1
|
Xu L, Dai Q, Yu Y, Yu H. Correlation between olfactory receptor basal activity and odor response: An observational study. Medicine (Baltimore) 2025; 104:e42085. [PMID: 40295251 PMCID: PMC12040046 DOI: 10.1097/md.0000000000042085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Olfactory receptors (ORs) are the largest group of G-protein-coupled human receptors responsible for detecting and distinguishing odors. However, the fundamental mechanisms underlying OR responses remain poorly understood. This study aims to evaluate the basal activity of mouse and human ORs in the Hana3A cell line and examine the correlation between their basal activity and response characteristics to odor stimuli. Using a luciferase assay on the Hana3A cell line, the results showed that the 10 mouse ORs with the highest basal activity levels were positively correlated with their total response to odor stimuli. However, there was no significant correlation between the basal activity of human-derived ORs and their total response to odor stimuli. These findings indicate that basal activity levels significantly influence OR responses to odors, as evidenced by the positive correlation in the 10 mouse ORs with the highest basal activity levels and their odor response. This supports the notion that the receptor binding cavity is crucial in determining OR responses to odors.
Collapse
Affiliation(s)
- Lun Xu
- Department of Otolaryngology, Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Qi Dai
- Department of Otolaryngology, Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yiqun Yu
- Department of Otolaryngology, Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Hongmeng Yu
- Department of Otolaryngology, Ear, Nose & Throat Institute, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People’s Republic of China
- Research Units of New Technologies of Endoscopic Surgery in Skull Base Tumor (2018RU003), Chinese Academy of Medical Sciences, Shanghai, People’s Republic of China
| |
Collapse
|
2
|
Aier I, Dubey N, Varadwaj PK. Structural dynamics of olfactory receptors: implications for odorant binding and activation mechanisms. J Biomol Struct Dyn 2025:1-12. [PMID: 40244808 DOI: 10.1080/07391102.2025.2492235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/05/2025] [Indexed: 04/19/2025]
Abstract
Olfaction, an ancient and intricate process, profoundly shapes human innate responses yet remains relatively understudied compared to other sensory modalities. Olfactory receptors (ORs), members of the G protein-coupled receptor (GPCR) family, play a pivotal role in detecting and discriminating a vast array of odorants. This comprehensive study explores the functional roles of five diverse ORs: OR1A1, OR2W1, OR11A1, OR51E1 and OR51E2, through detailed investigations into the differences between their apo and odorant-bound forms. By examining key residues and mutations, the possible molecular mechanisms that underlie the modulation of binding landscapes and the consequent alterations in OR stability were elucidated. The findings revealed dynamic conformational changes in ORs upon odorant binding, characterized by hinging motions and tilting of transmembrane helices. Using residue interaction network analyses, critical residues involved in mediating interactions between ORs and odorants were uncovered, shedding light on the molecular determinants of olfactory perception. By examining changes in binding pocket volume and per-residue energy decomposition, the dynamic nature of OR activation and the influence of mutations on receptor stability and functionality was observed.
Collapse
Affiliation(s)
- Imlimaong Aier
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Nidhi Dubey
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
3
|
de March CA, Ma N, Billesbølle CB, Tewari J, Llinas Del Torrent C, van der Velden WJC, Ojiro I, Takayama I, Faust B, Li L, Vaidehi N, Manglik A, Matsunami H. Engineered odorant receptors illuminate the basis of odour discrimination. Nature 2024; 635:499-508. [PMID: 39478229 DOI: 10.1038/s41586-024-08126-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 09/26/2024] [Indexed: 11/06/2024]
Abstract
How the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations remains poorly understood. Vertebrate animals perceive odours through G protein-coupled odorant receptors (ORs)1. In humans, around 400 ORs enable the sense of smell. The OR family comprises two main classes: class I ORs are tuned to carboxylic acids whereas class II ORs, which represent most of the human repertoire, respond to a wide variety of odorants2. A fundamental challenge in understanding olfaction is the inability to visualize odorant binding to ORs. Here we uncover molecular properties of odorant-OR interactions by using engineered ORs crafted using a consensus protein design strategy3. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modelling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled the determination of four cryogenic electron microscopy structures of distinct consORs with specific ligand recognition properties. The structure of a class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and generated a homology model of a related member of the human OR51 family with high predictive power. Structures of three class II consORs revealed distinct modes of odorant-binding and activation mechanisms between class I and class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Christian B Billesbølle
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas Del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Barcelona, Spain
| | - Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ichie Ojiro
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ikumi Takayama
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, San Francisco, CA, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| |
Collapse
|
4
|
Pirona L, Ballabio F, Alfonso-Prieto M, Capelli R. Calcium-Driven In Silico Inactivation of a Human Olfactory Receptor. J Chem Inf Model 2024; 64:2971-2978. [PMID: 38523266 DOI: 10.1021/acs.jcim.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Conformational changes as well as molecular determinants related to the activation and inactivation of olfactory receptors are still poorly understood due to the intrinsic difficulties in the structural determination of this GPCR family. Here, we perform, for the first time, the in silico inactivation of human olfactory receptor OR51E2, highlighting the possible role of calcium in this receptor state transition. Using molecular dynamics simulations, we show that a divalent ion in the ion binding site, coordinated by two acidic residues at positions 2.50 and 3.39 conserved across most ORs, stabilizes the receptor in its inactive state. In contrast, protonation of the same two acidic residues is not sufficient to drive inactivation within the microsecond timescale of our simulations. Our findings suggest a novel molecular mechanism for OR inactivation, potentially guiding experimental validation and offering insights into the possible broader role of divalent ions in GPCR signaling.
Collapse
Affiliation(s)
- Lorenza Pirona
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Federico Ballabio
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, D-54248 Jülich, Germany
| | - Riccardo Capelli
- Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy
| |
Collapse
|
5
|
Wang J, Wang D, Huang M, Sun B, Ren F, Wu J, Zhang J, Li H, Sun X. Decoding Molecular Mechanism Underlying Human Olfactory Receptor OR8D1 Activation by Sotolone Enantiomers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5403-5415. [PMID: 38386648 DOI: 10.1021/acs.jafc.3c09142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Sotolone, a chiral compound, plays an important role in the food industry. Herein, (R)-/(S)-sotolone were separated to determine their odor characteristics and thresholds in air (R-form: smoky, burned, herb, and green aroma, 0.0514 μg/m3; S-form: sweet, milk, acid, and nutty aroma, 0.0048 μg/m3). OR8D1 responses to (R)-/(S)-sotolone were detected in a HEK293 cell-based luminescence assay. (S)-Sotolone was a more potent agonist than (R)-sotolone (EC50 values of 84.98 ± 1.05 and 167.20 ± 0.25 μmol/L, respectively). Molecular dynamics simulations and molecular mechanics Poisson-Boltzmann surface area analyses confirmed that the combination of (S)-sotolone and OR8D1 was more stable than that of (R)-sotolone. Odorant docking, multiple sequence alignments, site-directed mutagenesis, and functional studies with recombinant odorant receptors (ORs) in a cell-based luminescence assay identified 11 amino-acid residues that influence the enantioselectivity of OR8D1 toward sotolone significantly and that N2065.46 was indispensable to the activation of OR8D1 by (S)-sotolone.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Danqing Wang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Mingquan Huang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Fazheng Ren
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Jihong Wu
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Jinglin Zhang
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Hehe Li
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| | - Xiaotao Sun
- Key Laboratory of Brewing Molecular Engineering of China Light Industry, Beijing Technology & Business University (BTBU), Beijing 100048, China
- Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Ministry of Education, Beijing 100048, China
| |
Collapse
|
6
|
Wu C, Xu M, Dong J, Cui W, Yuan S. The structure and function of olfactory receptors. Trends Pharmacol Sci 2024; 45:268-280. [PMID: 38296675 DOI: 10.1016/j.tips.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/02/2024]
Abstract
Olfactory receptors (ORs) form the most important chemosensory receptor family responsible for our sense of smell in the nasal olfactory epithelium. This receptor family belongs to the class A G protein-coupled receptors (GPCRs). Recent research has indicated that ORs are involved in many nonolfactory physiological processes in extranasal tissue, such as the brain, pancreas, and testes, and implies the possible role of their dysregulation in various diseases. The recently released structures of OR51E2 and consensus OR52 have also unveiled the uniqueness of ORs from other class A GPCR members. In this review, we discuss these recent developments and computational modeling efforts toward understanding the structural properties of unresolved ORs, which could guide potential future OR-targeted drug discovery.
Collapse
Affiliation(s)
- Chenyang Wu
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Marc Xu
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junlin Dong
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; The Research Center for Computer-aided Drug Discovery, The Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqiang Cui
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China
| | - Shuguang Yuan
- The AlphaMol-SIAT Joint Laboratory, Shenzhen 518055, China; AlphaMol Science Ltd, Shenzhen 518055, China.
| |
Collapse
|
7
|
de March CA, Ma N, Billesbølle CB, Tewari J, del Torrent CL, van der Velden WJC, Ojiro I, Takayama I, Faust B, Li L, Vaidehi N, Manglik A, Matsunami H. Engineered odorant receptors illuminate structural principles of odor discrimination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.16.567230. [PMID: 38014344 PMCID: PMC10680712 DOI: 10.1101/2023.11.16.567230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A central challenge in olfaction is understanding how the olfactory system detects and distinguishes odorants with diverse physicochemical properties and molecular configurations. Vertebrate animals perceive odors via G protein-coupled odorant receptors (ORs). In humans, ~400 ORs enable the sense of smell. The OR family is composed of two major classes: Class I ORs are tuned to carboxylic acids while Class II ORs, representing the vast majority of the human repertoire, respond to a wide variety of odorants. How ORs recognize chemically diverse odorants remains poorly understood. A fundamental bottleneck is the inability to visualize odorant binding to ORs. Here, we uncover fundamental molecular properties of odorant-OR interactions by employing engineered ORs crafted using a consensus protein design strategy. Because such consensus ORs (consORs) are derived from the 17 major subfamilies of human ORs, they provide a template for modeling individual native ORs with high sequence and structural homology. The biochemical tractability of consORs enabled four cryoEM structures of distinct consORs with unique ligand recognition properties. The structure of a Class I consOR, consOR51, showed high structural similarity to the native human receptor OR51E2 and yielded a homology model of a related member of the human OR51 family with high predictive power. Structures of three Class II consORs revealed distinct modes of odorant-binding and activation mechanisms between Class I and Class II ORs. Thus, the structures of consORs lay the groundwork for understanding molecular recognition of odorants by the OR superfamily.
