1
|
Kim Y, Goswami I, Gill E, Mahmoodi SR, Consiglio AN, Velazquez J, Nieman G, Alburo AAA, Woods B, Ellis BW, Filz von Reiterdank I, Uygun K, Uygun BE, Rubinsky B, Healy KE. Vascular Microphysiological System for Investigating Endothelial Barrier Function During Organ Preservation and Reperfusion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410168. [PMID: 39972937 PMCID: PMC11922018 DOI: 10.1002/smll.202410168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/18/2025] [Indexed: 02/21/2025]
Abstract
Endothelial cell damage after cold preservation and reperfusion injury causes deterioration of the endothelial barrier and ultimately results in edema, leading to transplant failure. Here, a vascular microphysiological system (MPS) is introduced as a testbed to investigate the combinational effect of thermal and fluid perturbations (i.e., wall shear stress) on human endothelial barrier function. Two methods of organ storage are compared: isochoric supercooling (ISC) preservation, which prevents ice formation at subzero temperatures; and, the standard clinical protocol of static cold storage (SCS) at 4 °C. Integrating electrical impedance measurements on chip allow real-time monitoring and quantification of barrier function during preservation and reperfusion protocols. Isochoric supercooling preservation enables longer periods of preservation with superior recovery of barrier function during reperfusion, and has lower metabolic activities compared to static cold storage. Genomic analysis reveals injury and recovery mechanisms at the molecular level for the different preservation and reperfusion conditions. The multifunctional vascular microphysiological system provides a physiologically relevant in vitro model recapitulating ischemia-reperfusion injury to the endothelium. The vascular MPS has potential for optimizing organ preservation protocols, ultimately improving organ transplant viability.
Collapse
Affiliation(s)
- Yongdeok Kim
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
- Present address:
Biomaterials Research CenterKorea Institute of Science and Technology (KIST)Seoul02792South Korea
| | - Ishan Goswami
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| | - Elisabeth Gill
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
| | - S. Reza Mahmoodi
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
- Present address:
Department of Electrical and Computer EngineeringUniversity of DenverDenverCO80208USA
| | | | - Jazmin Velazquez
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
| | - Gabriel Nieman
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
| | - Alexis Abigail A. Alburo
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
| | - Brady Woods
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
| | - Bradley W. Ellis
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalHarvard Medical School and Shriners Children's BostonBostonMA02114USA
| | - Irina Filz von Reiterdank
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalHarvard Medical School and Shriners Children's BostonBostonMA02114USA
| | - Korkut Uygun
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalHarvard Medical School and Shriners Children's BostonBostonMA02114USA
| | - Basak E. Uygun
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalHarvard Medical School and Shriners Children's BostonBostonMA02114USA
| | - Boris Rubinsky
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
- Department of Mechanical EngineeringUniversity of CaliforniaBerkeleyCA94709USA
| | - Kevin E. Healy
- Department of Bioengineering and California Institute for Quantitative Biosciences (QB3)University of CaliforniaBerkeleyCA94720USA
- Department of Materials Science and EngineeringUniversity of CaliforniaBerkeleyCA94720USA
| |
Collapse
|
2
|
Allweier J, Bartels M, Torabi H, Tauler MDPM, Metwally NG, Roeder T, Gutsmann T, Bruchhaus I. Cytoadhesion of Plasmodium falciparum-Infected Red Blood Cells Changes the Expression of Cytokine-, Histone- and Antiviral Protein-Encoding Genes in Brain Endothelial Cells. Mol Microbiol 2024; 122:948-967. [PMID: 39630601 DOI: 10.1111/mmi.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Malaria remains a significant global health problem, mainly due to Plasmodium falciparum, which is responsible for most fatal infections. Infected red blood cells (iRBCs) evade spleen clearance by adhering to endothelial cells (ECs), triggering capillary blockage, inflammation, endothelial dysfunction and altered vascular permeability, prompting an endothelial transcriptional response. The iRBCIT4var04/HBEC-5i model, where iRBCs present IT4var04 (VAR2CSA) on their surface, was used to analyze the effects of iRBC binding on ECs at different temperature (37°C vs. 40°C). Binding of non-infected RBCs (niRBCs) and fever alone altered the expression of hundreds of genes in ECs. Comparing the expression profile of HBEC-5i cells cultured either in the presence of iRBCs or in the presence of niRBCs revealed significant upregulation of genes linked to immune response, nucleosome assembly, NF-kappa B signaling, angiogenesis, and antiviral immune response/interferon-alpha/beta signaling. Raising the temperature to 40°C, simulating fever, led to further upregulation of many genes, particularly those involved in cytokine production and angiogenesis. In summary, the presence of iRBCs stimulates ECs, activating several immunological pathways and affecting antiviral (-parasitic) mechanisms and angiogenesis. Our data uncovered the induction of the interferon-alpha/beta signaling pathway in ECs in response to iRBCs.
