ostroumova OS, Katrukha GS, Lapchinskaya OA, Dontsova OA, Terekhov SS, Osterman IA, Shenkarev ZO, Korshun VA. Gausemycins A,B: Cyclic Lipoglycopeptides from Streptomyces sp.*. Angew Chem Int Ed Engl 2021; 60:18694-18703. [PMID: 34009717 DOI: 10.1002/anie.202104528] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Indexed: 11/10/2022]
Abstract
We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.
Collapse
Affiliation(s)
- Anton P Tyurin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Vera A Alferova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander S Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Maxim V Shuvalov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | | | - Eugene A Rogozhin
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexander Y Zherebker
- Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Vladimir A Brylev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Alexey A Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Anna A Baranova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Mikhail V Biryukov
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Department of Biology, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | - Igor A Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Igor A Prokhorenko
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | | | - Tatyana V Kravchenko
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Elena B Isakova
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena P Mirchink
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena G Gladkikh
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Elena V Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| | - Andrey V Mardanov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Aleksey V Beletsky
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprydny, 141700, Moscow region, Russia
| | - Valeriya V Kulyaeva
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Alexander S Shashkov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Dmitry E Tsvetkov
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Nikolay E Nifantiev
- Zelinsky Institute of Organic Chemistry RAS, Leninsky Prospect 47, 119991, Moscow, Russia
| | - Alexander S Apt
- Central Tuberculosis Research Institute, Yauzskaya Alley 2, 107564, Moscow, Russia
| | - Konstantin B Majorov
- Central Tuberculosis Research Institute, Yauzskaya Alley 2, 107564, Moscow, Russia
| | - Svetlana S Efimova
- Institute of Cytology RAS, Tikhoretsky Prospect 4, 194064, St. Petersburg, Russia
| | - Nikolai V Ravin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospect 33-2, 119071, Moscow, Russia
| | - Evgeny N Nikolaev
- Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Olga S Ostroumova
- Institute of Cytology RAS, Tikhoretsky Prospect 4, 194064, St. Petersburg, Russia
| | - Genrikh S Katrukha
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Olda A Lapchinskaya
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia
| | - Olga A Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia.,Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Stanislav S Terekhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia
| | - Ilya A Osterman
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1-3, 119992, Moscow, Russia.,Skolkovo Institute of Science and Technology, Nobel Street 3, Skolkovo, 143026, Moscow Region, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia.,Moscow Institute of Physics and Technology, Institutsky Lane 9, Dolgoprydny, 141700, Moscow region, Russia
| | - Vladimir A Korshun
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021, Moscow, Russia.,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Miklukho-Maklaya 16/10, 117997, Moscow, Russia
| |
Collapse
|
22
|
Baltz RH. Genome mining for drug discovery: cyclic lipopeptides related to daptomycin. J Ind Microbiol Biotechnol 2021; 48:6178872. [PMID: 33739403 PMCID: PMC9113097 DOI: 10.1093/jimb/kuab020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022]
Abstract
The cyclic lipopeptide antibiotics structurally related to daptomycin were first reported in the 1950s. Several have common lipopeptide initiation, elongation, and termination mechanisms. Initiation requires the use of a fatty acyl-AMP ligase (FAAL), a free-standing acyl carrier protein (ACP), and a specialized condensation (CIII) domain on the first NRPS elongation module to couple the long chain fatty acid to the first amino acid. Termination is carried out by a dimodular NRPS that contains a terminal thioesterase (Te) domain (CAT-CATTe). Lipopeptide BGCs also encode ABC transporters, apparently for export and resistance. The use of this mechanism of initiation, elongation, and termination, coupled with molecular target-agnostic resistance, has provided a unique basis for robust natural and experimental combinatorial biosynthesis to generate a large variety of structurally related compounds, some with altered or different antibacterial mechanisms of action. The FAAL, ACP, and dimodular NRPS genes were used as molecular beacons to identify phylogenetically related BGCs by BLASTp analysis of finished and draft genome sequences. These and other molecular beacons have identified: (i) known, but previously unsequenced lipopeptide BGCs in draft genomes; (ii) a new daptomycin family BGC in a draft genome of Streptomyces sedi; and (iii) novel lipopeptide BGCs in the finished genome of Streptomyces ambofaciens and the draft genome of Streptomyces zhaozhouensis.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 7757 Uliva Way, Sarasota, FL 34238, USA
| |
Collapse
|
23
|
Kang HS, Kim ES. Recent advances in heterologous expression of natural product biosynthetic gene clusters in Streptomyces hosts. Curr Opin Biotechnol 2021; 69:118-127. [PMID: 33445072 DOI: 10.1016/j.copbio.2020.12.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 12/02/2020] [Accepted: 12/15/2020] [Indexed: 01/09/2023]
Abstract
The heterologous expression of natural product biosynthetic gene clusters (BGCs) has traditionally been used as a genetic platform to link various natural product chemotypes to their corresponding genotypes. In recent years, heterologous expression has played an increasing role in natural products research with the advances in sequencing technologies and bioinformatics tools that allow for the rapid and systematic identification of known and cryptic BGCs from a large number of microbial genome sequences. The advances in synthetic biology have also facilitated the process of heterologous expression by providing tools for rapid cloning and engineering of BGCs to improve production yield or to activate silent BGCs. This paper summarizes the recent progress in the cloning and engineering of natural product BGCs and highlights recent examples of the heterologous expression of both known and cryptic BGCs in Streptomyces hosts, which will continue to play a pivotal role in genomics-driven natural product research.