Collapse
Affiliation(s)
- Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gifsur- Yvette, 91190, France
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | | | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Wijnand J. C. van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ichie Ojiro
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ikumi Takayama
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, 08193 Bellaterra, Barcelona, Spain; Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
8
|
Fukutani Y, Abe M, Saito H, Eguchi R, Tazawa T, de March CA, Yohda M, Matsunami H. Antagonistic interactions between odorants alter human odor perception. Curr Biol 2023; 33:2235-2245.e4. [PMID: 37220745 PMCID: PMC10394640 DOI: 10.1016/j.cub.2023.04.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 03/19/2023] [Accepted: 04/27/2023] [Indexed: 05/25/2023]
Abstract
The olfactory system uses hundreds of odorant receptors (ORs), the largest group of the G-protein-coupled receptor (GPCR) superfamily, to detect a vast array of odorants. Each OR is activated by specific odorous ligands, and like other GPCRs, antagonism can block activation of ORs. Recent studies suggest that odorant antagonisms in mixtures influence olfactory neuron activities, but it is unclear how this affects perception of odor mixtures. In this study, we identified a set of human ORs activated by methanethiol and hydrogen sulfide, two potent volatile sulfur malodors, through large-scale heterologous expression. Screening odorants that block OR activation in heterologous cells identified a set of antagonists, including β-ionone. Sensory evaluation in humans revealed that β-ionone reduced the odor intensity and unpleasantness of methanethiol. Additionally, suppression was not observed when methanethiol and β-ionone were introduced simultaneously to different nostrils. Our study supports the hypothesis that odor sensation is altered through antagonistic interactions at the OR level.
Collapse
Affiliation(s)
- Yosuke Fukutani
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | - Masashi Abe
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Haruka Saito
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Ryo Eguchi
- Research Section, R & D Division, S.T. Corporation, Shinjuku, Tokyo 161-0033, Japan
| | - Toshiaki Tazawa
- Research Section, R & D Division, S.T. Corporation, Shinjuku, Tokyo 161-0033, Japan
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Institute of Chemistry of the Natural Substances, Université Paris Saclay, CNRS UPR2301, Gif-sur-Yvette 91190, France
| | - Masafumi Yohda
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan.
| | - Hiroaki Matsunami
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan; Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27705, USA.
| |
Collapse
|
9
|
Alfonso-Prieto M, Capelli R. Machine Learning-Based Modeling of Olfactory Receptors in Their Inactive State: Human OR51E2 as a Case Study. J Chem Inf Model 2023; 63:2911-2917. [PMID: 37145455 DOI: 10.1021/acs.jcim.3c00380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Atomistic-level investigation of olfactory receptors (ORs) is a challenging task due to the experimental/computational difficulties in the structural determination/prediction for members of this family of G-protein coupled receptors. Here, we have developed a protocol that performs a series of molecular dynamics simulations from a set of structures predicted de novo by recent machine learning algorithms and apply it to a well-studied receptor, the human OR51E2. Our study demonstrates the need for simulations to refine and validate such models. Furthermore, we demonstrate the need for the sodium ion at a binding site near D2.50 and E3.39 to stabilize the inactive state of the receptor. Considering the conservation of these two acidic residues across human ORs, we surmise this requirement also applies to the other ∼400 members of this family. Given the almost concurrent publication of a CryoEM structure of the same receptor in the active state, we propose this protocol as an in silico complement to the growing field of ORs structure determination.
Collapse
Affiliation(s)
- Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5/Institute for Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, Wilhelm-Johnen-Straße, D-52428 Jülich, Germany
| | - Riccardo Capelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, I-20133 Milan, Italy
| |
Collapse
|
10
|
Billesbølle CB, de March CA, van der Velden WJC, Ma N, Tewari J, Del Torrent CL, Li L, Faust B, Vaidehi N, Matsunami H, Manglik A. Structural basis of odorant recognition by a human odorant receptor. Nature 2023; 615:742-749. [PMID: 36922591 PMCID: PMC10580732 DOI: 10.1038/s41586-023-05798-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 02/06/2023] [Indexed: 03/17/2023]
Abstract
Our sense of smell enables us to navigate a vast space of chemically diverse odour molecules. This task is accomplished by the combinatorial activation of approximately 400 odorant G protein-coupled receptors encoded in the human genome1-3. How odorants are recognized by odorant receptors remains unclear. Here we provide mechanistic insight into how an odorant binds to a human odorant receptor. Using cryo-electron microscopy, we determined the structure of the active human odorant receptor OR51E2 bound to the fatty acid propionate. Propionate is bound within an occluded pocket in OR51E2 and makes specific contacts critical to receptor activation. Mutation of the odorant-binding pocket in OR51E2 alters the recognition spectrum for fatty acids of varying chain length, suggesting that odorant selectivity is controlled by tight packing interactions between an odorant and an odorant receptor. Molecular dynamics simulations demonstrate that propionate-induced conformational changes in extracellular loop 3 activate OR51E2. Together, our studies provide a high-resolution view of chemical recognition of an odorant by a vertebrate odorant receptor, providing insight into how this large family of G protein-coupled receptors enables our olfactory sense.
Collapse
Affiliation(s)
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Wijnand J C van der Velden
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Jeevan Tewari
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Claudia Llinas Del Torrent
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Laboratory of Computational Medicine, Biostatistics Unit, Faculty of Medicine, Universitat Autònoma Barcelona, Bellaterra, Barcelona, Spain
| | - Linus Li
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Bryan Faust
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, USA.
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Department of Anesthesia and Perioperative Care, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
11
|
Two odorant receptors regulate 1-octen-3-ol induced oviposition behavior in the oriental fruit fly. Commun Biol 2023; 6:176. [PMID: 36792777 PMCID: PMC9932091 DOI: 10.1038/s42003-023-04551-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
The oriental fruit fly Bactrocera dorsalis (Hendel) is a notorious pest of fruit crops. Gravid females locate suitable oviposition sites by detecting host plant volatiles. Here, we demonstrate that 1-octen-3-ol, a volatile from mango, guides the oviposition behavior of female flies. Two odorant receptors (BdorOR7a-6 and BdorOR13a) are identified as key receptors for 1-octen-3-ol perception by qPCR analysis, heterologous expression in Xenopus laevis oocytes and HEK 293 cells followed by in vitro binding assays, as well as CRISPR/Cas9 genome editing in B. dorsalis. Molecular docking and site-directed mutagenesis are used to determine major binding sites for 1-octen-3-ol. Our results demonstrate the potential of 1-octen-3-ol to attract gravid females and molecular mechanism of its perception in B. dorsalis. BdorOR7a-6 and BdorOR13a can therefore be used as molecular targets for the development of female attractants. Furthermore, our site-directed mutagenesis data will facilitate the chemical engineering of 1-octen-3-ol to generate more efficient attractants.
Collapse
|
12
|
Nicoli A, Haag F, Marcinek P, He R, Kreißl J, Stein J, Marchetto A, Dunkel A, Hofmann T, Krautwurst D, Di Pizio A. Modeling the Orthosteric Binding Site of the G Protein-Coupled Odorant Receptor OR5K1. J Chem Inf Model 2023; 63:2014-2029. [PMID: 36696962 PMCID: PMC10091413 DOI: 10.1021/acs.jcim.2c00752] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With approximately 400 encoding genes in humans, odorant receptors (ORs) are the largest subfamily of class A G protein-coupled receptors (GPCRs). Despite its high relevance and representation, the odorant-GPCRome is structurally poorly characterized: no experimental structures are available, and the low sequence identity of ORs to experimentally solved GPCRs is a significant challenge for their modeling. Moreover, the receptive range of most ORs is unknown. The odorant receptor OR5K1 was recently and comprehensively characterized in terms of cognate agonists. Here, we report two additional agonists and functional data of the most potent compound on two mutants, L1043.32 and L2556.51. Experimental data was used to guide the investigation of the binding modes of OR5K1 ligands into the orthosteric binding site using structural information from AI-driven modeling, as recently released in the AlphaFold Protein Structure Database, and from homology modeling. Induced-fit docking simulations were used to sample the binding site conformational space for ensemble docking. Mutagenesis data guided side chain residue sampling and model selection. We obtained models that could better rationalize the different activity of active (agonist) versus inactive molecules with respect to starting models and also capture differences in activity related to minor structural differences. Therefore, we provide a model refinement protocol that can be applied to model the orthosteric binding site of ORs as well as that of GPCRs with low sequence identity to available templates.
Collapse
Affiliation(s)
- Alessandro Nicoli
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Franziska Haag
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Patrick Marcinek
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Ruiming He
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany.,Department of Chemistry, Technical University of Munich, 85748 Garching, Germany
| | - Johanna Kreißl
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Jörg Stein
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Alessandro Marchetto
- Computational Biomedicine, Institute for Advanced Simulations (IAS)-5/Institute for Neuroscience and Medicine (INM)-9, Forschungszentrum Jülich, 52428 Jülich, Germany.,Department of Biology, Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen University, 52074 Aachen, Germany
| | - Andreas Dunkel
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Thomas Hofmann
- Chair of Food Chemistry and Molecular Sensory Science, Technical University of Munich, 85354 Freising, Germany
| | - Dietmar Krautwurst
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| | - Antonella Di Pizio
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, 85354 Freising, Germany
| |
Collapse
|
13
|
Lowry TW, Kusi-Appiah AE, Fadool DA, Lenhert S. Odor Discrimination by Lipid Membranes. MEMBRANES 2023; 13:151. [PMID: 36837654 PMCID: PMC9962961 DOI: 10.3390/membranes13020151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Odor detection and discrimination in mammals is known to be initiated by membrane-bound G-protein-coupled receptors (GPCRs). The role that the lipid membrane may play in odor discrimination, however, is less well understood. Here, we used model membrane systems to test the hypothesis that phospholipid bilayer membranes may be capable of odor discrimination. The effect of S-carvone, R-carvone, and racemic lilial on the model membrane systems was investigated. The odorants were found to affect the fluidity of supported lipid bilayers as measured by fluorescence recovery after photobleaching (FRAP). The effect of odorants on surface-supported lipid multilayer microarrays of different dimensions was also investigated. The lipid multilayer micro- and nanostructure was highly sensitive to exposure to these odorants. Fluorescently-labeled lipid multilayer droplets of 5-micron diameter were more responsive to these odorants than ethanol controls. Arrays of lipid multilayer diffraction gratings distinguished S-carvone from R-carvone in an artificial nose assay. Our results suggest that lipid bilayer membranes may play a role in odorant discrimination and molecular recognition in general.
Collapse
|
14
|
de March CA, Matsunami H, Abe M, Cobb M, Hoover KC. Genetic and functional odorant receptor variation in the Homo lineage. iScience 2022; 26:105908. [PMID: 36691623 PMCID: PMC9860384 DOI: 10.1016/j.isci.2022.105908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/07/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Humans, Neanderthals, and Denisovans independently adapted to a wide range of geographic environments and their associated food odors. Using ancient DNA sequences, we explored the in vitro function of thirty odorant receptor genes in the genus Homo. Our extinct relatives had highly conserved olfactory receptor sequence, but humans did not. Variations in odorant receptor protein sequence and structure may have produced variation in odor detection and perception. Variants led to minimal changes in specificity but had more influence on functional sensitivity. The few Neanderthal variants disturbed function, whereas Denisovan variants increased sensitivity to sweet and sulfur odors. Geographic adaptations may have produced greater functional variation in our lineage, increasing our olfactory repertoire and expanding our adaptive capacity. Our survey of olfactory genes and odorant receptors suggests that our genus has a shared repertoire with possible local ecological adaptations.