Collapse
Affiliation(s)
- Johannes Allweier
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Michael Bartels
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Hanifeh Torabi
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | - Nahla Galal Metwally
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Thomas Roeder
- Department Molecular Physiology, Zoology, Kiel University, Kiel, Germany
- DZL, German Center for Lung Research, ARCN, Airway Research Center North, Kiel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Research Center Borstel, Leibniz-Center for Medicine and Biosciences, Borstel, Germany
| | - Iris Bruchhaus
- Research Group Host-Parasite Interaction, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Department of Biology, University of Hamburg, Hamburg, Germany
| |
Collapse
|
3
|
Querci L, Piccioli M, Ciofi-Baffoni S, Banci L. Structural aspects of iron‑sulfur protein biogenesis: An NMR view. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119786. [PMID: 38901495 DOI: 10.1016/j.bbamcr.2024.119786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024]
Abstract
Over the last decade, structural aspects involving iron‑sulfur (Fe/S) protein biogenesis have played an increasingly important role in understanding the high mechanistic complexity of mitochondrial and cytosolic machineries maturing Fe/S proteins. In this respect, solution NMR has had a significant impact because of its ability to monitor transient protein-protein interactions, which are abundant in the networks of pathways leading to Fe/S cluster biosynthesis and transfer, as well as thanks to the developments of paramagnetic NMR in both terms of new methodologies and accurate data interpretation. Here, we review the use of solution NMR in characterizing the structural aspects of human Fe/S proteins and their interactions in the framework of Fe/S protein biogenesis. We will first present a summary of the recent advances that have been achieved by paramagnetic NMR and then we will focus our attention on the role of solution NMR in the field of human Fe/S protein biogenesis.
Collapse
Affiliation(s)
- Leonardo Querci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy; Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
4
|
Oberegger S, Misslinger M, Faserl K, Sarg B, Farhan H, Haas H. The cytosolic form of dual localized BolA family protein Bol3 is important for adaptation to iron starvation in Aspergillus fumigatus. Open Biol 2024; 14:240033. [PMID: 38919062 PMCID: PMC11285713 DOI: 10.1098/rsob.240033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Aspergillus fumigatus is the predominant mould pathogen for humans. Adaption to host-imposed iron limitation has previously been demonstrated to be essential for its virulence. [2Fe-2S] clusters are crucial as cofactors of several metabolic pathways and mediate cytosolic/nuclear iron sensing in fungi including A. fumigatus. [2Fe-2S] cluster trafficking has been shown to involve BolA family proteins in both mitochondria and the cytosol/nucleus. Interestingly, both A. fumigatus homologues, termed Bol1 and Bol3, possess mitochondrial targeting sequences, suggesting the lack of cytosolic/nuclear versions. Here, we show by the combination of mutational, proteomic and fluorescence microscopic analyses that expression of the Bol3 encoding gene leads to dual localization of gene products to mitochondria and the cytosol/nucleus via alternative translation initiation downstream of the mitochondrial targeting sequence, which appears to be highly conserved in various Aspergillus species. Lack of either mitochondrial Bol1 or Bol3 was phenotypically inconspicuous while lack of cytosolic/nuclear Bol3 impaired growth during iron limitation but not iron sensing which indicates a particular importance of [2Fe-2S] cluster trafficking during iron limitation. Remarkably, cytosolic/nuclear Bol3 differs from the mitochondrial version only by N-terminal acetylation, a finding that was only possible by mutational hypothesis testing.