Collapse
Affiliation(s)
- Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea.
| |
Collapse
|
24
|
Schindl K, Sharma D, Spiteller D. Deacylation of Calcium-Dependent Antibiotics from Streptomyces violaceoruber in Co-culture with Streptomyces sp. MG7-G1. Chembiochem 2020; 21:3151-3157. [PMID: 32585063 PMCID: PMC7689815 DOI: 10.1002/cbic.202000404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Indexed: 01/11/2023]
Abstract
When Streptomyces violaceoruber grows together with Streptomyces sp. MG7-G1, it reacts with strongly induced droplet production on its aerial mycelium. Initially the metabolite profile of droplets from S. violaceoruber in co-culture with Streptomyces sp. MG7-G1 was compared to samples from S. violaceoruber in single-culture by using high-performance liquid chromatography-mass spectrometry (HPLC-MS). Then, the exudate from agar plates of co-cultures and single cultures (after freezing and thawing) was also analysed. Several compounds were only observed when S. violaceoruber was grown in co-culture. Based on their high-resolution ESI mass spectra and their comparable retention times to the calcium-dependent antibiotics (CDAs) produced by S. violaceoruber, the new compounds were suspected to be deacylated calcium-dependent antibiotics (daCDAs), lacking the 2,3-epoxyhexanoyl residue of CDAs. This was verified by detailed analysis of the MS/MS spectra of the daCDAs in comparison to the CDAs. The major CDA compounds present in calcium ion-supplemented agar medium of co-cultures were daCDAs, thus suggesting that Streptomyces sp. MG7-G1 expresses a deacylase that degrades CDAs.
Collapse
Affiliation(s)
- Kathrin Schindl
- Chemical Ecology/Chemical BiologyUniversity of KonstanzUniversitätstrasse 1078457KonstanzGermany
| | - Deepika Sharma
- Chemical Ecology/Chemical BiologyUniversity of KonstanzUniversitätstrasse 1078457KonstanzGermany
| | - Dieter Spiteller
- Chemical Ecology/Chemical BiologyUniversity of KonstanzUniversitätstrasse 1078457KonstanzGermany
| |
Collapse
|
25
|
Perlatti B, Nichols CB, Lan N, Wiemann P, Harvey CJB, Alspaugh JA, Bills GF. Identification of the Antifungal Metabolite Chaetoglobosin P From Discosia rubi Using a Cryptococcus neoformans Inhibition Assay: Insights Into Mode of Action and Biosynthesis. Front Microbiol 2020; 11:1766. [PMID: 32849391 PMCID: PMC7399079 DOI: 10.3389/fmicb.2020.01766] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 07/06/2020] [Indexed: 01/11/2023] Open
Abstract
Cryptococcus neoformans is an important human pathogen with limited options for treatments. We have interrogated extracts from fungal fermentations to find Cryptococcus-inhibiting natural products using assays for growth inhibition, differential thermosensitivity, and synergy with existing antifungal drugs. Extracts from fermentations of strains of Discosia rubi from eastern Texas showed anticryptococcal bioactivity with preferential activity in agar zone of inhibition assays against C. neoformans at 37°C versus 25°C. Assay-guided fractionation led to the purification and identification of chaetoglobosin P as the active component of these extracts. Genome sequencing of these strains revealed a biosynthetic gene cluster consistent with chaetoglobosin biosynthesis and β-methylation of the tryptophan residue. Proximity of genes of the actin-binding protein twinfilin-1 to the chaetoglobosin P and K gene clusters suggested a possible self-resistance mechanism involving twinfilin-1 which is consistent with the predicted mechanism of action involving interference with the polymerization of the capping process of filamentous actin. A C. neoformans mutant lacking twinfilin-1 was hypersensitive to chaetoglobosin P. Chaetoglobosins also potentiated the effects of amphotericin B and caspofungin on C. neoformans.
Collapse
Affiliation(s)
- Bruno Perlatti
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | - Connie B Nichols
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Nan Lan
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| | | | | | - J Andrew Alspaugh
- Departments of Medicine and Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, United States
| | - Gerald F Bills
- Texas Therapeutics Institute, The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, Untied States
| |
Collapse
|
26
|
Hara R, Kino K. Enzymatic reactions and microorganisms producing the various isomers of hydroxyproline. Appl Microbiol Biotechnol 2020; 104:4771-4779. [PMID: 32291491 DOI: 10.1007/s00253-020-10603-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023]
Abstract
Hydroxyproline is an industrially important compound with applications in the pharmaceutical, nutrition, and cosmetic industries. trans-4-Hydroxy-L-proline is recognized as the most abundant of the eight possible isomers (hydroxy group at C-3 or C-4, cis- or trans-configuration, and L- or D-form). However, little attention has been paid to the rare isomers, probably due to their limited availability. This mini-review provides an overview of recent advances in microbial and enzymatic processes to develop practical production strategies for various hydroxyprolines. Here, we introduce three screening strategies, namely, activity-, sequence-, and metabolite-based approaches, allowing identification of diverse proline-hydroxylating enzymes with different product specificities. All naturally occurring hydroxyproline isomers can be produced by using suitable hydroxylases in a highly regio- and stereo-selective manner. Furthermore, crystal structures of relevant hydroxylases provide much insight into their functional roles. Since hydroxylases acting on free L-proline belong to the 2-oxoglutarate-dependent dioxygenase superfamily, cellular metabolism of Escherichia coli coupled with a hydroxylase is a valuable source of 2-oxoglutarate, which is indispensable as a co-substrate in L-proline hydroxylation. Further, microbial hydroxyproline 2-epimerase may serve as a highly adaptable tool to convert L-hydroxyproline into D-hydroxyproline. KEY POINTS: • Proline hydroxylases serve as powerful tools for selectivel-proline hydroxylation. • Engineered Escherichia coli are a robust platform for hydroxyproline production. • Hydroxyproline epimerase convertsl-hydroxyproline intod-hydroxyproline.