Collapse
Affiliation(s)
- Claire A. de March
- Institut de Chimie des Substances Naturelles, UPR2301 CNRS, Université Paris-Saclay, Gif-sur-Yvette 91190, France,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA,Corresponding author
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
| | - Masashi Abe
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA,Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Matthew Cobb
- Faculty of Life Sciences, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Kara C. Hoover
- Department of Anthropology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA,Corresponding author
| |
Collapse
|
15
|
Lagunas A, Belloir C, Briand L, Gorostiza P, Samitier J. Determination of the nanoscale electrical properties of olfactory receptor hOR1A1 and their dependence on ligand binding: Towards the development of capacitance-operated odorant biosensors. Biosens Bioelectron 2022; 218:114755. [PMID: 36191583 DOI: 10.1016/j.bios.2022.114755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/09/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022]
Abstract
The transduction of odorant binding into cellular signaling by olfactory receptors (ORs) is not understood and knowing its mechanism would enable developing new pharmacology and biohybrid electronic detectors of volatile organic compounds bearing high sensitivity and selectivity. The electrical characterization of ORs in bulk experiments is subject to microscopic models and assumptions. We have directly determined the nanoscale electrical properties of ORs immobilized in a fixed orientation, and their change upon odorant binding, using electrochemical scanning tunneling microscopy (EC-STM) in near-physiological conditions. Recordings of current versus time, distance, and electrochemical potential allows determining the OR impedance parameters and their dependence with odorant binding. Our results allow validating OR structural-electrostatic models and their functional activation processes, and anticipating a novel macroscopic biosensor based on ORs.
Collapse
Affiliation(s)
- Anna Lagunas
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, 08028, Barcelona, Spain.
| | - Christine Belloir
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 9E Bd Jeanne d'Arc, 21000, Dijon, France
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro Dijon, Université Bourgogne Franche-Comté, 9E Bd Jeanne d'Arc, 21000, Dijon, France
| | - Pau Gorostiza
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, 08028, Barcelona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Josep Samitier
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain; Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology, c/Baldiri i Reixac 10-12, 08028, Barcelona, Spain; Department of Electronics and Biomedical Engineering, Faculty of Physics, University of Barcelona (UB), c/Martí i Franquès 1, 08028, Barcelona, Spain.
| |
Collapse
|
16
|
The Third Extracellular Loop of Mammalian Odorant Receptors Is Involved in Ligand Binding. Int J Mol Sci 2022; 23:ijms232012501. [PMID: 36293357 PMCID: PMC9604345 DOI: 10.3390/ijms232012501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 12/30/2022] Open
Abstract
Mammals recognize chemicals in the air via G protein-coupled odorant receptors (ORs). In addition to their orthosteric binding site, other segments of these receptors modulate ligand recognition. Focusing on human hOR1A1, which is considered prototypical of class II ORs, we used a combination of molecular modeling, site-directed mutagenesis, and in vitro functional assays. We showed that the third extracellular loop of ORs (ECL3) contributes to ligand recognition and receptor activation. Indeed, site-directed mutations in ECL3 showed differential effects on the potency and efficacy of both carvones, citronellol, and 2-nonanone.
Collapse
|
17
|
Extracellular loop 2 of G protein-coupled olfactory receptors is critical for odorant recognition. J Biol Chem 2022; 298:102331. [PMID: 35926708 PMCID: PMC9442423 DOI: 10.1016/j.jbc.2022.102331] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/27/2022] Open
Abstract
G protein–coupled olfactory receptors (ORs) enable us to detect innumerous odorants. They are also ectopically expressed in nonolfactory tissues and emerging as attractive drug targets. ORs can be promiscuous or highly specific, which is part of a larger mechanism for odor discrimination. Here, we demonstrate that the OR extracellular loop 2 (ECL2) plays critical roles in OR promiscuity and specificity. Using site-directed mutagenesis and molecular modeling, we constructed 3D OR models in which ECL2 forms a lid over the orthosteric pocket. We demonstrate using molecular dynamics simulations that ECL2 controls the shape and volume of the odorant-binding pocket, maintains the pocket hydrophobicity, and acts as a gatekeeper of odorant binding. Therefore, we propose the interplay between the specific orthosteric pocket and the variable, less specific ECL2 controls OR specificity and promiscuity. Furthermore, the 3D models created here enabled virtual screening of new OR agonists and antagonists, which exhibited a 70% hit rate in cell assays. Our approach can potentially be generalized to structure-based ligand screening for other G protein–coupled receptors that lack high-resolution 3D structures.
Collapse
|
18
|
He M, Liu W, Zhang C, Liu Y, Zhuang H, O'Hagan D. Selectively Fluorinated Citronellol Analogues Support a Hydrogen Bonding Donor Interaction with the Human OR1A1 Olfactory Receptor. Org Lett 2022; 24:4415-4420. [PMID: 35686936 PMCID: PMC9237825 DOI: 10.1021/acs.orglett.2c01635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
C-2 fluorinated and
methylated stereoisomers of the fragrance citronellol 1 and its oxalate esters were prepared from (R)-pulegone 11 and explored as agonists of the human
olfactory receptor OR1A1 and assayed also against site-specific mutants.
There were clear isomer preferences and C-2 difluorination as in 18 led to the most active compound suggesting an important
hydrogen bond donor role for citronellol 1. C-2 methylation
and the corresponding oxalate ester analogues were less active.
Collapse
Affiliation(s)
- Mengfan He
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, U.K
| | - Weihong Liu
- Intelligent Perception Lab, Hanwang Technology Co., Ltd., Beijing, 100193, China
| | - Chen Zhang
- Intelligent Perception Lab, Hanwang Technology Co., Ltd., Beijing, 100193, China
| | - Yingjian Liu
- Intelligent Perception Lab, Hanwang Technology Co., Ltd., Beijing, 100193, China
| | - Hanyi Zhuang
- Intelligent Perception Lab, Hanwang Technology Co., Ltd., Beijing, 100193, China
| | - David O'Hagan
- School of Chemistry, University of St. Andrews, St. Andrews, KY16 9ST, U.K
| |
Collapse
|
19
|
Xu R, Cong X, Zheng Q, Xu L, Ni MJ, de March CA, Matsunami H, Golebiowski J, Ma M, Yu Y. Interactions among key residues regulate mammalian odorant receptor trafficking. FASEB J 2022; 36:e22384. [PMID: 35639289 DOI: 10.1096/fj.202200116rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 11/11/2022]
Abstract
Odorant receptors (ORs) expressed in mammalian olfactory sensory neurons are essential for the sense of smell. However, structure-function studies of many ORs are hampered by unsuccessful heterologous expression. To understand and eventually overcome this bottleneck, we performed heterologous expression and functional assays of over 80 OR variants and chimeras. Combined with literature data and machine learning, we found that the transmembrane domain 4 (TM4) and its interactions with neighbor residues are important for OR functional expression. The data highlight critical roles of T4.62 therein. ORs that fail to reach the cell membrane can be rescued by modifications in TM4. Consequently, such modifications in MOR256-3 (Olfr124) also alter OR responses to odorants. T1614.62 P causes the retention of MOR256-3 in the endoplasmic reticulum (ER), while T1614.62 P/T1484.49 A reverses the retention and makes receptor trafficking to cell membrane. This study offers new clues toward wide-range functional studies of mammalian ORs.
Collapse
Affiliation(s)
- Rui Xu
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Xiaojing Cong
- Institut de Chimie de Nice UMR7272, CNRS, Université Côte d'Azur, Nice, France.,Institut de Génomique Fonctionnelle, University of Montpellier, CNRS, INSERM, Montpellier Cedex 5, 34094, France
| | - Qian Zheng
- School of Life Sciences, Shanghai University, Shanghai, People's Republic of China
| | - Lun Xu
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China
| | - Mengjue J Ni
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Neurobiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jérôme Golebiowski
- Institut de Chimie de Nice UMR7272, CNRS, Université Côte d'Azur, Nice, France.,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, South Korea
| | - Minghong Ma
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Yiqun Yu
- Ear, Nose & Throat Institute, Department of Otolaryngology, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China.,Clinical and Research Center for Olfactory Disorders, Eye, Ear, Nose & Throat Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
20
|
Cong X, Ren W, Pacalon J, Xu R, Xu L, Li X, de March CA, Matsunami H, Yu H, Yu Y, Golebiowski J. Large-Scale G Protein-Coupled Olfactory Receptor-Ligand Pairing. ACS CENTRAL SCIENCE 2022; 8:379-387. [PMID: 35350604 PMCID: PMC8949627 DOI: 10.1021/acscentsci.1c01495] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Indexed: 05/22/2023]
Abstract
G protein-coupled receptors (GPCRs) conserve common structural folds and activation mechanisms, yet their ligand spectra and functions are highly diverse. This work investigated how the amino-acid sequences of olfactory receptors (ORs)-the largest GPCR family-encode diversified responses to various ligands. We established a proteochemometric (PCM) model based on OR sequence similarities and ligand physicochemical features to predict OR responses to odorants using supervised machine learning. The PCM model was constructed with the aid of site-directed mutagenesis, in vitro functional assays, and molecular simulations. We found that the ligand selectivity of the ORs is mostly encoded in the residues up to 8 Å around the orthosteric pocket. Subsequent predictions using Random Forest (RF) showed a hit rate of up to 58%, as assessed by in vitro functional assays of 111 ORs and 7 odorants of distinct scaffolds. Sixty-four new OR-odorant pairs were discovered, and 25 ORs were deorphanized here. The best model demonstrated a 56% deorphanization rate. The PCM-RF approach will accelerate OR-odorant mapping and OR deorphanization.
