1
|
Ramasubramanian R, Anandababu K, Kumar M, Mayilmurugan R. A bioinspired model for copper monooxygenase: direct aromatic hydroxylation using O 2. Dalton Trans 2025. [PMID: 40326617 DOI: 10.1039/d4dt02079k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
A novel copper(I) complex, [CuI(L)(CH3CN)]CF3SO3 (1) (L = 1,1,2-tri(pyridin-2-yl)propan-1-ol), has been synthesized, characterized, and investigated as a bioinspired model for copper monooxygenases. Under aerobic conditions in CH3CN, complex 1 undergoes conversion to a dicopper complex, [(CuIIL)(CuIIL H)(SO3CF3)2]·CF3SO3·H2O (2), whose molecular structure reveals a Cu-Cu distance of 2.96 Å. A dicopper(II) complex, [(LCuII)2(SO3CF3)2] (3), has been synthesized for comparison, which exhibits a similar Cu-Cu distance of 2.97 Å. EPR spectroscopy has ascertained the solution-state geometries of complexes 2 and 3, which displayed g∥ > g⊥ values, indicative of distorted square pyramidal geometries consistent with their solid-state structures. Complex 1 selectively hydroxylates benzene in the presence of O2 and Et3N, affording 7% phenol based on the substrate, without any side products. However, the use of H2O2 as the oxygen source under identical conditions significantly increases the phenol yield to 19%. The catalytically active intermediates generated by the reaction of complex 1 with dioxygen showed an O (π*σ) → Cu ligand-to-metal charge transfer (LMCT) transition at 360 nm and a d-d transition at 650 nm. These spectral features are more pronounced with H2O2, showing a new LMCT transition at 360 nm and a very weak d-d transition at 689 nm. This is supported by solution FT-IR spectroscopy, which showed an O-O stretching frequency at 890 cm-1 (DFT spectra at 829 cm-1), corresponding to a Cu-OOH intermediate. The structure of the [(L)CuII-OOH]+ species was optimized by DFT calculations. Kinetic isotope effect (KIE) studies using C6H6/C6D6 (1 : 1) (kH/kD = 1.03) and isotopic labeling experiments using H218O2 support our proposed mechanism of benzene hydroxylation. In contrast, dinuclear complexes 2 and 3 exhibited poor benzene hydroxylation activity even with H2O2 and yielded only 4% and 6% phenol, respectively, along with by-products such as biphenyl and quinone under identical conditions.
Collapse
Affiliation(s)
- Ramamoorthy Ramasubramanian
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chattisgarh, India.
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Karunanithi Anandababu
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chattisgarh, India.
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Mukesh Kumar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400 085, India
| | - Ramasamy Mayilmurugan
- Department of Chemistry, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chattisgarh, India.
- Department of Bioscience and Biomedical Engineering, Indian Institute of Technology Bhilai, Bhilai, Durg 491002, Chattisgarh, India
| |
Collapse
|
2
|
Modenez IDA, Quaranta A, Courvoisier-Dezord E, Mekmouche Y, Simaan AJ, Leibl W, Tron T. Photoinduced Electron Transfer in Ruthenium-Polypyridyl-Modified Laccases: Probing Pathways From the Surface to the Metal Centers. Chemistry 2025; 31:e202404633. [PMID: 40080416 DOI: 10.1002/chem.202404633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/15/2025]
Abstract
This study explores the grafting of a ruthenium-polypyridyl photosensitizer onto the surface of a multi-copper oxidase to investigate photoinduced electron transfer (PIET) processes within the enzyme. Four Ru-laccase covalent hybrids unique in the position of the ruthenium complex relative to the Type 1 copper (T1) and trinuclear copper (TNC) centers of the enzyme are compared. The strategic positioning of the photosensitizer highlights the roles of distance and intervening medium on PIET pathways. Our results reveal photoreduction scenarios where the TNC center is reduced directly without first passing through the T1 center. We further illustrate the efficiency and robustness of these hybrid systems through continuous irradiation experiments and laser flash photolysis, shedding light on mechanistic pathways and potential applications in sustainable photocatalysis.
Collapse
Affiliation(s)
- Iago de Assis Modenez
- Aix-Marseille Université, CNRS, Centrale Méditerranée, iSm2 UMR 7313, Marseille, France
| | - Annamaria Quaranta
- Université Paris-Saclay, CEA, i2BC UMR 9198, Centre CEA Saclay D36, 532, Saclay, France
| | | | - Yasmina Mekmouche
- Aix-Marseille Université, CNRS, Centrale Méditerranée, iSm2 UMR 7313, Marseille, France
| | - A Jalila Simaan
- Aix-Marseille Université, CNRS, Centrale Méditerranée, iSm2 UMR 7313, Marseille, France
| | - Winfried Leibl
- Université Paris-Saclay, CEA, i2BC UMR 9198, Centre CEA Saclay D36, 532, Saclay, France
| | - Thierry Tron
- Aix-Marseille Université, CNRS, Centrale Méditerranée, iSm2 UMR 7313, Marseille, France
| |
Collapse
|
3
|
Mohammed TP, Velusamy M, Sankaralingam M. Bioinspired copper(II) complexes catalyzed oxidative coupling of aminophenols with broader substrate scope. J Inorg Biochem 2025; 270:112906. [PMID: 40239303 DOI: 10.1016/j.jinorgbio.2025.112906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025]
Abstract
The strategic selection of ligand systems in metal complexes has demonstrated a profound impact on the efficiency and specificity of biomimetic reactions. In this work, we introduce a series of aminoquinoline-based copper(II) complexes (1-4) distinguished by systematic variation in terminal amine substituents: di-n-methyl (L1(H)), di-n-ethyl (L2(H)), di-n-propyl (L3(H)), and di-n-butyl (L4(H)). These complexes are synthesized, characterized, and evaluated as the catalyst for the oxidative coupling of different aminophenol derivatives. Remarkably, complex 1, featuring a methyl substituent, exhibited unparalleled catalytic performance, achieving an 86 % (Kcat - 9.7 × 104 h-1) conversion of o-aminophenol to the desired product, 2-amino-phenoxazin-3-one, alongside water and hydrogen peroxide as byproducts. Notably, complex 1 demonstrated exceptional versatility, extending its catalytic activity to other substrates with remarkable activity. Mechanistic investigations, supported by mass-spectrometric analysis, revealed the formation of a complex-substrate adduct with all substrates, enabling us to propose a detailed reaction pathway. The work highlights the benefits of ligand design in improving catalytic performance and sets a new standard for aminoquinoline-based copper(II) complexes in oxidative coupling reactions. To the best of our knowledge, this work is the first to report a wider substrate scope for PHS activity with copper(II) complexes.