Collapse
Affiliation(s)
- Ryotaro Hara
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.,Laboratory of Industrial Microbiology, Graduate School of Agriculture, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kuniki Kino
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan. .,Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo, 169-8555, Japan.
| |
Collapse
|
27
|
Tan B, Zhang Q, Zhu Y, Jin H, Zhang L, Chen S, Zhang C. Deciphering Biosynthetic Enzymes Leading to 4-Chloro-6-Methyl-5,7-Dihydroxyphenylglycine, a Non-Proteinogenic Amino Acid in Totopotensamides. ACS Chem Biol 2020; 15:766-773. [PMID: 32118401 DOI: 10.1021/acschembio.9b00997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Totopotensamide A (TPM A, 1) is a polyketide-peptide glycoside featuring a nonproteinogenic amino acid 4-chloro-6-methyl-5,7-dihydroxyphenylglycine (ClMeDPG). The biosynthetic gene cluster (BGC) of totopotensamides (tot) was previously activated by manipulating transcription regulators in marine-derived Streptomyces pactum SCSIO 02999. Herein, we report the heterologous expression of the tot BGC in Streptomyces lividans TK64, and the production improvement of TPM A via in-frame deletion of two negative regulators totR5 and totR3. The formation of ClMeDPG was proposed to require six enzymes, including four enzymes TotC1C2C3C4 for 3,5-dihydroxyphenylglycine (DPG) biosynthesis and two modifying enzymes TotH (halogenase) and TotM (methyltransferase). Heterologous expression of the four-gene cassette totC1C2C3C4 led to production of 3,5-dihydroxyphenylglyoxylate (DPGX). The aminotransferase TotC4 was biochemically characterized to convert DPGX to S-DPG. Inactivation of totH led to a mutant accumulated a deschloro derivative TPM H1, and the ΔtotHi/ΔtotMi double mutant afforded two deschloro-desmethyl products TPMs HM1 and HM2. A hydrolysis experiment demonstrated that the DPG moiety in TPM HM2 was S-DPG, consistent with that of the TotC4 enzymatic product. These results confirmed that TotH and TotM were responsible for ClMeDPG biosynthesis. Bioinformatics analysis indicated that both TotH and TotM might act on thiolation domain-tethered substrates. This study provided evidence for deciphering enzymes leading to ClMeDPG in TPM A, and unambiguously determined its absolute configuration as S.
Collapse
Affiliation(s)
- Bin Tan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Qingbo Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Yiguang Zhu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Hongbo Jin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Liping Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| | - Siqiang Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of the Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
| | - Changsheng Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, Institutions of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
| |
Collapse
|
28
|
Götze S, Stallforth P. Structure elucidation of bacterial nonribosomal lipopeptides. Org Biomol Chem 2020; 18:1710-1727. [DOI: 10.1039/c9ob02539a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We provide a summary of the tools, which allow elucidate the structures of nonribosomal lipopetides.
Collapse
Affiliation(s)
- Sebastian Götze
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
29
|
Götze S, Stallforth P. Structure, properties, and biological functions of nonribosomal lipopeptides from pseudomonads. Nat Prod Rep 2020; 37:29-54. [DOI: 10.1039/c9np00022d] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Bacteria of the genusPseudomonasdisplay a fascinating metabolic diversity. In this review, we focus our attention on the natural product class of nonribosomal lipopeptides, which help pseudomonads to colonize a wide range of ecological niches.
Collapse
Affiliation(s)
- Sebastian Götze
- Faculty 7: Natural and Environmental Sciences
- Institute for Environmental Sciences
- University Koblenz Landau
- 76829 Landau
- Germany
| | - Pierre Stallforth
- Junior Research Group Chemistry of Microbial Communication
- Leibniz Institute for Natural Product Research and Infection Biology Hans Knöll Institute (HKI)
- 07745 Jena
- Germany
| |
Collapse
|
30
|
Abstract
Natural nonproteinogenic amino acids vastly outnumber the well-known 22 proteinogenic amino acids. Such amino acids are generated in specialized metabolic pathways. In these pathways, diverse biosynthetic transformations, ranging from isomerizations to the stereospecific functionalization of C-H bonds, are employed to generate structural diversity. The resulting nonproteinogenic amino acids can be integrated into more complex natural products. Here we review recently discovered biosynthetic routes to freestanding nonproteinogenic α-amino acids, with an emphasis on work reported between 2013 and mid-2019.
Collapse
Affiliation(s)
- Jason B Hedges
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Katherine S Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
31
|
Myronovskyi M, Luzhetskyy A. Heterologous production of small molecules in the optimized Streptomyces hosts. Nat Prod Rep 2019; 36:1281-1294. [PMID: 31453623 DOI: 10.1039/c9np00023b] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Time span of literature covered: 2010-2018The genome mining of streptomycetes has revealed their great biosynthetic potential to produce novel natural products. One of the most promising exploitation routes of this biosynthetic potential is the refactoring and heterologous expression of corresponding biosynthetic gene clusters in a panel of specifically selected and optimized chassis strains. This article will review selected recent reports on heterologous production of natural products in streptomycetes. In the first part, the importance of heterologous production for drug discovery will be discussed. In the second part, the review will discuss recently developed genetic control elements (such as promoters, ribosome binding sites, terminators) and their application to achieve successful heterologous expression of biosynthetic gene clusters. Finally, the most widely used Streptomyces hosts for heterologous expression of biosynthetic gene clusters will be compared in detail. The article will be of interest to natural product chemists, molecular biologists, pharmacists and all individuals working in the natural products drug discovery field.