Collapse
Affiliation(s)
- Simon Oberegger
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Misslinger
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Klaus Faserl
- Institute of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Bettina Sarg
- Institute of Medical Biochemistry, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Hesso Farhan
- Institute of Pathophysiology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| | - Hubertus Haas
- Institute of Molecular Biology, Biocenter, Medical University Innsbruck, Innsbruck, Austria
| |
Collapse
|
5
|
Braymer JJ, Stehling O, Stümpfig M, Rösser R, Spantgar F, Blinn CM, Mühlenhoff U, Pierik AJ, Lill R. Requirements for the biogenesis of [2Fe-2S] proteins in the human and yeast cytosol. Proc Natl Acad Sci U S A 2024; 121:e2400740121. [PMID: 38743629 PMCID: PMC11126956 DOI: 10.1073/pnas.2400740121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The biogenesis of iron-sulfur (Fe/S) proteins entails the synthesis and trafficking of Fe/S clusters, followed by their insertion into target apoproteins. In eukaryotes, the multiple steps of biogenesis are accomplished by complex protein machineries in both mitochondria and cytosol. The underlying biochemical pathways have been elucidated over the past decades, yet the mechanisms of cytosolic [2Fe-2S] protein assembly have remained ill-defined. Similarly, the precise site of glutathione (GSH) requirement in cytosolic and nuclear Fe/S protein biogenesis is unclear, as is the molecular role of the GSH-dependent cytosolic monothiol glutaredoxins (cGrxs). Here, we investigated these questions in human and yeast cells by various in vivo approaches. [2Fe-2S] cluster assembly of cytosolic target apoproteins required the mitochondrial ISC machinery, the mitochondrial transporter Atm1/ABCB7 and GSH, yet occurred independently of both the CIA system and cGrxs. This mechanism was strikingly different from the ISC-, Atm1/ABCB7-, GSH-, and CIA-dependent assembly of cytosolic-nuclear [4Fe-4S] proteins. One notable exception to this cytosolic [2Fe-2S] protein maturation pathway defined here was yeast Apd1 which used the CIA system via binding to the CIA targeting complex through its C-terminal tryptophan. cGrxs, although attributed as [2Fe-2S] cluster chaperones or trafficking proteins, were not essential in vivo for delivering [2Fe-2S] clusters to either CIA components or target apoproteins. Finally, the most critical GSH requirement was assigned to Atm1-dependent export, i.e. a step before GSH-dependent cGrxs function. Our findings extend the general model of eukaryotic Fe/S protein biogenesis by adding the molecular requirements for cytosolic [2Fe-2S] protein maturation.
Collapse
Affiliation(s)
- Joseph J. Braymer
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Oliver Stehling
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Martin Stümpfig
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Ralf Rösser
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Farah Spantgar
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Catharina M. Blinn
- Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Ulrich Mühlenhoff
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| | - Antonio J. Pierik
- Department of Chemistry, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau, Kaiserslautern67663, Germany
| | - Roland Lill
- Institut für Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps-Universität Marburg, Marburg35032, Germany
- Zentrum für Synthetische Mikrobiologie Synmikro, Philipps-Universität Marburg, Marburg35032, Germany
| |
Collapse
|
6
|
Sutton MN, Glazer SE, Muzzioli R, Yang P, Gammon ST, Piwnica-Worms D. Dimerization of the 4Ig isoform of B7-H3 in tumor cells mediates enhanced proliferation and tumorigenic signaling. Commun Biol 2024; 7:21. [PMID: 38182652 PMCID: PMC10770396 DOI: 10.1038/s42003-023-05736-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/20/2023] [Indexed: 01/07/2024] Open
Abstract
B7-H3 (CD276) has two isoforms (2Ig and 4Ig), no confirmed cognate receptor, and physiological functions that remain elusive. While differentially expressed on many solid tumors correlating with poor survival, mechanisms of how B7-H3 signals in cis (tumor cell) versus in trans (immune cell co-regulator) to elicit pro-tumorigenic phenotypes remain poorly defined. Herein, we characterized a tumorigenic and signaling role for tumor cell-expressed 4Ig-B7-H3, the dominant human isoform, in gynecological cancers that could be abrogated upon CRISPR/Cas9 knockout of B7-H3; tumorigenesis was rescued upon re-expression of 4Ig-B7-H3. Size exclusion chromatography revealed dimerization states for the extracellular domains of both human 4Ig- and murine 2Ig-B7-H3. mEGFP lifetimes of expressed 4Ig-B7-H3-mEGFP fusions determined by FRET-FLIM assays confirmed close-proximity interactions of 4Ig-B7-H3 and identified two distinct homo-FRET lifetime populations, consistent with monomeric and homo-dimer interactions. In live cells, bioluminescence imaging of 4Ig-B7-H3-mediated split luciferase complementation showed dimerization of 4Ig-B7-H3. To separate basal from dimer state activities in the absence of a known receptor, C-terminus (cytosolic) chemically-induced dimerization of 4Ig-B7-H3 increased tumor cell proliferation and cell activation signaling pathways (AKT, Jak/STAT, HIF1α, NF-κβ) significantly above basal expression of 4Ig-B7-H3 alone. These results revealed a new, dimerization-dependent intrinsic tumorigenic signaling role for 4Ig-B7-H3, likely acting in cis, and provide a therapeutically-actionable target for intervention of B7-H3-dependent tumorigenesis.