Collapse
Affiliation(s)
- Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Marappan Velusamy
- Department of Chemistry, North-Eastern Hill University, Shillong 793022, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
4
|
Mohammed TP, George A, Sivaramakrishnan MP, Vadivelu P, Balasubramanian S, Sankaralingam M. Deciphering the effect of amine versus imine ligands of copper(II) complexes in 2-aminophenol oxidation. J Inorg Biochem 2023; 247:112309. [PMID: 37451084 DOI: 10.1016/j.jinorgbio.2023.112309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
A series of amine (1-6) and imine (5',6') based copper(II) complexes with tridentate (NNO) ligand donors were synthesized and characterized using modern analytical techniques. All the complexes were subjected to 2-aminophenol (OAP) oxidation to form 2-aminophenoxazin-3-one, as a functional analogue of an enzyme, phenoxazinone synthase. In addition, a critical comparison of the reactivity using the amine-based complexes with their respective imine counterparts was achieved in both experimental as well as theoretical studies. For instance, the kinetic measurement revealed that the imine-based copper(II) complexes (kcat, 2.4 × 105-6.2 × 106 h-1) are better than amine-based (kcat, 6.3 × 104-3.9 × 105 h-1) complexes. The complex-substrate adducts [Cu(L3)(OAP)] (7) and [Cu(L3')(OAP)] (7') were characterized for both systems by mass spectrometry. Further, the DFT study was performed with amine- (3) and imine- (3') based copper(II) complexes, to compare their efficacy in the oxidation of OAP. The mechanistic investigations reveal that the key elementary step to determine the reactivity of 3 and 3' is the proton-coupled electron transfer (PCET) step occurring from the intermediates 7/7'. Further, the computed HOMO-LUMO energy gap of 7' was smaller than 7 by 0.8 eV, which indicates the facile PCET compared to that of 7. Moreover, the coupling of the OAP moiety using imine-complexes (ΔGR.E = -5.8 kcal/mol) was found to be thermodynamically more favorable than amine complexes (ΔGR.E = +3.3 kcal/mol). Overall, the theoretical findings are in good agreement with the experimental results.
Collapse
Affiliation(s)
- Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Akhila George
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | | | - Prabha Vadivelu
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Sridhar Balasubramanian
- Centre for X-ray Crystallography, CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana 500007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India.
| |
Collapse
|
5
|
Lu X, Liu Z, Zhang JR, Zhou Y, Wang L, Zhu JJ. General Synergistic Hybrid Catalyst Synthesis Method Using a Natural Enzyme Scaffold-Confined Metal Nanocluster. ACS APPLIED MATERIALS & INTERFACES 2023; 15:761-771. [PMID: 36580579 DOI: 10.1021/acsami.2c14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to differences in the chemical properties or optimal reaction conditions of the catalysts, the challenge in the design of bio-chemical hybrid catalysts is that the bio-catalysts or chemical catalysts usually cannot maintain the initial catalytic performance. Herein, we report a general bio-chemical hybrid catalyst synthesis method using a natural enzyme scaffold-confined metal nanocluster. A redox-active enzyme is a nanoreactor that allows access to and reduces metal ions into metal nanoclusters in situ, resulting in the enzyme-confined metal nanocluster hybrid catalyst with a synergistic effect to boost catalytic performance. Specifically, bilirubin oxidase-Ir nanoclusters (BOD-Ir NCs) with catalytic properties for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are designed. The BOD-Ir NCs exhibit an approximately 2-fold ORR activity compared with pure BOD and a 4-fold OER activity compared with pure Ir NCs. BOD-Ir NCs exhibit stability for over 50,000 s, exceeding that of pure Ir NCs (22,000 s). The synergistic catalytic performance is attributed to the following: the mild preparation condition and matched sizes of BOD and the Ir NCs maintain the natural activity of BOD; the highly conductive Ir NCs improve the ORR activity of BOD; and the confining effect of BOD, which improves the stability and activity of the Ir NCs during the OER. In particular, BOD-Ir NCs exhibit a high half-wave potential of 0.97 V for the ORR and a low overpotential of 319 mV at 10 mA cm-2 for the OER, surpassing most of reported catalysts under neutral conditions. Furthermore, laccase-Ir NCs and glucose oxidase-Pd NCs with synergistic catalytic performances are fabricated, proving the universality of this synthetic method. This facile strategy for designing synergistic hybrid catalysts is expected to be applied to more complex chemical transformations.