Collapse
Affiliation(s)
- Xiaojing Cong
- Université
Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France
- E-mail:
| | - Wenwen Ren
- Institutes
of Biomedical Sciences, Fudan University, Shanghai 200031, People’s Republic of China
| | - Jody Pacalon
- Université
Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France
| | - Rui Xu
- School
of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Lun Xu
- Ear,
Nose & Throat Institute, Department of Otolaryngology, Eye, Ear,
Nose & Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
| | - Xuewen Li
- School
of Life Sciences, Shanghai University, Shanghai 200444, People’s Republic of China
| | - Claire A. de March
- Department
of Molecular Genetics and Microbiology, and Department of Neurobiology,
and Duke Institute for Brain Sciences, Duke
University Medical Center, Research Drive, Durham, North Carolina 27710, United States
| | - Hiroaki Matsunami
- Department
of Molecular Genetics and Microbiology, and Department of Neurobiology,
and Duke Institute for Brain Sciences, Duke
University Medical Center, Research Drive, Durham, North Carolina 27710, United States
| | - Hongmeng Yu
- Ear,
Nose & Throat Institute, Department of Otolaryngology, Eye, Ear,
Nose & Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
- Clinical
and Research Center for Olfactory Disorders, Eye, Ear, Nose &
Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
- Research
Units of New Technologies of Endoscopic Surgery in Skull Base Tumor,
Chinese Academy of Medical Sciences, Beijing 100730, People’s
Republic of China
| | - Yiqun Yu
- Ear,
Nose & Throat Institute, Department of Otolaryngology, Eye, Ear,
Nose & Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
- Clinical
and Research Center for Olfactory Disorders, Eye, Ear, Nose &
Throat Hospital, Fudan University, Shanghai 200031, People’s Republic of China
- E-mail:
| | - Jérôme Golebiowski
- Université
Côte d’Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108, France
- Department
of Brain and Cognitive Sciences, Daegu Gyeongbuk
Institute of Science and Technology, Daegu 711-873, South Korea
- E-mail:
| |
Collapse
|
21
|
Topin J, Bouysset C, Pacalon J, Kim Y, Rhyu MR, Fiorucci S, Golebiowski J. Functional molecular switches of mammalian G protein-coupled bitter-taste receptors. Cell Mol Life Sci 2021; 78:7605-7615. [PMID: 34687318 PMCID: PMC11073308 DOI: 10.1007/s00018-021-03968-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/20/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
Bitter taste receptors (TAS2Rs) are a poorly understood subgroup of G protein-coupled receptors (GPCRs). The experimental structure of these receptors has yet to be determined, and key-residues controlling their function remain mostly unknown. We designed an integrative approach to improve comparative modeling of TAS2Rs. Using current knowledge on class A GPCRs and existing experimental data in the literature as constraints, we pinpointed conserved motifs to entirely re-align the amino-acid sequences of TAS2Rs. We constructed accurate homology models of human TAS2Rs. As a test case, we examined the accuracy of the TAS2R16 model with site-directed mutagenesis and in vitro functional assays. This combination of in silico and in vitro results clarifies sequence-function relationships and proposes functional molecular switches that encode agonist sensing and downstream signaling mechanisms within mammalian TAS2Rs sequences.
Collapse
Affiliation(s)
- Jérémie Topin
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France.
| | - Cédric Bouysset
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
| | - Jody Pacalon
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
| | - Yiseul Kim
- Korea Food Research Institute, 245 Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Mee-Ra Rhyu
- Korea Food Research Institute, 245 Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Sébastien Fiorucci
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France.
| | - Jérôme Golebiowski
- Institut de Chimie de Nice UMR7272, Université Côte d'Azur, CNRS, Nice, France
- Department of Brain and Cognitive Sciences, DGIST, 333, Techno JungAng, Daero, HyeongPoong Myeon, Daegu, 711-873, Republic of Korea
| |
Collapse
|
22
|
Jabeen A, de March CA, Matsunami H, Ranganathan S. Machine Learning Assisted Approach for Finding Novel High Activity Agonists of Human Ectopic Olfactory Receptors. Int J Mol Sci 2021; 22:ijms222111546. [PMID: 34768977 PMCID: PMC8583936 DOI: 10.3390/ijms222111546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 12/29/2022] Open
Abstract
Olfactory receptors (ORs) constitute the largest superfamily of G protein-coupled receptors (GPCRs). ORs are involved in sensing odorants as well as in other ectopic roles in non-nasal tissues. Matching of an enormous number of the olfactory stimulation repertoire to its counterpart OR through machine learning (ML) will enable understanding of olfactory system, receptor characterization, and exploitation of their therapeutic potential. In the current study, we have selected two broadly tuned ectopic human OR proteins, OR1A1 and OR2W1, for expanding their known chemical space by using molecular descriptors. We present a scheme for selecting the optimal features required to train an ML-based model, based on which we selected the random forest (RF) as the best performer. High activity agonist prediction involved screening five databases comprising ~23 M compounds, using the trained RF classifier. To evaluate the effectiveness of the machine learning based virtual screening and check receptor binding site compatibility, we used docking of the top target ligands to carefully develop receptor model structures. Finally, experimental validation of selected compounds with significant docking scores through in vitro assays revealed two high activity novel agonists for OR1A1 and one for OR2W1.
Collapse
Affiliation(s)
- Amara Jabeen
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia;
| | - Claire A. de March
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA;
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710, USA
- Correspondence: (H.M.); (S.R.)
| | - Shoba Ranganathan
- Applied BioSciences, Macquarie University, Sydney, NSW 2109, Australia;
- Correspondence: (H.M.); (S.R.)
| |
Collapse
|
23
|
Jabeen A, Vijayram R, Ranganathan S. A two-stage computational approach to predict novel ligands for a chemosensory receptor. Curr Res Struct Biol 2021; 2:213-221. [PMID: 34235481 PMCID: PMC8244491 DOI: 10.1016/j.crstbi.2020.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 09/29/2020] [Accepted: 10/03/2020] [Indexed: 11/01/2022] Open
Abstract
Olfactory receptor (OR) 1A2 is the member of largest superfamily of G protein-coupled receptors (GPCRs). OR1A2 is an ectopically expressed receptor with only 13 known ligands, implicated in reducing hepatocellular carcinoma progression, with enormous therapeutic potential. We have developed a two-stage screening approach to identify novel putative ligands of OR1A2. We first used a pharmacophore model based on atomic property field (APF) to virtually screen a library of 5942 human metabolites. We then carried out structure-based virtual screening (SBVS) for predicting the potential agonists, based on a 3D homology model of OR1A2. This model was developed using a biophysical approach for template selection, based on multiple parameters including hydrophobicity correspondence, applied to the complete set of available GPCR structures to pick the most appropriate template. Finally, the membrane-embedded 3D model was refined by molecular dynamics (MD) simulations in both the apo and holo forms. The refined model in the apo form was selected for SBVS. Four novel small molecules were identified as strong binders to this olfactory receptor on the basis of computed binding energies.
Collapse
Key Words
- APF, Atomic property field
- Amber, Assisted model Building with Energy Refinement
- Atomic property field
- Binding free energy calculation
- CSF, Cerebrospinal fluid
- ECL, Extracellular loop
- GPCR, G protein coupled receptor
- HCMV, Human cytomegalovirus
- HMDB, Human metabolome database
- Hydrophobicity correspondence
- LBVS, Ligand based virtual screening
- LC, Lung carcinoids
- MD, Molecular dynamics
- MMGBSA, Molecular mechanics generalized born surface area
- MMPBSA, Molecular mechanics Poisson–Boltzmann surface area
- Molecular dynamics
- NAFLD, Non-alcoholic fatty liver disease
- NASH, Nonalcoholic steatohepatitis
- OR, olfactory receptor
- OR1A2
- Olfactory receptor
- PMEMD, Particle-Mesh Ewald Molecular Dynamics
- POPC, 1-palmitoyl-2-oleoyl-sn-glycero- 3-phosphatidylcholine
- RMSD, Root mean square deviation
- RMSF, Root mean square fluctuation
- SBVS, Structure based virtual screening
- SSD, Sum of squared difference
- TM, Transmembrane
- Virtual ligand screening
Collapse
Affiliation(s)
- Amara Jabeen
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Ramya Vijayram
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, Tamilnadu, India
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia
| |
Collapse
|
24
|
Liu MT, Na M, Li Y, Biscoe MR, Ryan K. Conformational Sensing by a Mammalian Olfactory Receptor. Chemistry 2020; 26:11462-11469. [PMID: 32691933 DOI: 10.1002/chem.202001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/22/2020] [Indexed: 01/08/2023]
Abstract
To identify odors, the mammalian nose deploys hundreds of olfactory receptors (ORs) from the rhodopsin-like class of the G protein-coupled receptor superfamily. Odorants having multiple rotatable bonds present a problem for the stereochemical shape-based matching process assumed to govern the sense of smell through OR-odorant recognition. We conformationally restricted the carbon chain of the odorant octanal to ask whether an OR can respond differently to different odorant conformations. By using calcium imaging to monitor signal transduction in sensory neurons expressing the mouse aldehyde OR, Olfr2, we found that the spatial position of the C7 and C8 carbon atoms of octanal, in relation to its -CHO group, determines whether an aliphatic aldehyde functions as an agonist, partial agonist or antagonist. Our experiments provide evidence that an odorant can manipulate an OR through its intrinsic conformational repertoire, in unexpected analogy to the photon-controlled aldehyde manipulation observed in rhodopsin.
Collapse
Affiliation(s)
- Min Ting Liu
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Mihwa Na
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Yadi Li
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Mark R Biscoe
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY, 10031, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.,Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| |
Collapse
|
25
|
Haag F, Ahmed L, Reiss K, Block E, Batista VS, Krautwurst D. Copper-mediated thiol potentiation and mutagenesis-guided modeling suggest a highly conserved copper-binding motif in human OR2M3. Cell Mol Life Sci 2020; 77:2157-2179. [PMID: 31435697 PMCID: PMC7256108 DOI: 10.1007/s00018-019-03279-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Sulfur-containing compounds within a physiological relevant, natural odor space, such as the key food odorants, typically constitute the group of volatiles with the lowest odor thresholds. The observation that certain metals, such as copper, potentiate the smell of sulfur-containing, metal-coordinating odorants led to the hypothesis that their cognate receptors are metalloproteins. However, experimental evidence is sparse-so far, only one human odorant receptor, OR2T11, and a few mouse receptors, have been reported to be activated by sulfur-containing odorants in a copper-dependent way, while the activation of other receptors by sulfur-containing odorants did not depend on the presence of metals. Here we identified an evolutionary conserved putative copper interaction motif CC/CSSH, comprising two copper-binding sites in TMH5 and TMH6, together with the binding pocket for 3-mercapto-2-methylpentan-1-ol in the narrowly tuned human receptor OR2M3. To characterize the copper-binding motif, we combined homology modeling, docking studies, site-directed mutagenesis, and functional expression of recombinant ORs in a cell-based, real-time luminescence assay. Ligand activation of OR2M3 was potentiated in the presence of copper. This effect of copper was mimicked by ionic and colloidal silver. In two broadly tuned receptors, OR1A1 and OR2W1, which did not reveal a putative copper interaction motif, activation by their most potent, sulfur-containing key food odorants did not depend on the presence of copper. Our results suggest a highly conserved putative copper-binding motif to be necessary for a copper-modulated and thiol-specific function of members from three subfamilies of family 2 ORs.