Collapse
Affiliation(s)
| | - Andriy Luzhetskyy
- Saarland University, Department Pharmacy, Saarbrücken, Germany and Helmholtz Institute for Pharmaceutical Research Saarland, Saarbrücken, Germany.
| |
Collapse
|
32
|
Comparative Genomic Insights into Secondary Metabolism Biosynthetic Gene Cluster Distributions of Marine Streptomyces. Mar Drugs 2019; 17:md17090498. [PMID: 31454987 PMCID: PMC6780079 DOI: 10.3390/md17090498] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/21/2022] Open
Abstract
Bacterial secondary metabolites have huge application potential in multiple industries. Biosynthesis of bacterial secondary metabolites are commonly encoded in a set of genes that are organized in the secondary metabolism biosynthetic gene clusters (SMBGCs). The development of genome sequencing technology facilitates mining bacterial SMBGCs. Marine Streptomyces is a valuable resource of bacterial secondary metabolites. In this study, 87 marine Streptomyces genomes were obtained and carried out into comparative genomic analysis, which revealed their high genetic diversity due to pan-genomes owning 123,302 orthologous clusters. Phylogenomic analysis indicated that the majority of Marine Streptomyces were classified into three clades named Clade I, II, and III, containing 23, 38, and 22 strains, respectively. Genomic annotations revealed that SMBGCs in the genomes of marine Streptomyces ranged from 16 to 84. Statistical analysis pointed out that phylotypes and ecotypes were both associated with SMBGCs distribution patterns. The Clade I and marine sediment-derived Streptomyces harbored more specific SMBGCs, which consisted of several common ones; whereas the Clade II and marine invertebrate-derived Streptomyces have more SMBGCs, acting as more plentiful resources for mining secondary metabolites. This study is beneficial for broadening our knowledge about SMBGC distribution patterns in marine Streptomyces and developing their secondary metabolites in the future.
Collapse
|
33
|
Pagmadulam B, Tserendulam D, Rentsenkhand T, Igarashi M, Sawa R, Nihei CI, Nishikawa Y. Isolation and characterization of antiprotozoal compound-producing Streptomyces species from Mongolian soils. Parasitol Int 2019; 74:101961. [PMID: 31437553 DOI: 10.1016/j.parint.2019.101961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/04/2019] [Accepted: 07/14/2019] [Indexed: 01/16/2023]
Abstract
Natural resources are recognized as important sources of potential drugs for treating various infections, and microorganisms are a rich natural source of diverse compounds. Among the world's microorganisms, actinomycetes, which are abundant in soil and marine, are the well-known producers of a wide range of bioactive secondary metabolites and antibiotics. In the present study, four actinomycetes (samples N25, N6, N18, and N12) were isolated from soil samples in Mongolia. Phylogenetic analysis of these isolates revealed that they share the highest similarity with Streptomyces canus (N25), S. cirratus (N6), S. bacillaris (N18) and S. peucetius (N12), based on 16S rRNA gene sequencing. Crude extracts were obtained from them using ethyl acetate, and the crude fractions were separated by thin layer chromatography. The fractions were then evaluated for their cytotoxicities and their anti-Toxoplasma and antimalarial activities in vitro. The S. canus (N25) crude extract was selected for further chemical characterization based on its antiprotozoal activities. Using liquid chromatography-high resolution mass spectrometry, phenazine-1-carboxylic acid (PCA) was detected and identified in the active fractions of the metabolites from strain N25. We next confirmed that commercially available PCA possesses antiprotozoal activity against T. gondii (IC50: 55.5 μg/ml) and Plasmodium falciparum (IC50: 6.4 μg/ml) in vitro. The results of this study reveal that soil actinomycetes are potential sources of antiprotozoal compounds, and that PCA merits further investigation as an anti-protozoal agent.
Collapse
Affiliation(s)
- Baldorj Pagmadulam
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan; Laboratory of Microbial Synthesis, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Peace avenue-54b, Mongolia
| | - Dugarsuren Tserendulam
- Laboratory of Microbial Synthesis, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Peace avenue-54b, Mongolia
| | - Tserennadmid Rentsenkhand
- Laboratory of Microbial Synthesis, Institute of General and Experimental Biology, Mongolian Academy of Sciences, Ulaanbaatar, Peace avenue-54b, Mongolia
| | - Masayuki Igarashi
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Ryuichi Sawa
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Coh-Ichi Nihei
- Institute of Microbial Chemistry (BIKAKEN), 3-14-23 Kamiosaki, Shinagawa-ku, Tokyo 141-0021, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
34
|
Greule A, Stok JE, De Voss JJ, Cryle MJ. Unrivalled diversity: the many roles and reactions of bacterial cytochromes P450 in secondary metabolism. Nat Prod Rep 2019; 35:757-791. [PMID: 29667657 DOI: 10.1039/c7np00063d] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Covering: 2000 up to 2018 The cytochromes P450 (P450s) are a superfamily of heme-containing monooxygenases that perform diverse catalytic roles in many species, including bacteria. The P450 superfamily is widely known for the hydroxylation of unactivated C-H bonds, but the diversity of reactions that P450s can perform vastly exceeds this undoubtedly impressive chemical transformation. Within bacteria, P450s play important roles in many biosynthetic and biodegradative processes that span a wide range of secondary metabolite pathways and present diverse chemical transformations. In this review, we aim to provide an overview of the range of chemical transformations that P450 enzymes can catalyse within bacterial secondary metabolism, with the intention to provide an important resource to aid in understanding of the potential roles of P450 enzymes within newly identified bacterial biosynthetic pathways.