Collapse
Affiliation(s)
- Xuanzhao Lu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Zhuo Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Jian-Rong Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| | - Yang Zhou
- Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing210023, China
| | - Linlin Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an710021, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing210023, China
| |
Collapse
|
6
|
den Boer D, de Heer HC, Buda F, Hetterscheid DGH. Challenges in Elucidating the Free Energy Scheme of the Laccase Catalyzed Reduction of Oxygen. ChemCatChem 2023; 15:e202200878. [PMID: 37082113 PMCID: PMC10107611 DOI: 10.1002/cctc.202200878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Artificial redox catalysts are typically limited by unfavorable scaling relations of reaction intermediates leading to a significant overpotential in multi-electron redox reactions such as for example the oxygen reduction reaction (ORR). The multicopper oxidase laccase is able to catalyze the ORR in nature. In particular the high-potential variants show a remarkably low overpotential for the ORR and apparently do not suffer from such unfavorable scaling relations. Although laccases are intensively studied, it is presently unknown why the overpotential for ORR is so low and a clear description regarding the thermodynamics of the catalytic cycle and the underlying design principles is lacking. In order to understand the laccase catalyzed ORR from an electrochemical perspective, elucidation of the free energy scheme would be of high value. This article reviews the energetics of the proposed laccase catalyzed ORR mechanisms based on experimental and computational studies. However, there are still remaining challenges to overcome to elucidate the free energy scheme of laccase. Obtaining thermodynamic data on intermediates is hard or even impossible with analytical techniques. On the other hand, several computational studies have been performed with significantly different parameters and conditions, thus making a direct comparison difficult. For these reasons, a consensus on a clear free energy scheme is still lacking. We anticipate that ultimately conquering these challenges will result in a better understanding of laccase catalyzed ORR and will allow for the design of low overpotential redox catalysts.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | - Hendrik C. de Heer
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | - Francesco Buda
- Leiden Institute of ChemistryLeiden University2300RALeidenThe Netherlands
| | | |
Collapse
|
7
|
Zhang W, Zhang J, Fan S, Zhang L, Liu C, Liu J. Oxygen reduction catalyzed by bilirubin oxidase and applications in biosensors and biofuel cells. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Thennarasu AS, Mohammed TP, Sankaralingam M. Mononuclear copper( ii) Schiff base complexes as effective models for phenoxazinone synthase. NEW J CHEM 2022. [DOI: 10.1039/d2nj03934f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Copper(ii) complexes of tridentate (N2O) Schiff base ligands as efficient catalysts for 2-aminophenol oxidation to 2-aminophenoxazin-3-one with excellent reaction rates.
Collapse
Affiliation(s)
- Abinaya Sushana Thennarasu
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Thasnim P Mohammed
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| |
Collapse
|
9
|
Santo AAE, Lazaroti VHR, Feliciano GT. Multidimensional redox potential/p Ka coupling in multicopper oxidases from molecular dynamics: implications for the proton transfer mechanism. Phys Chem Chem Phys 2021; 23:27348-27354. [PMID: 34854859 DOI: 10.1039/d1cp03095g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bilirubin oxidases (BOD) are metalloenzymes that catalyze the conversion of O2 and bilirubin to biliverdin and water in the metabolism of chlorophyll and porphyrin. In this work we have used the CpHMD method to analyze the effects of the different oxidation states on the BOD trinuclear cluster (TNC). Our results demonstrate that there is a link between the different oxidation states of copper ions and the protonation capacity of nearby titratable residues. Each configuration affects pKa differently, creating proton gradients within the enzyme that act in an extremely orderly manner. This order is closely linked to the catalytic mechanism and leads us to the conclusion of the entry of the O2 molecule and its reduction in water molecules is associated with the probability of the release of protons from nearby acid groups. With this information, we deduce that under the initial reaction conditions the acidic side chains of nearby residues can be protonated; this allows the enzyme to reduce the activation energy of the reaction by coupling the proton transfer to oxidation state changes in the metallic center.
Collapse
Affiliation(s)
- Anderson A E Santo
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| | - Vitor Hugo R Lazaroti
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| | - Gustavo T Feliciano
- Enginerring, Physics and Mathematics Department, São Paulo State University (Unesp), Institute of Chemistry, Araraquara, Brazil.
| |
Collapse
|
10
|
Sekretareva A, Tian S, Gounel S, Mano N, Solomon EI. Electron Transfer to the Trinuclear Copper Cluster in Electrocatalysis by the Multicopper Oxidases. J Am Chem Soc 2021; 143:17236-17249. [PMID: 34633193 PMCID: PMC9137402 DOI: 10.1021/jacs.1c08456] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
High-potential multicopper oxidases (MCOs) are excellent catalysts able to perform the oxygen reduction reaction (ORR) at remarkably low overpotentials. Moreover, MCOs are able to interact directly with the electrode surfaces via direct electron transfer (DET), that makes them the most commonly used electrocatalysts for oxygen reduction in biofuel cells. The central question in MCO electrocatalysis is whether the type 1 (T1) Cu is the primary electron acceptor site from the electrode, or whether electrons can be transferred directly to the trinuclear copper cluster (TNC), bypassing the rate-limiting intramolecular electron transfer step from the T1 site. Here, using site-directed mutagenesis and electrochemical methods combined with data modeling of electrode kinetics, we have found that there is no preferential superexchange pathway for DET to the T1 site. However, due to the high reorganization energy of the fully oxidized TNC, electron transfer from the electrode to the TNC does occur primarily through the T1 site. We have further demonstrated that the lower reorganization energy of the TNC in its two-electron reduced, alternative resting, form enables DET to the TNC, but this only occurs in the first turnover. This study provides insight into the factors that control the kinetics of electrocatalysis by the MCOs and a guide for the design of more efficient biocathodes for the ORR.