Collapse
Affiliation(s)
- Franziska Haag
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Krystle Reiss
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Eric Block
- Department of Chemistry, University at Albany, State University of New York, Albany, NY, 12222, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Dietmar Krautwurst
- Leibniz-Institute for Food Systems Biology, Technical University of Munich, Lise-Meitner-Str. 34, 85354, Freising, Germany.
| |
Collapse
|
26
|
Zhang Z, Gao X, Zhang Q, Li W. Constitutive activity of a spermine receptor is maintained by a single site in the C-terminal. Biochem Biophys Res Commun 2020; 526:389-395. [PMID: 32222281 DOI: 10.1016/j.bbrc.2020.03.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
Abstract
Olfactory receptors are G-protein coupled receptors (GPCRs) that enable olfactory epithelia to detect odorants. These GPCRs may also show constitutive activity, which play important roles in the development and responses of odorant receptor neurons. However, little is known about the molecular characteristics that support the constitutive activities in olfactory receptors. Here, we characterize a pair of olfactory receptor orthologs that show similar ligand-dependent activity but different levels of constitutive activity, and elucidate the molecular characteristics that maintain the constitutive activity. Previously, PmTAAR348, a sea lamprey (Petromyzon marinus) olfactory receptor that is activated by the male sex pheromone spermine has been reported. In this study, we identified LmTAAR348 of Northeast Chinese lamprey (Lethenteron morii) as an ortholog of PmTAAR348. When expressed in HEK293T cell lines, both receptors showed similar levels of activation when exposed to spermine. However, the constitutive activity of LmTAAR348 was 100-fold higher than that of PmTAAR348. Using site-directed mutagenesis, we screened all 13 amino acid residues (aa) that differed between the two orthologs and found that a switch in position 340 reversed the constitutive activity levels between LmTAAR348 and PmTAAR348. Mutating the remaining 12 aa did not affect the ligand-dependent or constitutive activation. Moreover, both the ligand-dependent and constitutive activation of TAAR348 are Golf (G protein ⍺ subunit olfactory type) independent. We conclude that a single aa in the C-terminal maintains the constitutive activity in a spermine receptor.
Collapse
Affiliation(s)
- Zhe Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Xiang Gao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Qinghua Zhang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Universities Key Laboratory of Marine Animal Taxonomy and Evolution, Shanghai Ocean University, Shanghai, 201306, China
| | - Weming Li
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
27
|
Hu XS, Ikegami K, Vihani A, Zhu KW, Zapata M, de March CA, Do M, Vaidya N, Kucera G, Bock C, Jiang Y, Yohda M, Matsunami H. Concentration-Dependent Recruitment of Mammalian Odorant Receptors. eNeuro 2020; 7:ENEURO.0103-19.2019. [PMID: 32015097 PMCID: PMC7189481 DOI: 10.1523/eneuro.0103-19.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
A fundamental challenge in studying principles of organization used by the olfactory system to encode odor concentration information has been identifying comprehensive sets of activated odorant receptors (ORs) across a broad concentration range inside freely behaving animals. In mammals, this has recently become feasible with high-throughput sequencing-based methods that identify populations of activated ORs in vivo In this study, we characterized the mouse OR repertoires activated by the two odorants, acetophenone (ACT) and 2,5-dihydro-2,4,5-trimethylthiazoline (TMT), from 0.01% to 100% (v/v) as starting concentrations using phosphorylated ribosomal protein S6 capture followed by RNA-Seq. We found Olfr923 to be one of the most sensitive ORs that is enriched by ACT. Using a mouse line that genetically labels Olfr923-positive axons, we provided evidence that ACT activates the Olfr923 glomeruli in the olfactory bulb. Through molecular dynamics stimulations, we identified amino acid residues in the Olfr923 binding cavity that facilitate ACT binding. This study sheds light on the active process by which unique OR repertoires may collectively facilitate the discrimination of odorant concentrations.
Collapse
Affiliation(s)
- Xiaoyang Serene Hu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Kentaro Ikegami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
- Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan
| | - Aashutosh Vihani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710
| | - Kevin W Zhu
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Marcelo Zapata
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Matthew Do
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Natasha Vaidya
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
- North Carolina School of Science and Mathematics, Durham, NC 27705
| | - Gary Kucera
- DCI Rodent Cancer Models Shared Resource, Duke University Medical Center, Durham, NC 27710
| | - Cheryl Bock
- DCI Rodent Cancer Models Shared Resource, Duke University Medical Center, Durham, NC 27710
| | - Yue Jiang
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
| | - Masafumi Yohda
- Tokyo University of Agriculture and Technology, Tokyo 183-8538, Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC 27710
| |
Collapse
|
28
|
Lee N, Jae Y, Kim M, Cho T, Lee C, Hong YR, Hyeon DY, Ahn S, Kwon H, Kim K, Jung JH, Chae S, Shin JO, Bok J, Byun Y, Hwang D, Koo J. A pathogen-derived metabolite induces microglial activation via odorant receptors. FEBS J 2020; 287:3841-3870. [PMID: 32003140 DOI: 10.1111/febs.15234] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Microglia (MG), the principal neuroimmune sentinels in the brain, continuously sense changes in their environment and respond to invading pathogens, toxins, and cellular debris, thereby affecting neuroinflammation. Microbial pathogens produce small metabolites that influence neuroinflammation, but the molecular mechanisms that determine whether pathogen-derived small metabolites affect microglial activation of neuroinflammation remain to be elucidated. We hypothesized that odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, are involved in microglial activation by pathogen-derived small metabolites. We found that MG express high levels of two mouse ORs, Olfr110 and Olfr111, which recognize a pathogenic metabolite, 2-pentylfuran, secreted by Streptococcus pneumoniae. These interactions activate MG to engage in chemotaxis, cytokine production, phagocytosis, and reactive oxygen species generation. These effects were mediated through the Gαs -cyclic adenosine monophosphate-protein kinase A-extracellular signal-regulated kinase and Gβγ -phospholipase C-Ca2+ pathways. Taken together, our results reveal a novel interplay between the pathogen-derived metabolite and ORs, which has major implications for our understanding of microglial activation by pathogen recognition. DATABASE: Model data are available in the PMDB database under the accession number PM0082389.
Collapse
Affiliation(s)
- NaHye Lee
- Department of New Biology, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - YoonGyu Jae
- Department of New Biology, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Minhyung Kim
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - TaeHo Cho
- Department of New Biology, DGIST, Daegu, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu, Korea
| | - Yu Ri Hong
- Department of New Biology, DGIST, Daegu, Korea
| | | | - Sanghyun Ahn
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Hongmok Kwon
- College of Pharmacy, Korea University, Sejong, Korea
| | - Kyul Kim
- College of Pharmacy, Korea University, Sejong, Korea
| | - Jae Hoon Jung
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Sehyun Chae
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Jeong-Oh Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Korea
| | - Daehee Hwang
- Center for Plant Aging Research, DGIST, Daegu, Korea.,Department of Biological Sciences, Seoul National University, Korea
| | | |
Collapse
|
29
|
Genva M, Kenne Kemene T, Deleu M, Lins L, Fauconnier ML. Is It Possible to Predict the Odor of a Molecule on the Basis of its Structure? Int J Mol Sci 2019; 20:ijms20123018. [PMID: 31226833 PMCID: PMC6627536 DOI: 10.3390/ijms20123018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022] Open
Abstract
The olfactory sense is the dominant sensory perception for many animals. When Richard Axel and Linda B. Buck received the Nobel Prize in 2004 for discovering the G protein-coupled receptors’ role in olfactory cells, they highlighted the importance of olfaction to the scientific community. Several theories have tried to explain how cells are able to distinguish such a wide variety of odorant molecules in a complex context in which enantiomers can result in completely different perceptions and structurally different molecules. Moreover, sex, age, cultural origin, and individual differences contribute to odor perception variations that complicate the picture. In this article, recent advances in olfaction theory are presented, and future trends in human olfaction such as structure-based odor prediction and artificial sniffing are discussed at the frontiers of chemistry, physiology, neurobiology, and machine learning.
Collapse
Affiliation(s)
- Manon Genva
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Tierry Kenne Kemene
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Laurence Lins
- Laboratory of Molecular Biophysics at Interfaces, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, University of Liège, 5030 Gembloux, Belgium.
| |
Collapse
|
30
|
de March CA, Fukutani Y, Vihani A, Kida H, Matsunami H. Real-time In Vitro Monitoring of Odorant Receptor Activation by an Odorant in the Vapor Phase. J Vis Exp 2019. [PMID: 31081824 DOI: 10.3791/59446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Olfactory perception begins with the interaction of odorants with odorant receptors (OR) expressed by olfactory sensory neurons (OSN). Odor recognition follows a combinatorial coding scheme, where one OR can be activated by a set of odorants and one odorant can activate a combination of ORs. Through such combinatorial coding, organisms can detect and discriminate between a myriad of volatile odor molecules. Thus, an odor at a given concentration can be described by an activation pattern of ORs, which is specific to each odor. In that sense, cracking the mechanisms that the brain uses to perceive odor requires the understanding odorant-OR interactions. This is why the olfaction community is committed to "de-orphanize" these receptors. Conventional in vitro systems used to identify odorant-OR interactions have utilized incubating cell media with odorant, which is distinct from the natural detection of odors via vapor odorants dissolution into nasal mucosa before interacting with ORs. Here, we describe a new method that allows for real-time monitoring of OR activation via vapor-phase odorants. Our method relies on measuring cAMP release by luminescence using the Glosensor assay. It bridges current gaps between in vivo and in vitro approaches and provides a basis for a biomimetic volatile chemical sensor.
Collapse
Affiliation(s)
- Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center;
| | - Yosuke Fukutani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology
| | - Aashutosh Vihani
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke University Medical Center
| | - Hitoshi Kida
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Mechanical Systems, Engineering, Tokyo University of Agriculture and Technology
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center; Department of Neurobiology, Duke University Medical Center; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology; Duke Institute for Brain Sciences, Duke University;
| |
Collapse
|
31
|
Abstract
Unraveling the sense of smell relies on understanding how odorant receptors recognize odorant molecules. Given the vastness of the odorant chemical space and the complexity of the odorant receptor space, computational methods are in line to propose rules connecting them. We hereby propose an in silico and an in vitro approach, which, when combined are extremely useful for assessing chemogenomic links. In this chapter we mostly focus on the mining of already existing data through machine learning methods. This approach allows establishing predictions that map the chemical space and the receptor space. Then, we describe the method for assessing the activation of odorant receptors and their mutants through luciferase reporter gene functional assays.
Collapse
|
32
|
Verzeaux L, Richer S, Viguier J, Gofflo S, Boudier D, Aymard E, Closs B. Structure-function relationship between a natural cosmetic active ingredient and the olfactory receptor OR2AT4. Int J Cosmet Sci 2019; 41:194-199. [PMID: 30854660 DOI: 10.1111/ics.12526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/05/2019] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Although the olfactory receptor OR2AT4 was described as involved in epidermal renewal, there is no data about a cosmetic active ingredient activating this receptor. The aim of this research work was thus to identify a natural molecule binding to this receptor in order to stimulate keratinocyte migration. METHODS For this purpose, natural molecules were extracted from Cocos nucifera flour. Then, efficacy of this natural extract was evaluated on keratinocyte migration in vitro. Molecules of the Cocos nucifera flour extract were then identified by UPLC-MS/MS. Molecular docking was finally conducted to investigate the potential interaction between identified molecules and the olfactory receptor OR2AT4. RESULTS The Cocos nucifera flour extract significantly increased keratinocyte migration and results demonstrated that this effect was mediated by the olfactory receptor OR2AT4. Metabolomic analysis revealed two molecules, nonioside D and butyl 4-O-alpha-D-glucopyranosyl-beta-D-glucopyranoside, as significantly present in the Cocos nucifera flour extract compared to both Cocos nucifera oil and water. Finally, molecular docking revealed that butyl 4-O-alpha-D-glucopyranosyl-beta-D-glucopyranoside could interact with the extracellular domain 2 of the OR2AT4. CONCLUSION This study highlighted for the first time a natural molecule, extracted from Cocos nucifera flour, able to interact with the olfactory receptor OR2AT4 and promote the keratinocyte migration and thus the epithelialization.