Collapse
Affiliation(s)
- Anja Greule
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia
| | - Jeanette E Stok
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane 4072, Australia.
| | - Max J Cryle
- The Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria 3800, Australia. and EMBL Australia, Monash University, Clayton, Victoria 3800, Australia and Department of Biomolecular Mechanisms, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.
| |
Collapse
|
35
|
Liu Y, Ding S, Shen J, Zhu K. Nonribosomal antibacterial peptides that target multidrug-resistant bacteria. Nat Prod Rep 2019; 36:573-592. [DOI: 10.1039/c8np00031j] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review summarizes the development of nonribosomal antibacterial peptides from untapped sources that target multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Yuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Veterinary Medicine
- China Agricultural University
- Beijing 100193
- China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation
- College of Veterinary Medicine
- China Agricultural University
- China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Veterinary Medicine
- China Agricultural University
- Beijing 100193
- China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health
- College of Veterinary Medicine
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
36
|
Auerbach D, Yan F, Zhang Y, Müller R. Characterization of an Unusual Glycerate Esterification Process in Vioprolide Biosynthesis. ACS Chem Biol 2018; 13:3123-3130. [PMID: 30286293 DOI: 10.1021/acschembio.8b00826] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacteria produce a large number of secondary metabolites with extraordinary chemical structures and bioactivities. Vioprolides are promising anticancer and antifungal lead compounds produced by the myxobacterium Cystobacter violaceus Cb vi35, which are initially synthesized as acylated precursors (previoprolides) by nonribosomal peptide synthetases (NRPS). Here, we describe and characterize an unprecedented glycerate esterification process in the biosynthesis of vioprolides. In vitro biochemical investigations revealed that the fatty acyl chain of previoprolides is adenylated by the starting fatty acyl-AMP ligase (FAAL) domain, while the glycerate moiety is incorporated by the FkbH domain. An unusual ester-bond forming condensation domain is shown responsible for the acylation of glycerate. LC-MS analysis and bioactivity assays suggest that the acylation serves for directed membrane transport rather than representing a prodrug mechanism.
Collapse
Affiliation(s)
- David Auerbach
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Fu Yan
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| | - Youming Zhang
- Shandong University-Helmholtz Joint Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Qingdao, People’s Republic of China
| | - Rolf Müller
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research and Department of Pharmacy, Saarland University, Saarland University Campus, Building E8.1, 66123 Saarbrücken, Germany
| |
Collapse
|
37
|
Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, Feng S, Bai X, Zuo Y, Li P. Actinobacteria-Derived peptide antibiotics since 2000. Peptides 2018; 103:48-59. [PMID: 29567053 DOI: 10.1016/j.peptides.2018.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 03/16/2018] [Accepted: 03/18/2018] [Indexed: 11/23/2022]
Abstract
Members of the Actinobacteria, including Streptomyces spp., Kutzneria sp. Actinoplanes spp., Actinomycete sp., Nocardia sp., Brevibacteriumsp.,Actinomadura spp., Micromonospora sp., Amycolatopsis spp., Nonomuraea spp., Nocardiopsis spp., Marinactinospora sp., Rhodococcus sp., Lentzea sp., Actinokineospora sp., Planomonospora sp., Streptomonospora sp., and Microbacterium sp., are an important source of structurally diverse classes of short peptides of ∼30 residues or fewer that will likely play an important role in new antibiotic development and discovery. Additionally, many have unique structures that make them recalcitrant to traditional modes of drug resistance via novel mechanisms, and these are ideal therapeutic tools and potential alternatives to current antibiotics. The need for novel antibiotic is urgent, and this review summarizes 199 Actinobacteria compounds published since 2000, including 35 cyclic lipopeptides containing piperazic or pipecolic acids, eight aromatic peptides, five glycopeptides, 21 bicyclic peptides, 44 other cyclic lipopeptides, five linear lipopeptides, six 2,5-diketopiperazines, one dimeric peptide, four nucleosidyl peptides, two thioamide-containing peptides, 25 thiopeptides, nine lasso peptides, and 34 typical cyclic peptides. The current and potential therapeutic applications of these peptides, including their structure, antituberculotic, antibacterial, antifungal, antiviral, anti-brugia, anti-plasmodial, and anti-trypanosomal activities, are discussed.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuxiao Feng
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Ping Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
38
|
Parkinson EI, Tryon JH, Goering AW, Ju KS, McClure RA, Kemball JD, Zhukovsky S, Labeda DP, Thomson RJ, Kelleher NL, Metcalf WW. Discovery of the Tyrobetaine Natural Products and Their Biosynthetic Gene Cluster via Metabologenomics. ACS Chem Biol 2018; 13:1029-1037. [PMID: 29510029 DOI: 10.1021/acschembio.7b01089] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Natural products (NPs) are a rich source of medicines, but traditional discovery methods are often unsuccessful due to high rates of rediscovery. Genetic approaches for NP discovery are promising, but progress has been slow due to the difficulty of identifying unique biosynthetic gene clusters (BGCs) and poor gene expression. We previously developed the metabologenomics method, which combines genomic and metabolomic data to discover new NPs and their BGCs. Here, we utilize metabologenomics in combination with molecular networking to discover a novel class of NPs, the tyrobetaines: nonribosomal peptides with an unusual trimethylammonium tyrosine residue. The BGC for this unusual class of compounds was identified using metabologenomics and computational structure prediction data. Heterologous expression confirmed the BGC and suggests an unusual mechanism for trimethylammonium formation. Overall, the discovery of the tyrobetaines shows the great potential of metabologenomics combined with molecular networking and computational structure prediction for identifying interesting biosynthetic reactions and novel NPs.