Collapse
Affiliation(s)
- Alina Sekretareva
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Shiliang Tian
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | | | - Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- Université de Bordeaux, CRPP, UMR5031, 33600 Pessac, France
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- SLAC National Accelerator Laboratory, Stanford University, California 94025, United States
| |
Collapse
|
11
|
Macedo LJ, Santo AA, Sedenho GC, Hassan A, Iost RM, Feliciano GT, Crespilho FN. Three-dimensional catalysis and the efficient bioelectrocatalysis beyond surface chemistry. J Catal 2021. [DOI: 10.1016/j.jcat.2021.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
12
|
Zhang W, Moore CE, Zhang S. Encapsulation of tricopper cluster in a synthetic cryptand enables facile redox processes from Cu ICu ICu I to Cu IICu IICu II states. Chem Sci 2020; 12:2986-2992. [PMID: 34164067 PMCID: PMC8179370 DOI: 10.1039/d0sc05441k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
One-pot reaction of tris(2-aminoethyl)amine (TREN), [CuI(MeCN)4]PF6, and paraformaldehyde affords a mixed-valent [TREN4CuIICuICuI(μ3-OH)](PF6)3 complex. The macrocyclic azacryptand TREN4 contains four TREN motifs, three of which provide a bowl-shape binding pocket for the [Cu3(μ3-OH)]3+ core. The fourth TREN caps on top of the tricopper cluster to form a cryptand, imposing conformational constraints and preventing solvent interaction. Contrasting the limited redox capability of synthetic tricopper complexes reported so far, [TREN4CuIICuICuI(μ3-OH)](PF6)3 exhibits several reversible single-electron redox events. The distinct electrochemical behaviors of [TREN4CuIICuICuI(μ3-OH)](PF6)3 and its solvent-exposed analog [TREN3CuIICuIICuII(μ3-O)](PF6)4 suggest that isolation of tricopper core in a cryptand enables facile electron transfer, allowing potential application of synthetic tricopper complexes as redox catalysts. Indeed, the fully reduced [TREN4CuICuICuI(μ3-OH)](PF6)2 can reduce O2 under acidic conditions. The geometric constraints provided by the cryptand are reminiscent of Nature's multicopper oxidases (MCOs). For the first time, a synthetic tricopper cluster was isolated and fully characterized at CuICuICuI (4a), CuIICuICuI (4b), and CuIICuIICuI (4c) states, providing structural and spectroscopic models for many intermediates in MCOs. Fast electron transfer rates (105 to 106 M-1 s-1) were observed for both CuICuICuI/CuIICuICuI and CuIICuICuI/CuIICuIICuI redox couples, approaching the rapid electron transfer rates of copper sites in MCO.
Collapse
Affiliation(s)
- Weiyao Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH USA
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH USA
| | - Shiyu Zhang
- Department of Chemistry and Biochemistry, The Ohio State University 100 W. 18th Ave Columbus OH USA
| |
Collapse
|
13
|
Sohtun WP, Muthuramalingam S, Sankaralingam M, Velusamy M, Mayilmurugan R. Copper(II) complexes of tripodal ligand scaffold (N 3O) as functional models for phenoxazinone synthase. J Inorg Biochem 2020; 216:111313. [PMID: 33277049 DOI: 10.1016/j.jinorgbio.2020.111313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/30/2022]
Abstract
The copper(II) complexes [Cu(L)NO3] (1-9) of newer N3O ligands (L1-L9) have been synthesized and characterized. The molecular structure of 1, 4, and 7 exhibited nearly a perfect square pyramidal geometry (τ, 0.04-0.11). The Cu-OPhenolate bonds (~ 1.91 Å) are shorter than the Cu-N bonds (~ 2.06 Å) due to the stronger coordination of anionic phenolate oxygen. The Cu(II)/Cu(I) redox potentials of 1-9 appeared around -0.102 to -0.428 V versus Ag/Ag+ in water. The electronic spectra of the complexes showed the d-d transitions around 643-735 nm and axial EPR parameter (g||, 2.243-2.270; A||, 164-179 × 10-4 cm-1) that corresponds to square pyramidal geometry. The bonding parameters α2, 0.760-0.825; β2, 0.761-0.994; γ2, 0.504-0.856 and K||, 0.698-0.954 and K⊥, 0.383-0.820 calculated from EPR spectra and energies of d-d transitions. The complexes catalyzed the conversion of substrate 2-aminophenol into 2-aminophenoxazine-3-one using molecular oxygen in the water and exhibited the yields of 41-61%. The formation of the product is accomplished by the appearance of a new absorption band at 430 nm and the rates of formation were calculated as 6.98-15.65 × 10-3 s-1 in water. The reaction follows Michaelis-Menten enzymatic reaction kinetics with turnover numbers (kcat) 9.11 × 105 h-1 for 1 and 4.66 × 105 h-1 for 9 in water. The spectral, redox and kinetic studies were performed in water to mimic the enzymatic oxidation reaction conditions.
Collapse
Affiliation(s)
- Winaki P Sohtun
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Muniyandi Sankaralingam
- Bioinspired & Biomimetic Inorganic Chemistry Lab, Department of Chemistry, National Institute of Technology Calicut, Kozhikode, Kerala 673601, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India.
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India.
| |
Collapse
|
14
|
Alsiary RA, Alghrably M, Saoudi A, Al-Ghamdi S, Jaremko L, Jaremko M, Emwas AH. Using NMR spectroscopy to investigate the role played by copper in prion diseases. Neurol Sci 2020; 41:2389-2406. [PMID: 32328835 PMCID: PMC7419355 DOI: 10.1007/s10072-020-04321-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 02/29/2020] [Indexed: 12/31/2022]
Abstract
Prion diseases are a group of rare neurodegenerative disorders that develop as a result of the conformational conversion of normal prion protein (PrPC) to the disease-associated isoform (PrPSc). The mechanism that actually causes disease remains unclear. However, the mechanism underlying the conformational transformation of prion protein is partially understood-in particular, there is strong evidence that copper ions play a significant functional role in prion proteins and in their conformational conversion. Various models of the interaction of copper ions with prion proteins have been proposed for the Cu (II)-binding, cell-surface glycoprotein known as prion protein (PrP). Changes in the concentration of copper ions in the brain have been associated with prion diseases and there is strong evidence that copper plays a significant functional role in the conformational conversion of PrP. Nevertheless, because copper ions have been shown to have both a positive and negative effect on prion disease onset, the role played by Cu (II) ions in these diseases remains a topic of debate. Because of the unique properties of paramagnetic Cu (II) ions in the magnetic field, their interactions with PrP can be tracked even at single atom resolution using nuclear magnetic resonance (NMR) spectroscopy. Various NMR approaches have been utilized to study the kinetic, thermodynamic, and structural properties of Cu (II)-PrP interactions. Here, we highlight the different models of copper interactions with PrP with particular focus on studies that use NMR spectroscopy to investigate the role played by copper ions in prion diseases.