Collapse
Affiliation(s)
| | - S Richer
- SILAB R&D Department, Brive, France
| | | | - S Gofflo
- SILAB R&D Department, Brive, France
| | | | - E Aymard
- SILAB R&D Department, Brive, France
| | - B Closs
- SILAB R&D Department, Brive, France
| |
Collapse
|
33
|
Liu MT, Ho J, Liu JK, Purakait R, Morzan UN, Ahmed L, Batista VS, Matsunami H, Ryan K. Carbon chain shape selectivity by the mouse olfactory receptor OR-I7. Org Biomol Chem 2019; 16:2541-2548. [PMID: 29569669 DOI: 10.1039/c8ob00205c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rodent OR-I7 is an olfactory receptor exemplar activated by aliphatic aldehydes such as octanal. Normal alkanals shorter than heptanal bind OR-I7 without activating it and hence function as antagonists in vitro. We report a series of aldehydes designed to probe the structural requirements for aliphatic ligand chains too short to meet the minimum approximate 6.9 Å length requirement for receptor activation. Experiments using recombinant mouse OR-I7 expressed in heterologous cells show that in the context of short aldehyde antagonists, OR-I7 prefers binding aliphatic chains without branches, though a single methyl on carbon-3 is permitted. The receptor can accommodate a surprisingly large number of carbons (e.g. ten in adamantyl) as long as the carbons are part of a conformationally constrained ring system. A rhodopsin-based homology model of mouse OR-I7 docked with the new antagonists suggests that small alkyl branches on the alkyl chain sterically interfere with the hydrophobic residues lining the binding site, but branch carbons can be accommodated when tied back into a compact ring system like the adamantyl and bicyclo[2.2.2]octyl systems.
Collapse
Affiliation(s)
- Min Ting Liu
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA. and Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| | - Jianghai Ho
- Department of Molecular Genetics and Microbiology, and Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | - Jason Karl Liu
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Radhanath Purakait
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA.
| | - Uriel N Morzan
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Lucky Ahmed
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Victor S Batista
- Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, and Neurobiology, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, NC 27710, USA.
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, USA. and Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA and Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, NY 10016, USA
| |
Collapse
|
34
|
Cong X, Zheng Q, Ren W, Chéron JB, Fiorucci S, Wen T, Zhang C, Yu H, Golebiowski J, Yu Y. Zebrafish olfactory receptors ORAs differentially detect bile acids and bile salts. J Biol Chem 2019; 294:6762-6771. [PMID: 30833327 DOI: 10.1074/jbc.ra118.006483] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 02/20/2019] [Indexed: 11/06/2022] Open
Abstract
The fish olfactory receptor ORA family is orthologous to the mammalian vomeronasal receptors type 1. It consists of six highly conserved chemosensory receptors expected to be essential for survival and communication. We deorphanized the zebrafish ORA family in a heterologous cell system. The six receptors responded specifically to lithocholic acid (LCA) and closely related C24 5β-bile acids/salts. LCA attracted zebrafish as strongly as food in behavioral tests, whereas the less potent cholanic acid elicited weaker attraction, consistent with the in vitro results. The ORA-ligand recognition patterns were probed with site-directed mutagenesis guided by in silico modeling. We revealed the receptors' structure-function relationship underlying their specificity and selectivity for these compounds. Bile acids/salts are putative fish semiochemicals or pheromones sensed by the olfactory system with high specificity. This work identified their receptors and provided the basis for probing the roles of ORAs and bile acids/salts in fish chemosensation.
Collapse
Affiliation(s)
- Xiaojing Cong
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108 France
| | - Qian Zheng
- From the School of Life Sciences, Shanghai University, Shanghai 200444 China
| | - Wenwen Ren
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200031 China, and
| | - Jean-Baptiste Chéron
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108 France
| | - Sébastien Fiorucci
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108 France
| | - Tieqiao Wen
- From the School of Life Sciences, Shanghai University, Shanghai 200444 China
| | - Chunbo Zhang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, Illinois 60616
| | - Hongmeng Yu
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China,
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, Nice 06108 France, .,Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873 South Korea
| | - Yiqun Yu
- From the School of Life Sciences, Shanghai University, Shanghai 200444 China, .,Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Shanghai Key Clinical Disciplines of Otorhinolaryngology, Fudan University, Shanghai 200031 China
| |
Collapse
|
35
|
Bushdid C, de March CA, Topin J, Do M, Matsunami H, Golebiowski J. Mammalian class I odorant receptors exhibit a conserved vestibular-binding pocket. Cell Mol Life Sci 2019; 76:995-1004. [PMID: 30599066 PMCID: PMC7313674 DOI: 10.1007/s00018-018-2996-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/10/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022]
Abstract
Odorant receptors represent the largest family of mammalian G protein-coupled receptors. Phylogenetically, they are split into two classes (I and II). By analyzing the entire subclass I odorant receptors sequences, we identified two class I-specific and highly conserved motifs. These are predicted to face each other at the extra-cellular portion of the transmembrane domain, forming a vestibular site at the entrance to the orthosteric-binding cavity. Molecular dynamics simulation combined with site-directed mutagenesis and in vitro functional assays confirm the functional role of this vestibular site in ligand-driven activation. Mutations at this part of the receptor differentially affect the receptor response to four agonists. Since this vestibular site is involved in ligand recognition, it could serve ligand design that targets specifically this sub-genome of mammalian odorant receptors.
Collapse
Affiliation(s)
- Caroline Bushdid
- Institute of Chemistry - Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Jérémie Topin
- Institute of Chemistry - Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France
| | - Matthew Do
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Neurobiology, Duke Institute for Brain Sciences, Duke University, Durham, NC, 27710, USA.
| | - Jérôme Golebiowski
- Institute of Chemistry - Nice, UMR CNRS 7272, Université Côte d'Azur, Nice, France.
- Department of Brain and Cognitive Sciences, DGIST, Daegu, Republic of Korea.
| |
Collapse
|
36
|
Behrens M, Briand L, de March CA, Matsunami H, Yamashita A, Meyerhof W, Weyand S. Structure-Function Relationships of Olfactory and Taste Receptors. Chem Senses 2019; 43:81-87. [PMID: 29342245 DOI: 10.1093/chemse/bjx083] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The field of chemical senses has made major progress in understanding the cellular mechanisms of olfaction and taste in the past 2 decades. However, the molecular understanding of odor and taste recognition is still lagging far behind and will require solving multiple structures of the relevant full-length receptors in complex with native ligands to achieve this goal. However, the development of multiple complimentary strategies for the structure determination of G protein-coupled receptors (GPCRs) makes this goal realistic. The common conundrum of how multi-specific receptors that recognize a large number of different ligands results in a sensory perception in the brain will only be fully understood by a combination of high-resolution receptor structures and functional studies. This review discusses the first steps on this pathway, including biochemical and physiological assays, forward genetics approaches, molecular modeling, and the first steps towards the structural biology of olfactory and taste receptors.
Collapse
Affiliation(s)
- Maik Behrens
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | - Loïc Briand
- Centre des Sciences du Goût et de l'Alimentation, AgroSup Dijon, CNRS, INRA, Univ. de Bourgogne- Franche-Comté, France
| | - Claire A de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, USA
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, USA
| | - Atsuko Yamashita
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan
| | - Wolfgang Meyerhof
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Germany
| | - Simone Weyand
- Department of Biochemistry, University of Cambridge, UK
| |
Collapse
|
37
|
Na M, Liu MT, Nguyen MQ, Ryan K. Single-Neuron Comparison of the Olfactory Receptor Response to Deuterated and Nondeuterated Odorants. ACS Chem Neurosci 2019; 10:552-562. [PMID: 30343564 DOI: 10.1021/acschemneuro.8b00416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The mammalian olfactory receptors (ORs) constitute a large subfamily of the Class A G-protein coupled receptors (GPCRs). The molecular details of how these receptors convert odorant chemical information into neural signal are unknown, but are predicted by analogy to other GPCRs to involve stabilization of the activated form of the OR by the odorant. An alternative hypothesis maintains that the vibrational modes of an odorant's bonds constitute the main determinant for OR activation, and that odorants containing deuterium in place of hydrogen should activate different sets of OR family members. Experiments using heterologously expressed ORs have failed to show different responses for deuterated odorants, but experiments in the sensory neuron environment have been lacking. We tested the response to deuterated and nondeuterated versions of p-cymene, 1-octanol, 1-undecanol, and octanal in dissociated mouse olfactory receptor neurons (ORNs) by calcium imaging. In all, we tested 23 812 cells, including a subset expressing recombinant mouse olfactory receptor 2 ( Olfr2/OR-I7 ), and found that nearly all of the 1610 odorant-responding neurons were unable to distinguish the D- and H-odorants. These results support the conclusion that if mammals can perceive deuterated odorants differently, the difference arises from the receptor-independent steps of olfaction. Nevertheless, 0.81% of the responding ORNs responded differently to D- and H-odorants, and those in the octanal experiments responded selectively to H-octanal at concentrations from 3 to 100 μM. The few ORs responding differently to H and D may be hypersensitive to one of the several H/D physicochemical differences, such as the difference in H/D hydrophobicity.
Collapse
Affiliation(s)
- Mihwa Na
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Min Ting Liu
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Minh Q. Nguyen
- Taste and Smell Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kevin Ryan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| |
Collapse
|
38
|
Block E. Molecular Basis of Mammalian Odor Discrimination: A Status Report. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13346-13366. [PMID: 30453735 DOI: 10.1021/acs.jafc.8b04471] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Humans have 396 unique, intact olfactory receptors (ORs), G-protein coupled receptors (GPCRs) containing receptor-specific binding sites; other mammals have more. Activation of these transmembrane proteins by an odorant initiates a signaling cascade, evoking an action potential leading to perception of a smell. Because the number of distinguishable odorants vastly exceeds the number of ORs, research has focused on mechanisms of recognition and signaling processes for classes of odorants. In this review, selected recent examples will be presented of "deorphaned" mammalian receptors, where the OR ligands (odorants) as well as key aspects of receptor-odorant interactions were identified using odorant-mediated receptor activation data together with site-directed mutagenesis and molecular modeling. Based on cumulative evidence from OR deorphaning and olfactory receptor neuron activation studies, a receptor-ligand docking model rather than an alternative bond vibration model is suggested to best explain the molecular basis of the exquisitely sensitive odor discrimination in mammals.