Collapse
Affiliation(s)
- Margie N Sutton
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sarah E Glazer
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Riccardo Muzzioli
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Ping Yang
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Hati D, Brault A, Gupta M, Fletcher K, Jacques JF, Labbé S, Outten CE. Iron homeostasis proteins Grx4 and Fra2 control activity of the Schizosaccharomyces pombe iron repressor Fep1 by facilitating [2Fe-2S] cluster removal. J Biol Chem 2023; 299:105419. [PMID: 37923140 PMCID: PMC10704371 DOI: 10.1016/j.jbc.2023.105419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 10/12/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023] Open
Abstract
The Bol2 homolog Fra2 and monothiol glutaredoxin Grx4 together play essential roles in regulating iron homeostasis in Schizosaccharomyces pombe. In vivo studies indicate that Grx4 and Fra2 act as coinhibitory partners that inactivate the transcriptional repressor Fep1 in response to iron deficiency. In Saccharomyces cerevisiae, Bol2 is known to form a [2Fe-2S]-bridged heterodimer with the monothiol Grxs Grx3 and Grx4, with the cluster ligands provided by conserved residues in Grx3/4 and Bol2 as well as GSH. In this study, we characterized this analogous [2Fe-2S]-bridged Grx4-Fra2 complex in S. pombe by identifying the specific residues in Fra2 that act as ligands for the Fe-S cluster and are required to regulate Fep1 activity. We present spectroscopic and biochemical evidence confirming the formation of a [2Fe-2S]-bridged Grx4-Fra2 heterodimer with His66 and Cys29 from Fra2 serving as Fe-S cluster ligands in S. pombe. In vivo transcription and growth assays confirm that both His66 and Cys29 are required to fully mediate the response of Fep1 to low iron conditions. Furthermore, we analyzed the interaction between Fep1 and Grx4-Fra2 using CD spectroscopy to monitor changes in Fe-S cluster coordination chemistry. These experiments demonstrate unidirectional [2Fe-2S] cluster transfer from Fep1 to Grx4-Fra2 in the presence of GSH, revealing the Fe-S cluster dependent mechanism of Fep1 inactivation mediated by Grx4 and Fra2 in response to iron deficiency.
Collapse
Affiliation(s)
- Debolina Hati
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Ariane Brault
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Malini Gupta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Kylie Fletcher
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA
| | - Jean-François Jacques
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Simon Labbé
- Département de Biochimie et de Génomique Fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina, USA.
| |
Collapse
|
8
|
Bargagna B, Banci L, Camponeschi F. Understanding the Molecular Basis of the Multiple Mitochondrial Dysfunctions Syndrome 2: The Disease-Causing His96Arg Mutation of BOLA3. Int J Mol Sci 2023; 24:11734. [PMID: 37511493 PMCID: PMC10380394 DOI: 10.3390/ijms241411734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Multiple mitochondrial dysfunctions syndrome type 2 with hyperglycinemia (MMDS2) is a severe disorder of mitochondrial energy metabolism, associated with biallelic mutations in the gene encoding for BOLA3, a protein with a not yet completely understood role in iron-sulfur (Fe-S) cluster biogenesis, but essential for the maturation of mitochondrial [4Fe-4S] proteins. To better understand the role of BOLA3 in MMDS2, we have investigated the impact of the p.His96Arg (c.287A > G) point mutation, which involves a highly conserved residue, previously identified as a [2Fe-2S] cluster ligand in the BOLA3-[2Fe-2S]-GLRX5 heterocomplex, on the structural and functional properties of BOLA3 protein. The His96Arg mutation has been associated with a severe MMDS2 phenotype, characterized by defects in the activity of mitochondrial respiratory complexes and lipoic acid-dependent enzymes. Size exclusion chromatography, NMR, UV-visible, circular dichroism, and EPR spectroscopy characterization have shown that the His96Arg mutation does not impair the interaction of BOLA3 with its protein partner GLRX5, but leads to the formation of an aberrant BOLA3-[2Fe-2S]-GLRX5 heterocomplex, that is not functional anymore in the assembly of a [4Fe-4S] cluster on NFU1. These results allowed us to rationalize the severe phenotype observed in MMDS2 caused by His96Arg mutation.