Collapse
Affiliation(s)
- Rawiah A. Alsiary
- King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Mawadda Alghrably
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdelhamid Saoudi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Suliman Al-Ghamdi
- Oncology, Ministry of National Guard Health Affairs, Jeddah, Saudi Arabia. King Abdullah International Medical Research Center (KAIMRC), Jeddah, Saudi Arabia/King Saud bin Abdulaziz University for Health Sciences (KSAU-HS), Jeddah, Saudi Arabia
| | - Lukasz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Mariusz Jaremko
- Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Abdul-Hamid Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| |
Collapse
|
15
|
Jones SM, Heppner DE, Vu K, Kosman DJ, Solomon EI. Rapid Decay of the Native Intermediate in the Metallooxidase Fet3p Enables Controlled Fe II Oxidation for Efficient Metabolism. J Am Chem Soc 2020; 142:10087-10101. [PMID: 32379440 DOI: 10.1021/jacs.0c02384] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The multicopper oxidases (MCOs) couple four 1e- oxidations of substrate to the 4e- reduction of O2 to H2O. These divide into two groups: those that oxidize organic substrates with high turnover frequencies (TOFs) up to 560 s-1 and those that oxidize metal ions with low TOFs, ∼1 s-1 or less. The catalytic mechanism of the organic oxidases has been elucidated, and the high TOF is achieved through rapid intramolecular electron transfer (IET) to the native intermediate (NI), which only slowly decays to the resting form. Here, we uncover the factors that govern the low TOF in Fet3p, a prototypical metallooxidase, in the context of the MCO mechanism. We determine that the NI decays rapidly under optimal turnover conditions, and the mechanism thereby becomes rate-limited by slow IET to the resting enzyme. Development of a catalytic model leads to the important conclusions that proton delivery to the NI controls the mechanism and enables the slow turnover in Fet3p that is functionally significant in Fe metabolism enabling efficient ferroxidase activity while avoiding ROS generation.
Collapse
Affiliation(s)
- Stephen M Jones
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| | - David E Heppner
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| | - Kenny Vu
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, New York 14214, United States
| | - Daniel J Kosman
- Department of Biochemistry, The University at Buffalo, 140 Farber Hall, 3435 Main Street, Buffalo, New York 14214, United States
| | - Edward I Solomon
- Department of Chemistry, Stanford University, 333 Campus Drive Stanford, California 94305, United States
| |
Collapse
|
16
|
Muthuramalingam S, Anandababu K, Velusamy M, Mayilmurugan R. Benzene Hydroxylation by Bioinspired Copper(II) Complexes: Coordination Geometry versus Reactivity. Inorg Chem 2020; 59:5918-5928. [DOI: 10.1021/acs.inorgchem.9b03676] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Karunanithi Anandababu
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| | - Marappan Velusamy
- Department of Chemistry, North Eastern Hill University, Shillong 793022, India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai 625021, India
| |
Collapse
|
17
|
Valles M, Kamaruddin AF, Wong LS, Blanford CF. Inhibition in multicopper oxidases: a critical review. Catal Sci Technol 2020. [DOI: 10.1039/d0cy00724b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This review critiques the literature on inhibition of O2-reduction catalysis in multicopper oxidases like laccase and bilirubin oxidase and provide recommendations for best practice when carrying out experiments and interpreting published data.
Collapse
Affiliation(s)
- Morgane Valles
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Amirah F. Kamaruddin
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| | - Lu Shin Wong
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Chemistry
| | - Christopher F. Blanford
- Manchester Institute of Biotechnology
- University of Manchester
- Manchester
- UK
- Department of Materials
| |
Collapse
|
18
|
Ramachandran M, Anandan S. Triazole appending ruthenium(ii) polypyridine complex for selective sensing of phosphate anions through C–H–anion interaction and copper(ii) ions via cancer cells. NEW J CHEM 2020. [DOI: 10.1039/d0nj00273a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Selective fluorescence enhancement by H2PO4−/H2P2O72− anions and maximum fluorescence quenching by Cu2+ ions were attained upon treatment with different types of anions and cations, respectively.
Collapse
Affiliation(s)
| | - Sambandam Anandan
- Department of Chemistry
- National Institute of Technology
- Tiruchirappalli-620 015
- India
| |
Collapse
|
19
|
Comparison of Direct and Mediated Electron Transfer for Bilirubin Oxidase from Myrothecium Verrucaria. Effects of Inhibitors and Temperature on the Oxygen Reduction Reaction. Catalysts 2019. [DOI: 10.3390/catal9121056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
One of the processes most studied in bioenergetic systems in recent years is the oxygen reduction reaction (ORR). An important challenge in bioelectrochemistry is to achieve this reaction under physiological conditions. In this study, we used bilirubin oxidase (BOD) from Myrothecium verrucaria, a subclass of multicopper oxidases (MCOs), to catalyse the ORR to water via four electrons in physiological conditions. The active site of BOD, the T2/T3 cluster, contains three Cu atoms classified as T2, T3α, and T3β depending on their spectroscopic characteristics. A fourth Cu atom; the T1 cluster acts as a relay of electrons to the T2/T3 cluster. Graphite electrodes were modified with BOD and the direct electron transfer (DET) to the enzyme, and the mediated electron transfer (MET) using an osmium polymer (OsP) as a redox mediator, were compared. As a result, an alternative resting (AR) form was observed in the catalytic cycle of BOD. In the absence and presence of the redox mediator, the AR direct reduction occurs through the trinuclear site (TNC) via T1, specifically activated at low potentials in which T2 and T3α of the TNC are reduced and T3β is oxidized. A comparative study between the DET and MET was conducted at various pH and temperatures, considering the influence of inhibitors like H2O2, F−, and Cl−. In the presence of H2O2 and F−, these bind to the TNC in a non-competitive reversible inhibition of O2. Instead; Cl− acts as a competitive inhibitor for the electron donor substrate and binds to the T1 site.