Collapse
Affiliation(s)
- Elizabeth I. Parkinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - James H. Tryon
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Anthony W. Goering
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Kou-San Ju
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Ryan A. McClure
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Jeremy D. Kemball
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Sara Zhukovsky
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - David P. Labeda
- Mycotoxin Prevention and Applied Microbiology Research Unit, USDA-ARS National Center for Agricultural Utilization Research, Peoria, Illinois 61604, United States
| | - Regan J. Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Neil L. Kelleher
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - William W. Metcalf
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Department of Microbiology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801 United States
| |
Collapse
|
39
|
luxR Homolog-Linked Biosynthetic Gene Clusters in Proteobacteria. mSystems 2018; 3:mSystems00208-17. [PMID: 29600287 PMCID: PMC5872303 DOI: 10.1128/msystems.00208-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Bacteria biosynthesize specialized metabolites with a variety of ecological functions, including defense against other microbes. Genes that code for specialized metabolite biosynthetic enzymes are frequently clustered together. These BGCs are often regulated by a transcription factor encoded within the cluster itself. These pathway-specific regulators respond to a signal or indirectly through other means of environmental sensing. Many specialized metabolites are not produced under laboratory growth conditions, and one reason for this issue is that laboratory growth media lack environmental cues necessary for BGC expression. Here, we report a bioinformatics study that reveals that BGCs are frequently linked to genes coding for LuxR family QS-responsive transcription factors in the phylum Proteobacteria. The products of these luxR homolog-associated gene clusters may serve as a practical source of bioactive metabolites. Microbes are a major source of antibiotics, pharmaceuticals, and other bioactive compounds. The production of many specialized microbial metabolites is encoded in biosynthetic gene clusters (BGCs). A challenge associated with natural product discovery is that many BGCs are not expressed under laboratory growth conditions. Here we report a genome-mining approach to discover BGCs with luxR-type quorum sensing (QS) genes, which code for regulatory proteins that control gene expression. Our results show that BGCs linked to genes coding for LuxR-like proteins are widespread in Proteobacteria. In addition, we show that associations between luxR homolog genes and BGCs have evolved independently many times, with functionally diverse gene clusters. Overall, these clusters may provide a source of new natural products for which there is some understanding about how to elicit production. IMPORTANCE Bacteria biosynthesize specialized metabolites with a variety of ecological functions, including defense against other microbes. Genes that code for specialized metabolite biosynthetic enzymes are frequently clustered together. These BGCs are often regulated by a transcription factor encoded within the cluster itself. These pathway-specific regulators respond to a signal or indirectly through other means of environmental sensing. Many specialized metabolites are not produced under laboratory growth conditions, and one reason for this issue is that laboratory growth media lack environmental cues necessary for BGC expression. Here, we report a bioinformatics study that reveals that BGCs are frequently linked to genes coding for LuxR family QS-responsive transcription factors in the phylum Proteobacteria. The products of these luxR homolog-associated gene clusters may serve as a practical source of bioactive metabolites.
Collapse
|
40
|
Zhang S, Zhu J, Zechel DL, Jessen-Trefzer C, Eastman RT, Paululat T, Bechthold A. New WS9326A Derivatives and One New Annimycin Derivative with Antimalarial Activity are Produced by Streptomyces asterosporus DSM 41452 and Its Mutant. Chembiochem 2017; 19:272-279. [PMID: 29148157 DOI: 10.1002/cbic.201700428] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Indexed: 11/10/2022]
Abstract
In this study, we report that Streptomyces asterosporus DSM 41452 is a producer of new molecules related to the nonribosomal cyclodepsipeptide WS9326A and the polyketide annimycin. S. asterosporus DSM 41452 is shown to produce six cyclodepsipeptides and peptides, WS9326A to G. Notably, the compounds WS9326F and WS9326G have not been described before. The genome of S. asterosporus DSM 41452 was sequenced, and a putative WS9326A gene cluster was identified. Gene-deletion experiments confirmed that this cluster was responsible for the biosynthesis of WS9326A to G. Additionally, a gene-deletion experiment demonstrated that sas16 encoding a cytochrome P450 monooxygenase was involved in the synthesis of the novel (E)-2,3-dehydrotyrosine residue found in WS9326A and its derivatives. An insertion mutation within the putative annimycin gene cluster led to the production of a new annimycin derivative, annimycin B, which exhibited modest inhibitory activity against Plasmodium falciparum.