Collapse
Affiliation(s)
- Eric Block
- Department of Chemistry , University at Albany, SUNY , Albany , New York 12222 , United States
| |
Collapse
|
39
|
Cong X, Golebiowski J. Allosteric Na +-binding site modulates CXCR4 activation. Phys Chem Chem Phys 2018; 20:24915-24920. [PMID: 30238101 DOI: 10.1039/c8cp04134b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
G protein-coupled receptors (GPCRs) control most cellular communications with the environment and are the largest protein family of drug targets. As strictly regulated molecular machines, profound comprehension of their activation mechanism is expected to significantly facilitate structure-based drug design. This study provides atomistic-level description of the activation dynamics of the C-X-C chemokine receptor type 4 (CXCR4), a class A GPCR and important drug target. Using molecular dynamics and enhanced sampling, we demonstrate how mutations and protonation of conserved residues trigger activation through microswitches at the receptor core, while sodium ion - a known allosteric modulator - inhibits it. The findings point to a conserved mechanism of activation and the allosteric modulation by sodium in the chemokine receptor family. From the technical aspect, the enhanced sampling protocol effectively samples receptor conformational changes toward activation, and differentiates three variants of the receptor by their basal activity. This work provides structural basis and a powerful in silico tool for CXCR4 agonist design.
Collapse
Affiliation(s)
- Xiaojing Cong
- Université Côte d'Azur, CNRS, Institut de Chimie de Nice UMR7272, 06108 Nice, France.
| | | |
Collapse
|
40
|
Cong X, Fiorucci S, Golebiowski J. Activation Dynamics of the Neurotensin G Protein-Coupled Receptor 1. J Chem Theory Comput 2018; 14:4467-4473. [PMID: 29965755 DOI: 10.1021/acs.jctc.8b00216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A replica-exchange protocol remarkably enhances the sampling of the activation dynamics of the neurotensin receptor type 1, a G protein-coupled receptor (GPCR) and important drug target. Our work highlights the dynamic communication between conformational changes of the agonist and the G protein-binding site, via contraction-oscillation of the orthosteric pocket. It also gives insights into the mechanism by which certain mutations diminish or stimulate activation. The replica-exchange protocol effectively enhances barrier crossing where standard brute-force molecular dynamics simulations fail. It is readily applicable to other GPCRs and represents a promising approach for virtual ligand screening, using the typical features of receptor activation as a benchmark.
Collapse
Affiliation(s)
- Xiaojing Cong
- Université Côte d'Azur, CNRS , Institut de Chimie de Nice UMR7272 , 06108 Nice , France
| | - Sébastien Fiorucci
- Université Côte d'Azur, CNRS , Institut de Chimie de Nice UMR7272 , 06108 Nice , France
| | - Jérôme Golebiowski
- Université Côte d'Azur, CNRS , Institut de Chimie de Nice UMR7272 , 06108 Nice , France.,Department of Brain and Cognitive Sciences , Daegu Gyeongbuk Institute of Science and Technology , Daegu , 711-873 , South Korea
| |
Collapse
|
41
|
Implications for human odor sensing revealed from the statistics of odorant-receptor interactions. PLoS Comput Biol 2018; 14:e1006175. [PMID: 29782484 PMCID: PMC5983876 DOI: 10.1371/journal.pcbi.1006175] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 06/01/2018] [Accepted: 05/04/2018] [Indexed: 11/26/2022] Open
Abstract
Binding of odorants to olfactory receptors (ORs) elicits downstream chemical and neural signals, which are further processed to odor perception in the brain. Recently, Mainland and colleagues have measured more than 500 pairs of odorant-OR interaction by a high-throughput screening assay method, opening a new avenue to understanding the principles of human odor coding. Here, using a recently developed minimal model for OR activation kinetics, we characterize the statistics of OR activation by odorants in terms of three empirical parameters: the half-maximum effective concentration EC50, the efficacy, and the basal activity. While the data size of odorants is still limited, the statistics offer meaningful information on the breadth and optimality of the tuning of human ORs to odorants, and allow us to relate the three parameters with the microscopic rate constants and binding affinities that define the OR activation kinetics. Despite the stochastic nature of the response expected at individual OR-odorant level, we assess that the confluence of signals in a neuron released from the multitude of ORs is effectively free of noise and deterministic with respect to changes in odorant concentration. Thus, setting a threshold to the fraction of activated OR copy number for neural spiking binarizes the electrophysiological signal of olfactory sensory neuron, thereby making an information theoretic approach a viable tool in studying the principles of odor perception. Despite the decades of research, quantitative details of human olfaction have remained largely unexplored. However, a high-throughput measurement has recently been carried out to produce dose-response data between a set of odorants and a repertoire of human olfactory receptors. We characterized each pair of odorant-receptor interaction in terms of EC50, efficacy, and basal level, a strategy often adopted in biochemical, pharmacological sciences to describe the response of receptors to cognate ligands. The distributions of EC50 values and efficacies acquired from the analysis provide glimpses into how human olfactory receptors are tuned to odorants. Specifically, the response of human ORs is optimized around ∼ 100μM of odorant. Next, the efficacies of OR responses to odorants are bi-exponentially distributed, which indicates that the strength of odorant-OR interaction is classified into strong and weak subgroups. By showing that the stochastic response of individual receptor to odorant can effectively be binarized at cellular level through olfactory processes, we also provide a theoretical basis for an information theoretical approach in studying the principles of odor perception.
Collapse
|
42
|
Zhang L, Yuan Y, Ren T, Guo Y, Li C, Pu X. Shining Light on Molecular Mechanism for Odor-selectivity of CNT-immobilized Olfactory Receptor. Sci Rep 2018; 8:7824. [PMID: 29777138 PMCID: PMC5959861 DOI: 10.1038/s41598-018-26105-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/20/2018] [Indexed: 01/17/2023] Open
Abstract
Olfactory receptor (OR)-based bioelectronic nose is a new type of bio-affinity sensor applied for detecting numerous odorant molecules. In order to elucidate the effect of the adsorption of nanomaterial carriers on the receptor structure and its selectivity to odors, we used a systematic computation-scheme to study two OR models immobilized onto carbon nanotube. Our result indicates that there is a multistep OR-adsorption process driven by hydrophobic interaction. Many allosteric communication pathways exist between the absorbed residues and the pocket ones, leading to a significant shrinkage of the pocket. Consequently, the size-selectivity of the receptor to the odors is changed to some extent. But, the odor size and its hydrophobicity, rather than specific functional groups of the odor, still play a determinant role in binding OR, at least for the 132 odors under study. Regardless of the limitation for the odor size in initial recognition, the different-size odors could induce significant changes in the pocket conformation so that it could better match the pocket space, indicating the importance of the ligand-fit binding. Due to the CNT-induced shrinkage of the pocket, the CNT immobilization could increase the binding affinity through enhancing van der Waals interaction, in particular for the large odors.
Collapse
Affiliation(s)
- Liyun Zhang
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yuan Yuan
- College of Management, Southwest University for Nationalities, Chengdu, 610041, P.R. China
| | - Tian Ren
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Yanzhi Guo
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China
| | - Chuan Li
- College of Computer Science, Sichuan University, Chengdu, 610064, P.R. China.
| | - Xuemei Pu
- College of Chemistry, Sichuan University, Chengdu, 610064, P.R. China.
| |
Collapse
|
43
|
Bushdid C, de March CA, Fiorucci S, Matsunami H, Golebiowski J. Agonists of G-Protein-Coupled Odorant Receptors Are Predicted from Chemical Features. J Phys Chem Lett 2018; 9:2235-2240. [PMID: 29648835 PMCID: PMC7294703 DOI: 10.1021/acs.jpclett.8b00633] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Predicting the activity of chemicals for a given odorant receptor is a longstanding challenge. Here the activity of 258 chemicals on the human G-protein-coupled odorant receptor (OR)51E1, also known as prostate-specific G-protein-coupled receptor 2 (PSGR2), was virtually screened by machine learning using 4884 chemical descriptors as input. A systematic control by functional in vitro assays revealed that a support vector machine algorithm accurately predicted the activity of a screened library. It allowed us to identify two novel agonists in vitro for OR51E1. The transferability of the protocol was assessed on OR1A1, OR2W1, and MOR256-3 odorant receptors, and, in each case, novel agonists were identified with a hit rate of 39-50%. We further show how ligands' efficacy is encoded into residues within OR51E1 cavity using a molecular modeling protocol. Our approach allows widening the chemical spaces associated with odorant receptors. This machine-learning protocol based on chemical features thus represents an efficient tool for screening ligands for G-protein-coupled odorant receptors that modulate non-olfactory functions or, upon combinatorial activation, give rise to our sense of smell.
Collapse
Affiliation(s)
- C. Bushdid
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, Nice, France
| | - C. A. de March
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - S. Fiorucci
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, Nice, France
| | - H. Matsunami
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina 27710, United States
- Department of Neurobiology and Duke Institute for Brain Sciences, Duke University, Durham, North Carolina 27710, United States
- Corresponding Authors: (J.G.)., (H.M.)
| | - J. Golebiowski
- Institute of Chemistry of Nice, UMR CNRS 7272, Université Côte d’Azur, Nice, France
- Department of Brain & Cognitive Sciences, DGIST, Daegu, Republic of Korea
- Corresponding Authors: (J.G.)., (H.M.)
| |
Collapse
|
44
|
de March CA, Topin J, Bruguera E, Novikov G, Ikegami K, Matsunami H, Golebiowski J. Odorant Receptor 7D4 Activation Dynamics. Angew Chem Int Ed Engl 2018; 57:4554-4558. [PMID: 29462498 PMCID: PMC6268213 DOI: 10.1002/anie.201713065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 12/17/2022]
Abstract
Deciphering how an odorant activates an odorant receptor (OR) and how changes in specific OR residues affect its responsiveness are central to understanding our sense of smell. A joint approach combining site-directed mutagenesis and functional assays with computational modeling has been used to explore the signaling mechanics of OR7D4. In this OR, a genetic polymorphism affects our perception of androstenone. Molecular simulations totaling 0.12 ms predicted that, similarly to observations for other G-protein-coupled receptors with known experimental structures, an activation pathway connects the ligand and the G-protein binding site. The 3D model activation mechanism correlates with in vitro data and notably predicts that the OR7D4 WM variant is not activated. Upon activation, an OR-specific sequence motif is the convergence point of the mechanism. Our study suggests that robust homology modeling can serve as a powerful tool to capture OR dynamics related to smell perception.