Collapse
|
20
|
Sohtun WP, Muthuramalingam S, Velusamy M, Mayilmurugan R. New class of tridentate 3N ligands and copper(II) complexes: A model for type-2 copper site of phenoxazinone synthase. INORG CHEM COMMUN 2019. [DOI: 10.1016/j.inoche.2019.107608] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
21
|
Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera de los Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA. Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18:200. [PMID: 31727078 PMCID: PMC6854816 DOI: 10.1186/s12934-019-1248-0] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.
Collapse
Affiliation(s)
- Leticia Arregui
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Ximena Gómez-Gil
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Guadalupe Gutiérrez-Soto
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa, 66059 Colonia Ex hacienda El Canadá, General Escobedo, Nuevo León Mexico
| | - Carlos Eduardo Hernández-Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451 San Nicolás de los Garza, Nuevo León Mexico
| | - Mayra Herrera de los Santos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Laura Levin
- Laboratorio de Micología Experimental, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INMIBO-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, C1428BGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Daniel Romero-Martínez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Mario C. N. Saparrat
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Diag. 113 y 61, 327CC, 1900, La Plata, Argentina
- Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 53 # 477, 1900, La Plata, Argentina
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| |
Collapse
|
22
|
Barrio M, Fourmond V. Redox (In)activations of Metalloenzymes: A Protein Film Voltammetry Approach. ChemElectroChem 2019. [DOI: 10.1002/celc.201901028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Melisa Barrio
- CNRSAix-Marseille Université, BIP UMR 7281 31 chemin J. Aiguier F-13402 Marseille cedex 20 France
| | - Vincent Fourmond
- CNRSAix-Marseille Université, BIP UMR 7281 31 chemin J. Aiguier F-13402 Marseille cedex 20 France
| |
Collapse
|
23
|
Sekretaryova A, Jones SM, Solomon EI. O 2 Reduction to Water by High Potential Multicopper Oxidases: Contributions of the T1 Copper Site Potential and the Local Environment of the Trinuclear Copper Cluster. J Am Chem Soc 2019; 141:11304-11314. [PMID: 31260290 DOI: 10.1021/jacs.9b05230] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High potential multicopper oxidases (MCOs) have T1 reduction potentials >600 mV (vs normal hydrogen electrode), making them important catalysts for O2 reduction in various biotechnological applications. The oxygen reduction mechanism for the low potential MCOs is well-characterized; however, O2 reactivity of high potential MCOs is not well understood. In this study, we have shown that laccase from Trametes versicolor, where the T1 redox potential is increased by ∼350 mV over that of the low potential MCOs corresponding to an 8 kcal/mol decrease in the driving force, exhibits a slower intramolecular electron transfer (IET) rate to the trinuclear Cu cluster (TNC) in the native intermediate (NI), relative to the low potential MCO from Rhus vernicifera laccase. This IET rate is, however, >102 times faster than the decay rate of the NI, demonstrating that this intermediate form of the enzyme is catalytically relevant enabling fast turnover. However, in contrast to the low potential MCOs where T1 reduction by substrate is rate limiting, the rate limiting step in turnover of high potential MCOs is the first IET to NI. Part of the reduction potential difference of the T1 sites in high vs low potential MCOs is balanced by an ∼100 mV higher reduction potential of NI due to the more positive protein environment in the vicinity of the TNC.
Collapse
Affiliation(s)
- Alina Sekretaryova
- Department of Chemistry , Stanford University , 333 Campus Drive , Stanford , California 94305-5080 , United States
| | - Stephen M Jones
- Department of Chemistry , Stanford University , 333 Campus Drive , Stanford , California 94305-5080 , United States
| | - Edward I Solomon
- Department of Chemistry , Stanford University , 333 Campus Drive , Stanford , California 94305-5080 , United States
| |
Collapse
|
24
|
Priyanga S, Khamrang T, Velusamy M, Karthi S, Ashokkumar B, Mayilmurugan R. Coordination geometry-induced optical imaging of l-cysteine in cancer cells using imidazopyridine-based copper(ii) complexes. Dalton Trans 2019; 48:1489-1503. [PMID: 30632585 DOI: 10.1039/c8dt04634d] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Overexpression of cysteine cathepsins proteases has been documented in a wide variety of cancers, and enhances the l-cysteine concentration in tumor cells. We report the synthesis and characterization of copper(ii) complexes [Cu(L1)2(H2O)](SO3CF3)2, 1, L1 = 3-phenyl-1-(pyridin-2-yl)imidazo[1,5-a]pyridine, [Cu(L2)2(SO3CF3)]SO3CF3, 2, L2 = 3-(4-methoxyphenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine, [Cu(L3)2(H2O)](SO3CF3)2, 3, L3 = 3-(3,4-dimethoxy-phenyl)-1-pyridin-2-yl-imidazo[1,5-a]pyridine and [Cu(L4)2(H2O)](SO3CF3)2, 4, L4 = dimethyl-[4-(1-pyridin-2-yl-imidazo[1,5-a]pyridin-3-yl)phenyl]amine as 'turn-on' optical imaging probes for l-cysteine in cancer cells. The molecular structure of complexes adopted distorted trigonal pyramidal geometry (τ, 0.68-0.87). Cu-Npy bonds (1.964-1.989 Å) were shorter than Cu-Nimi bonds (2.024-2.074 Å) for all complexes. Geometrical distortion was strongly revealed in EPR spectra, showing g‖ (2.26-2.28) and A‖ values (139-163 × 10-4 cm-1) at 70 K. The d-d transitions appeared around 680-741 and 882-932 nm in HEPES, which supported the existence of five-coordinate geometry in solution. The Cu(ii)/Cu(i) redox potential of 1 (0.221 V vs. NHE) was almost identical to that of 2 and 3 but lower than that of 4 (0.525 V vs. NHE) in HEPES buffer. The complexes were almost non-emissive in nature, but became emissive by the interaction of l-cysteine in 100% HEPES at pH 7.34 via reduction of Cu(ii) to Cu(i). Among the probes, probe 2 showed selective and efficient turn-on fluorescence behavior towards l-cysteine over natural amino acids with a limit of detection of 9.9 × 10-8 M and binding constant of 2.3 × 105 M-1. The selectivity of 2 may have originated from a nearly perfect trigonal plane adopted around a copper(ii) center (∼120.70°), which required minimum structural change during the reduction of Cu(ii) to Cu(i) while imaging Cys. The other complexes, with their distorted trigonal planes, required more reorganizational energy, which resulted in poor selectivity. Probe 2 was employed for optical imaging of l-cysteine in HeLa cells and macrophages. It exhibited brighter fluorescent images by visualizing Cys at pH 7.34 and 37 °C. It showed relatively less toxicity for these cell lines as ascertained by the MTT assay.