Collapse
Affiliation(s)
- Songya Zhang
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strasse 19 VF, 79104, Freiburg im Breisgau, Germany
| | - Jing Zhu
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strasse 19 VF, 79104, Freiburg im Breisgau, Germany
| | - David L Zechel
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, Ontario, K7L 3N6, Canada
| | - Claudia Jessen-Trefzer
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strasse 19 VF, 79104, Freiburg im Breisgau, Germany
| | - Richard T Eastman
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences/NIH, 9800 Medical Center Drive, Rockville, MD, 20850, USA
| | - Thomas Paululat
- Department of Chemistry and Biology, Universität Siegen, Adolf-Reichwein-Strasse 2, 57068, Siegen, Germany
| | - Andreas Bechthold
- Department of Pharmaceutical Biology and Biotechnology, University of Freiburg, Stefan-Meier-Strasse 19 VF, 79104, Freiburg im Breisgau, Germany
| |
Collapse
|
41
|
Characterization of a Novel cis-3-Hydroxy-l-Proline Dehydratase and a trans-3-Hydroxy-l-Proline Dehydratase from Bacteria. J Bacteriol 2017; 199:JB.00255-17. [PMID: 28559297 DOI: 10.1128/jb.00255-17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/21/2017] [Indexed: 11/20/2022] Open
Abstract
Hydroxyprolines, such as trans-4-hydroxy-l-proline (T4LHyp), trans-3-hydroxy-l-proline (T3LHyp), and cis-3-hydroxy-l-proline (C3LHyp), are present in some proteins including collagen, plant cell wall, and several peptide antibiotics. In bacteria, genes involved in the degradation of hydroxyproline are often clustered on the genome (l-Hyp gene cluster). We recently reported that an aconitase X (AcnX)-like hypI gene from an l-Hyp gene cluster functions as a monomeric C3LHyp dehydratase (AcnXType I). However, the physiological role of C3LHyp dehydratase remained unclear. We here demonstrate that Azospirillum brasilense NBRC 102289, an aerobic nitrogen-fixing bacterium, robustly grows using not only T4LHyp and T3LHyp but also C3LHyp as the sole carbon source. The small and large subunits of the hypI gene (hypIS and hypIL, respectively) from A. brasilense NBRC 102289 are located separately from the l-Hyp gene cluster and encode a C3LHyp dehydratase with a novel heterodimeric structure (AcnXType IIa). A strain disrupted in the hypIS gene did not grow on C3LHyp, suggesting its involvement in C3LHyp metabolism. Furthermore, C3LHyp induced transcription of not only the hypI genes but also the hypK gene encoding Δ1-pyrroline-2-carboxylate reductase, which is involved in T3LHyp, d-proline, and d-lysine metabolism. On the other hand, the l-Hyp gene cluster of some other bacteria contained not only the AcnXType IIa gene but also two putative proline racemase-like genes (hypA1 and hypA2). Despite having the same active sites (a pair of Cys/Cys) as hydroxyproline 2-epimerase, which is involved in the metabolism of T4LHyp, the dominant reaction by HypA2 was clearly the dehydration of T3LHyp, a novel type of T3LHyp dehydratase that differed from the known enzyme (Cys/Thr).IMPORTANCE More than 50 years after the discovery of trans-4-hydroxy-l-proline (generally called l-hydroxyproline) degradation in aerobic bacteria, its genetic and molecular information has only recently been elucidated. l-Hydroxyproline metabolic genes are often clustered on bacterial genomes. These loci frequently contain a hypothetical gene(s), whose novel enzyme functions are related to the metabolism of trans-3-hydroxyl-proline and/or cis-3-hydroxyl-proline, a relatively rare l-hydroxyproline in nature. Several l-hydroxyproline metabolic enzymes show no sequential similarities, suggesting their emergence by convergent evolution. Furthermore, transcriptional regulation by trans-4-hydroxy-l-proline, trans-3-hydroxy-l-proline, and/or cis-3-hydroxy-l-proline significantly differs between bacteria. The results of the present study show that several l-hydroxyprolines are available for bacteria as carbon and energy sources and may contribute to the discovery of potential metabolic pathways of another hydroxyproline(s).
Collapse
|
42
|
Mattay J, Hüttel W. Pipecolic Acid Hydroxylases: A Monophyletic Clade amongcis-Selective Bacterial Proline Hydroxylases that Discriminatesl-Proline. Chembiochem 2017; 18:1523-1528. [DOI: 10.1002/cbic.201700187] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Johanna Mattay
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| | - Wolfgang Hüttel
- Institute of Pharmaceutical Sciences; University of Freiburg; Albertstrasse 25 79104 Freiburg Germany
| |
Collapse
|
43
|
Süssmuth RD, Mainz A. Nonribosomal Peptide Synthesis-Principles and Prospects. Angew Chem Int Ed Engl 2017; 56:3770-3821. [PMID: 28323366 DOI: 10.1002/anie.201609079] [Citation(s) in RCA: 615] [Impact Index Per Article: 76.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Indexed: 01/05/2023]
Abstract
Nonribosomal peptide synthetases (NRPSs) are large multienzyme machineries that assemble numerous peptides with large structural and functional diversity. These peptides include more than 20 marketed drugs, such as antibacterials (penicillin, vancomycin), antitumor compounds (bleomycin), and immunosuppressants (cyclosporine). Over the past few decades biochemical and structural biology studies have gained mechanistic insights into the highly complex assembly line of nonribosomal peptides. This Review provides state-of-the-art knowledge on the underlying mechanisms of NRPSs and the variety of their products along with detailed analysis of the challenges for future reprogrammed biosynthesis. Such a reprogramming of NRPSs would immediately spur chances to generate analogues of existing drugs or new compound libraries of otherwise nearly inaccessible compound structures.