Collapse
Affiliation(s)
- Claire A. de March
- Institute of Chemistry - Nice, UMR 7272 CNRS – Université Côte d’Azur, 06108 Nice cedex, France, Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jérémie Topin
- Institute of Chemistry - Nice, UMR 7272 CNRS – Université Côte d’Azur, 06108 Nice cedex, France
| | - Elise Bruguera
- Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Gleb Novikov
- Institute of Chemistry - Nice, UMR 7272 CNRS – Université Côte d’Azur, 06108 Nice cedex, France
| | - Kentaro Ikegami
- Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA, Dept. of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroaki Matsunami
- Dept. of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jérôme Golebiowski
- Institute of Chemistry - Nice, UMR 7272 CNRS – Université Côte d’Azur, 06108 Nice cedex, France, Dept. of Brain & Cognitive Sciences, DGIST, 333, Techno JungAng Daero, HyeongPoong Myeon, Daegu, 711-873, Rep. of Korea
| |
Collapse
|
45
|
de March CA, Topin J, Bruguera E, Novikov G, Ikegami K, Matsunami H, Golebiowski J. Odorant Receptor 7D4 Activation Dynamics. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201713065] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Claire A. de March
- Institute of Chemistry—Nice UMR 7272 CNRS, Université Côte d'Azur 06108 Nice cedex France
- Department of Molecular Genetics and Microbiology Duke University Medical Center Durham NC 27710 USA
| | - Jérémie Topin
- Institute of Chemistry—Nice UMR 7272 CNRS, Université Côte d'Azur 06108 Nice cedex France
| | - Elise Bruguera
- Department of Molecular Genetics and Microbiology Duke University Medical Center Durham NC 27710 USA
| | - Gleb Novikov
- Institute of Chemistry—Nice UMR 7272 CNRS, Université Côte d'Azur 06108 Nice cedex France
| | - Kentaro Ikegami
- Department of Molecular Genetics and Microbiology Duke University Medical Center Durham NC 27710 USA
- Department of Biotechnology and Life Science Tokyo University of Agriculture and Technology Tokyo Japan
| | - Hiroaki Matsunami
- Department of Molecular Genetics and Microbiology Duke University Medical Center Durham NC 27710 USA
- Department of Neurobiology, Duke Institute for Brain Sciences Duke University Medical Center Durham NC 27710 USA
| | - Jérôme Golebiowski
- Institute of Chemistry—Nice UMR 7272 CNRS, Université Côte d'Azur 06108 Nice cedex France
- Department of Brain and Cognitive Sciences DGIST 333, Techno JungAng Daero, HyeongPoong Myeon Daegu 711-873 Republic of Korea
| |
Collapse
|
46
|
Wolf S, Jovancevic N, Gelis L, Pietsch S, Hatt H, Gerwert K. Dynamical Binding Modes Determine Agonistic and Antagonistic Ligand Effects in the Prostate-Specific G-Protein Coupled Receptor (PSGR). Sci Rep 2017; 7:16007. [PMID: 29167480 PMCID: PMC5700038 DOI: 10.1038/s41598-017-16001-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 11/03/2017] [Indexed: 01/14/2023] Open
Abstract
We analysed the ligand-based activation mechanism of the prostate-specific G-protein coupled receptor (PSGR), which is an olfactory receptor that mediates cellular growth in prostate cancer cells. Furthermore, it is an olfactory receptor with a known chemically near identic antagonist/agonist pair, α- and β-ionone. Using a combined theoretical and experimental approach, we propose that this receptor is activated by a ligand-induced rearrangement of a protein-internal hydrogen bond network. Surprisingly, this rearrangement is not induced by interaction of the ligand with the network, but by dynamic van der Waals contacts of the ligand with the involved amino acid side chains, altering their conformations and intraprotein connectivity. Ligand recognition in this GPCR is therefore highly stereo selective, but seemingly lacks any ligand recognition via polar contacts. A putative olfactory receptor-based drug design scheme will have to take this unique mode of protein/ligand action into account.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany.
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China.
| | - Nikolina Jovancevic
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Lian Gelis
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Sebastian Pietsch
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Hanns Hatt
- Department of Cellphysiology, ND 4, Ruhr-University Bochum, 44780, Bochum, Germany
| | - Klaus Gerwert
- Department of Biophysics, ND 04 North, Ruhr-University Bochum, 44780, Bochum, Germany
- Department of Biophysics, CAS-MPG Partner Institute for Computational Biology, Key Laboratory of Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 200031, Shanghai, P.R. China
| |
Collapse
|
47
|
Geithe C, Protze J, Kreuchwig F, Krause G, Krautwurst D. Structural determinants of a conserved enantiomer-selective carvone binding pocket in the human odorant receptor OR1A1. Cell Mol Life Sci 2017; 74:4209-4229. [PMID: 28656349 PMCID: PMC11107518 DOI: 10.1007/s00018-017-2576-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/29/2017] [Accepted: 06/16/2017] [Indexed: 12/17/2022]
Abstract
Chirality is a common phenomenon within odorants. Most pairs of enantiomers show only moderate differences in odor quality. One example for enantiomers that are easily discriminated by their odor quality is the carvones: humans significantly distinguish between the spearmint-like (R)-(-)-carvone and caraway-like (S)-(+)-carvone enantiomers. Moreover, for the (R)-(-)-carvone, an anosmia is observed in about 8% of the population, suggesting enantioselective odorant receptors (ORs). With only about 15% de-orphaned human ORs, the lack of OR crystal structures, and few comprehensive studies combining in silico and experimental approaches to elucidate structure-function relations of ORs, knowledge on cognate odorant/OR interactions is still sparse. An adjusted homology modeling approach considering OR-specific proline-caused conformations, odorant docking studies, single-nucleotide polymorphism (SNP) analysis, site-directed mutagenesis, and subsequent functional studies with recombinant ORs in a cell-based, real-time luminescence assay revealed 11 amino acid positions to constitute an enantioselective binding pocket necessary for a carvone function in human OR1A1 and murine Olfr43, respectively. Here, we identified enantioselective molecular determinants in both ORs that discriminate between minty and caraway odor. Comparison with orthologs from 36 mammalian species demonstrated a hominid-specific carvone binding pocket with about 100% conservation. Moreover, we identified loss-of-function SNPs associated with the carvone binding pocket of OR1A1. Given carvone enantiomer-specific receptor activation patterns including OR1A1, our data suggest OR1A1 as a candidate receptor for constituting a carvone enantioselective phenotype, which may help to explain mechanisms underlying a (R)-(-)-carvone-specific anosmia in humans.
Collapse
Affiliation(s)
- Christiane Geithe
- Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institut (DFA), Freising, Germany
| | - Jonas Protze
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Franziska Kreuchwig
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Gerd Krause
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany.
| | - Dietmar Krautwurst
- Deutsche Forschungsanstalt für Lebensmittelchemie Leibniz Institut (DFA), Freising, Germany.
| |
Collapse
|
48
|
Raimondi F, Betts MJ, Lu Q, Inoue A, Gutkind JS, Russell RB. Genetic variants affecting equivalent protein family positions reflect human diversity. Sci Rep 2017; 7:12771. [PMID: 28986545 PMCID: PMC5630595 DOI: 10.1038/s41598-017-12971-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/13/2017] [Indexed: 12/22/2022] Open
Abstract
Members of diverse protein families often perform overlapping or redundant functions meaning that different variations within them could reflect differences between individual organisms. We investigated likely functional positions within aligned protein families that contained a significant enrichment of nonsynonymous variants in genomes of healthy individuals. We identified more than a thousand enriched positions across hundreds of family alignments with roles indicative of mammalian individuality, including sensory perception and the immune system. The most significant position is the Arginine from the Olfactory receptor “DRY” motif, which has more variants in healthy individuals than all other positions in the proteome. Odorant binding data suggests that these variants lead to receptor inactivity, and they are mostly mutually exclusive with other loss-of-function (stop/frameshift) variants. Some DRY Arginine variants correlate with smell preferences in sub-populations and all 2,504 humans studied contain a unique spectrum of active and inactive receptors. The many other variant enriched positions, across hundreds of other families might also provide insights into individual differences.
Collapse
Affiliation(s)
- Francesco Raimondi
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Matthew J Betts
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Qianhao Lu
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany.,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Science, Tohoku University, Sendai, Miyagi, Japan.,Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, Japan
| | | | - Robert B Russell
- CellNetworks, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany. .,Biochemie Zentrum Heidelberg (BZH), Heidelberg University, Im Neuenheimer Feld 328, 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Fierro F, Suku E, Alfonso-Prieto M, Giorgetti A, Cichon S, Carloni P. Agonist Binding to Chemosensory Receptors: A Systematic Bioinformatics Analysis. Front Mol Biosci 2017; 4:63. [PMID: 28932739 PMCID: PMC5592726 DOI: 10.3389/fmolb.2017.00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/22/2017] [Indexed: 12/17/2022] Open
Abstract
Human G-protein coupled receptors (hGPCRs) constitute a large and highly pharmaceutically relevant membrane receptor superfamily. About half of the hGPCRs' family members are chemosensory receptors, involved in bitter taste and olfaction, along with a variety of other physiological processes. Hence these receptors constitute promising targets for pharmaceutical intervention. Molecular modeling has been so far the most important tool to get insights on agonist binding and receptor activation. Here we investigate both aspects by bioinformatics-based predictions across all bitter taste and odorant receptors for which site-directed mutagenesis data are available. First, we observe that state-of-the-art homology modeling combined with previously used docking procedures turned out to reproduce only a limited fraction of ligand/receptor interactions inferred by experiments. This is most probably caused by the low sequence identity with available structural templates, which limits the accuracy of the protein model and in particular of the side-chains' orientations. Methods which transcend the limited sampling of the conformational space of docking may improve the predictions. As an example corroborating this, we review here multi-scale simulations from our lab and show that, for the three complexes studied so far, they significantly enhance the predictive power of the computational approach. Second, our bioinformatics analysis provides support to previous claims that several residues, including those at positions 1.50, 2.50, and 7.52, are involved in receptor activation.
Collapse
Affiliation(s)
- Fabrizio Fierro
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany
| | - Eda Suku
- Department of Biotechnology, University of VeronaVerona, Italy
| | - Mercedes Alfonso-Prieto
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Cécile and Oskar Vogt Institute for Brain Research, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorf, Germany
| | - Alejandro Giorgetti
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Biotechnology, University of VeronaVerona, Italy
| | - Sven Cichon
- Institute of Neuroscience and Medicine INM-1, Forschungszentrum JülichJülich, Germany.,Institute for Human Genetics, Department of Genomics, Life&Brain Center, University of BonnBonn, Germany.,Division of Medical Genetics, Department of Biomedicine, University of BaselBasel, Switzerland
| | - Paolo Carloni
- Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum JülichJülich, Germany.,Department of Physics, Rheinisch-Westfälische Technische Hochschule AachenAachen, Germany.,VNU Key Laboratory "Multiscale Simulation of Complex Systems", VNU University of Science, Vietnam National UniversityHanoi, Vietnam
| |
Collapse
|
50
|
Park BB, Lee N, Kim Y, Jae Y, Choi S, Kang N, Hong YR, Ok K, Cho J, Jeon YH, Lee EH, Byun Y, Koo J. Analogues of Dehydroacetic Acid as Selective and Potent Agonists of an Ectopic Odorant Receptor through a Combination of Hydrophilic and Hydrophobic Interactions. ChemMedChem 2017; 12:477-482. [DOI: 10.1002/cmdc.201600612] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/03/2017] [Indexed: 01/08/2023]
Affiliation(s)
| | - NaHye Lee
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| | - YunHye Kim
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - YoonGyu Jae
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| | - Seunghyun Choi
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | | | | | - Kiwon Ok
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Jeonghee Cho
- Department of NanoBio Medical Science; Dankook University; Cheonan 31116 South Korea
| | - Young Ho Jeon
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Eun Hee Lee
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - Youngjoo Byun
- College of Pharmacy; Korea University; Sejong 30019 South Korea
| | - JaeHyung Koo
- Department of Brain and Cognitive Sciences; DGIST; Daegu 42988 South Korea
- Department of New Biology; DGIST
| |
Collapse
|