Collapse
Affiliation(s)
- Selvarasu Priyanga
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| | - Themmila Khamrang
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Marappan Velusamy
- Department of Chemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Sellamuthu Karthi
- School of Biotechnology, Madurai Kamaraj University, Madurai, 625 021, India
| | | | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, 625021, India.
| |
Collapse
|
25
|
Al-Lolage FA, Bartlett PN, Gounel S, Staigre P, Mano N. Site-Directed Immobilization of Bilirubin Oxidase for Electrocatalytic Oxygen Reduction. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04340] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Firas A. Al-Lolage
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
- Department of Chemistry, College of Science, University of Mosul, Mosul 41002, Iraq
| | - Philip N. Bartlett
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, U.K
| | - Sébastien Gounel
- CNRS, Université Bordeaux, Centre de Recherche Paul Pascal (CRPP), UMR 5031, 33600 Pessac, France
| | - Priscilla Staigre
- CNRS, Université Bordeaux, Centre de Recherche Paul Pascal (CRPP), UMR 5031, 33600 Pessac, France
| | - Nicolas Mano
- CNRS, Université Bordeaux, Centre de Recherche Paul Pascal (CRPP), UMR 5031, 33600 Pessac, France
| |
Collapse
|
26
|
Gentil S, Carrière M, Cosnier S, Gounel S, Mano N, Le Goff A. Direct Electrochemistry of Bilirubin Oxidase from Magnaporthe orizae
on Covalently-Functionalized MWCNT for the Design of High-Performance Oxygen-Reducing Biocathodes. Chemistry 2018; 24:8404-8408. [DOI: 10.1002/chem.201800774] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Solène Gentil
- Univ. Grenoble Alpes, CNRS; DCM; 38000 Grenoble France
- Univ. Grenoble Alpes, CEA, CNRS, BIG-LCBM; 38000 Grenoble France
| | | | - Serge Cosnier
- Univ. Grenoble Alpes, CNRS; DCM; 38000 Grenoble France
| | - Sébastien Gounel
- CRPP, CNRS UMR 5031, Univ Bordeaux; 115 Avenue du Docteur Schweitzer 33600 Pessac France
| | - Nicolas Mano
- CRPP, CNRS UMR 5031, Univ Bordeaux; 115 Avenue du Docteur Schweitzer 33600 Pessac France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS; DCM; 38000 Grenoble France
| |
Collapse
|
27
|
Affiliation(s)
- Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- University of Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Anne de Poulpiquet
- Aix Marseille Univ., CNRS, BIP, 31, chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
28
|
Tao L, Stich TA, Liou SH, Soldatova AV, Delgadillo DA, Romano CA, Spiro TG, Goodin DB, Tebo BM, Casey WH, Britt RD. Copper Binding Sites in the Manganese-Oxidizing Mnx Protein Complex Investigated by Electron Paramagnetic Resonance Spectroscopy. J Am Chem Soc 2017; 139:8868-8877. [DOI: 10.1021/jacs.7b02277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | | | - Alexandra V. Soldatova
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | - David A. Delgadillo
- Department of Chemistry & Chemical Biology, University of California, 5200 North Lake Road, Merced, California 95343, United States
| | - Christine A. Romano
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | - Thomas G. Spiro
- Department
of Chemistry, University of Washington, Box 351700, Seattle, Washington 98195, United States
| | | | - Bradley M. Tebo
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, Oregon Health & Science University, Portland, Oregon 97239, United States
| | | | | |
Collapse
|
29
|
de Poulpiquet A, Kjaergaard CH, Rouhana J, Mazurenko I, Infossi P, Gounel S, Gadiou R, Giudici-Orticoni MT, Solomon EI, Mano N, Lojou E. Mechanism of chloride inhibition of bilirubin oxidases and its dependence on potential and pH. ACS Catal 2017; 7:3916-3923. [PMID: 29930880 PMCID: PMC6007015 DOI: 10.1021/acscatal.7b01286] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bilirubin oxidases (BODs) belong to the multi-copper oxidase (MCO) family and efficiently reduce O2 at neutral pH and in physiological conditions where chloride concentrations are over 100 mM. BODs were consequently considered to be Cl- resistant contrary to laccases. However, there has not been a detailed study on the related effect of chloride and pH on the redox state of immobilized BODs. Here, we investigate by electrochemistry the catalytic mechanism of O2 reduction by the thermostable Bacillus pumilus BOD immobilized on carbon nanofibers in the presence of NaCl. The addition of chloride results in the formation of a redox state of the enzyme, previously observed for different BODs and laccases, which is only active after a reductive step. This behavior has not been previously investigated. We show for the first time that the kinetics of formation of this state is strongly dependent on pH, temperature, Cl- concentration and on the applied redox potential. UV-visible spectroscopy allows us to correlate the inhibition process by chloride with the formation of the alternative resting form of the enzyme. We demonstrate that O2 is not required for its formation and show that the application of an oxidative potential is sufficient. In addition, our results suggest that the reactivation may proceed thought the T3 β.