Collapse
Affiliation(s)
- Roderich D Süssmuth
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| | - Andi Mainz
- Technische Universität Berlin, Institut für Chemie, Strasse des 17. Juni 124, 10623, Berlin, Germany
| |
Collapse
|
44
|
Süssmuth RD, Mainz A. Nicht-ribosomale Peptidsynthese - Prinzipien und Perspektiven. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609079] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Roderich D. Süssmuth
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| | - Andi Mainz
- Technische Universität Berlin; Institut für Chemie; Straße des 17. Juni 124 10623 Berlin Deutschland
| |
Collapse
|
45
|
Liu Y, Ding S, Dietrich R, Märtlbauer E, Zhu K. A Biosurfactant‐Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angew Chem Int Ed Engl 2017; 56:1486-1490. [PMID: 28106348 DOI: 10.1002/anie.201609277] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/16/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Yuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthNational Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural University Yuanmingyuan West Road No.2 Beijing 100193 China
| | - Shuangyang Ding
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthNational Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural University Yuanmingyuan West Road No.2 Beijing 100193 China
| | - Richard Dietrich
- Institute of Food SafetyDepartment of Veterinary SciencesLudwig-Maximilians-University Munich 85764 Oberschleißheim Germany
| | - Erwin Märtlbauer
- Institute of Food SafetyDepartment of Veterinary SciencesLudwig-Maximilians-University Munich 85764 Oberschleißheim Germany
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthNational Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural University Yuanmingyuan West Road No.2 Beijing 100193 China
- Department of Biomedical EngineeringDuke University Durham NC 27708 USA
| |
Collapse
|
46
|
Liu Y, Ding S, Dietrich R, Märtlbauer E, Zhu K. A Biosurfactant-Inspired Heptapeptide with Improved Specificity to Kill MRSA. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201609277] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuan Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; National Center for Veterinary Drug Safety Evaluation; College of Veterinary Medicine; China Agricultural University; Yuanmingyuan West Road No.2 Beijing 100193 China
| | - Shuangyang Ding
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; National Center for Veterinary Drug Safety Evaluation; College of Veterinary Medicine; China Agricultural University; Yuanmingyuan West Road No.2 Beijing 100193 China
| | - Richard Dietrich
- Institute of Food Safety; Department of Veterinary Sciences; Ludwig-Maximilians-University Munich; 85764 Oberschleißheim Germany
| | - Erwin Märtlbauer
- Institute of Food Safety; Department of Veterinary Sciences; Ludwig-Maximilians-University Munich; 85764 Oberschleißheim Germany
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health; National Center for Veterinary Drug Safety Evaluation; College of Veterinary Medicine; China Agricultural University; Yuanmingyuan West Road No.2 Beijing 100193 China
- Department of Biomedical Engineering; Duke University; Durham NC 27708 USA
| |
Collapse
|
47
|
Functional characterization of aconitase X as a cis-3-hydroxy-L-proline dehydratase. Sci Rep 2016; 6:38720. [PMID: 27929065 PMCID: PMC5144071 DOI: 10.1038/srep38720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/11/2016] [Indexed: 01/30/2023] Open
Abstract
In the aconitase superfamily, which includes the archetypical aconitase, homoaconitase, and isopropylmalate isomerase, only aconitase X is not functionally annotated. The corresponding gene (LhpI) was often located within the bacterial gene cluster involved in L-hydroxyproline metabolism. Screening of a library of (hydroxy)proline analogues revealed that this protein catalyzes the dehydration of cis-3-hydroxy-L-proline to Δ1-pyrroline-2-carboxylate. Furthermore, electron paramagnetic resonance and site-directed mutagenic analyses suggests the presence of a mononuclear Fe(III) center, which may be coordinated with one glutamate and two cysteine residues. These properties were significantly different from those of other aconitase members, which catalyze the isomerization of α- to β-hydroxy acids, and have a [4Fe-4S] cluster-binding site composed of three cysteine residues. Bacteria with the LhpI gene could degrade cis-3-hydroxy-L-proline as the sole carbon source, and LhpI transcription was up-regulated not only by cis-3-hydroxy-L-proline, but also by several isomeric 3- and 4-hydroxyprolines.
Collapse
|
48
|
Bilyk O, Luzhetskyy A. Metabolic engineering of natural product biosynthesis in actinobacteria. Curr Opin Biotechnol 2016; 42:98-107. [DOI: 10.1016/j.copbio.2016.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/03/2016] [Accepted: 03/11/2016] [Indexed: 11/25/2022]
|
49
|
Cell wall distracting anti-Methicillin-resistant Staphylococcus aureus compound PVI331 from a marine sponge associated Streptomyces. J Appl Biomed 2016. [DOI: 10.1016/j.jab.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
50
|
Old dogs and new tricks in antimicrobial discovery. Curr Opin Microbiol 2016; 33:25-34. [PMID: 27262526 DOI: 10.1016/j.mib.2016.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 11/22/2022]
Abstract
The discovery of new antibiotics is crucial if we are to avoid a future in which simple infections once again lead to death. New antibiotics were traditionally discovered by analyzing extracts from cultured soil-derived microbes. However, in the last few years only a few new antibiotic classes have been identified using this method. Attempts to apply target-based screening approaches to antibiotic discovery have also proven to be unproductive. In this article, we describe how DNA sequencing and bioinformatic techniques are revolutionizing natural product discovery leading to new natural product antibiotics sourced from both cultivated and uncultivated microbes. New chemical structures are also being 'crowd sourced' from chemists around the world, and 'forgotten' antibiotics repositioned for clinical trials after chemical or biochemical modification of the original natural product. Collectively such approaches have the potential to revamp antibiotic lead discovery and re-invigorate the antibiotic pipeline.
Collapse
|