Collapse
Affiliation(s)
- Anne de Poulpiquet
- Aix Marseille Univ, CNRS, BIP, 31 chemin Aiguier, 13402 Marseille, France
| | | | - Jad Rouhana
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- Univ. Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Ievgen Mazurenko
- Aix Marseille Univ, CNRS, BIP, 31 chemin Aiguier, 13402 Marseille, France
| | - Pascale Infossi
- Aix Marseille Univ, CNRS, BIP, 31 chemin Aiguier, 13402 Marseille, France
| | - Sébastien Gounel
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- Univ. Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Roger Gadiou
- Institut des Sciences de Matériaux de Mulhouse, CNRS, 15 rue Starcky, 68057 Mulhouse, France
| | | | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Nicolas Mano
- CNRS, CRPP, UPR 8641, 33600 Pessac, France
- Univ. Bordeaux, CRPP, UPR 8641, 33600 Pessac, France
| | - Elisabeth Lojou
- Aix Marseille Univ, CNRS, BIP, 31 chemin Aiguier, 13402 Marseille, France
| |
Collapse
|
30
|
Muthuramalingam S, Subramaniyan S, Khamrang T, Velusamy M, Mayilmurugan R. Copper(II)-Bioinspired Models for Copper Amine Oxidases: Oxidative Half-Reaction in Water. ChemistrySelect 2017. [DOI: 10.1002/slct.201601786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sethuraman Muthuramalingam
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625 021, Tamil Nadu India
| | - Shanmugam Subramaniyan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625 021, Tamil Nadu India
| | - Themmila Khamrang
- Department of Chemistry; North Eastern Hill Universuty; Shillong- 793022 India
| | - Marappan Velusamy
- Department of Chemistry; North Eastern Hill Universuty; Shillong- 793022 India
| | - Ramasamy Mayilmurugan
- Bioinorganic Chemistry Laboratory/Physical Chemistry; School of Chemistry; Madurai Kamaraj University; Madurai 625 021, Tamil Nadu India
| |
Collapse
|
31
|
Abstract
Prior to 1950, the consensus was that biological transformations occurred in two-electron steps, thereby avoiding the generation of free radicals. Dramatic advances in spectroscopy, biochemistry, and molecular biology have led to the realization that protein-based radicals participate in a vast array of vital biological mechanisms. Redox processes involving high-potential intermediates formed in reactions with O2 are particularly susceptible to radical formation. Clusters of tyrosine (Tyr) and tryptophan (Trp) residues have been found in many O2-reactive enzymes, raising the possibility that they play an antioxidant protective role. In blue copper proteins with plastocyanin-like domains, Tyr/Trp clusters are uncommon in the low-potential single-domain electron-transfer proteins and in the two-domain copper nitrite reductases. The two-domain muticopper oxidases, however, exhibit clusters of Tyr and Trp residues near the trinuclear copper active site where O2 is reduced. These clusters may play a protective role to ensure that reactive oxygen species are not liberated during O2 reduction.
Collapse
Affiliation(s)
- Harry B Gray
- Beckman Institute, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| | - Jay R Winkler
- Beckman Institute, California Institute of Technology, 1200 E California Boulevard, Pasadena, CA 91125, USA
| |
Collapse
|
32
|
Lalaoui N, Holzinger M, Le Goff A, Cosnier S. Diazonium Functionalisation of Carbon Nanotubes for Specific Orientation of Multicopper Oxidases: Controlling Electron Entry Points and Oxygen Diffusion to the Enzyme. Chemistry 2016; 22:10494-500. [DOI: 10.1002/chem.201601377] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Noémie Lalaoui
- Univ. Grenoble Alpes; DCM UMR 5250; 38000 Grenoble France
- CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Michael Holzinger
- Univ. Grenoble Alpes; DCM UMR 5250; 38000 Grenoble France
- CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Alan Le Goff
- Univ. Grenoble Alpes; DCM UMR 5250; 38000 Grenoble France
- CNRS, DCM UMR 5250; 38000 Grenoble France
| | - Serge Cosnier
- Univ. Grenoble Alpes; DCM UMR 5250; 38000 Grenoble France
- CNRS, DCM UMR 5250; 38000 Grenoble France
| |
Collapse
|
33
|
Ziegler MS, Levine DS, Lakshmi KV, Tilley TD. Aryl Group Transfer from Tetraarylborato Anions to an Electrophilic Dicopper(I) Center and Mixed-Valence μ-Aryl Dicopper(I,II) Complexes. J Am Chem Soc 2016; 138:6484-91. [PMID: 27176131 DOI: 10.1021/jacs.6b00802] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis of discrete, cationic binuclear μ-aryl dicopper complexes [Cu2(μ-η(1):η(1)-Ar)DPFN]X (Ar = C6H5, 3,5-(CF3)2C6H3, and C6F5; DPFN = 2,7-bis(fluoro-di(2-pyridyl)methyl)-1,8-naphthyridine; X = BAr4(-) and NTf2(-); Tf = SO2CF3) was achieved by treatment of a dicopper complex [Cu2(μ-η(1):η(1)-NCCH3)DPFN]X2 (X = PF6(-) and NTf2(-)) with tetraarylborates. Structural characterization revealed symmetrically bridging aryl groups, and (1)H NMR spectroscopy evidenced the same structure in solution at 24 °C. Electrochemical investigation of the resulting arylcopper complexes uncovered reversible redox events that led to the synthesis and isolation of a rare mixed-valence organocopper complex [Cu2(μ-η(1):η(1)-Ph)DPFN](NTf2)2 in high yield. The solid-state structure of the mixed-valence μ-phenyl complex exhibits inequivalent copper centers, despite a short Cu···Cu distance. Electronic and variable-temperature electron paramagnetic resonance spectroscopy of the mixed-valence μ-phenyl complex suggest that the degree of spin localization is temperature-dependent, with a high degree of spin localization observed at lower temperatures. Electronic structure calculations agree with the experimental results and suggest that the spin is localized almost entirely on one metal center.
Collapse
Affiliation(s)
- Micah S Ziegler
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| | - Daniel S Levine
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | - T Don Tilley
- Department of Chemistry, University of California , Berkeley, California 94720-1460, United States.,Chemical Sciences Division, Lawrence Berkeley National Laboratory , Berkeley, California 94720, United States
| |
Collapse
|