Collapse
Affiliation(s)
- Beatrice Bargagna
- Department of Chemistry, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Lucia Banci
- Department of Chemistry, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| | - Francesca Camponeschi
- Department of Chemistry, University of Florence, Via Della Lastruccia 3, Sesto Fiorentino, 50019 Florence, Italy
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Via Luigi Sacconi 6, Sesto Fiorentino, 50019 Florence, Italy
| |
Collapse
|
9
|
Camponeschi F, Banci L. Metal trafficking in the cell: Combining atomic resolution with cellular dimension. FEBS Lett 2023; 597:122-133. [PMID: 36285633 DOI: 10.1002/1873-3468.14524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 01/14/2023]
Abstract
Metals are widely present in biological systems as simple ions or complex cofactors, and are involved in a variety of processes essential for life. Their transport inside cells and insertion into the binding sites of the proteins that need metals to function occur through complex and selective pathways involving dedicated multiprotein machineries specifically and transiently interacting with each other, often sharing the coordination of metal ions and/or cofactors. The understanding of these machineries requires integrated approaches, ranging from bioinformatics to experimental investigations, possibly in the cellular context. In this review, we report two case studies where the use of integrated in vitro and in cellulo approaches is necessary to clarify at atomic resolution essential aspects of metal trafficking in cells.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Italy.,Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), Florence, Italy.,Department of Chemistry, University of Florence, Italy
| |
Collapse
|
10
|
Duński E, Pękowska A. Keeping the balance: Trade-offs between human brain evolution, autism, and schizophrenia. Front Genet 2022; 13:1009390. [DOI: 10.3389/fgene.2022.1009390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
The unique qualities of the human brain are a product of a complex evolutionary process. Evolution, famously described by François Jacob as a “tinkerer,” builds upon existing genetic elements by modifying and repurposing them for new functions. Genetic changes in DNA may lead to the emergence of new genes or cause altered gene expression patterns. Both gene and regulatory element mutations may lead to new functions. Yet, this process may lead to side-effects. An evolutionary trade-off occurs when an otherwise beneficial change, which is important for evolutionary success and is under strong positive selection, concurrently results in a detrimental change in another trait. Pleiotropy occurs when a gene affects multiple traits. Antagonistic pleiotropy is a phenomenon whereby a genetic variant leads to an increase in fitness at one life-stage or in a specific environment, but simultaneously decreases fitness in another respect. Therefore, it is conceivable that the molecular underpinnings of evolution of highly complex traits, including brain size or cognitive ability, under certain conditions could result in deleterious effects, which would increase the susceptibility to psychiatric or neurodevelopmental diseases. Here, we discuss possible trade-offs and antagonistic pleiotropies between evolutionary change in a gene sequence, dosage or activity and the susceptibility of individuals to autism spectrum disorders and schizophrenia. We present current knowledge about genes and alterations in gene regulatory landscapes, which have likely played a role in establishing human-specific traits and have been implicated in those diseases.
Collapse
|
11
|
Prognostic Values of BolA Family Member Expression in Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8360481. [PMID: 36017386 PMCID: PMC9398796 DOI: 10.1155/2022/8360481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022]
Abstract
The BolA gene family member (BOLA1-3) plays an important role in regulating normal and pathological biological processes including liver tumorigenesis. However, their expression patterns as prognostic factors in hepatocellular carcinoma (HCC) patients have not to be elucidated. We examined the transcriptional expressions and survival data of BolA family member in patients with HCC from online databases including ONCOMINE, TCGA, UALCAN, Gene Expression Profiling Interactive Analysis (GEPIA), Kaplan-Meier plotter, SurvExpress, cBioPortal, and Exobase. Network molecular interaction views of BolA family members and their neighborhoods were constructed by the IntAct web server. In our research, we had found that the expression levels of BolA /2/3 mRNA were higher in HCC tissue than in normal liver tissues from TGCA databases. Moreover, the BolA family gene expression level is significantly associated with distinct tumor pathological grade, TMN stage, and overall survival (OS). The BolA family can be considered as prognostic risk biomarkers of HCC. A small number of BolA gene-mutated samples were detected in the HCC tissue. IntAct analysis revealed that BolA1/2/3 was closely associated with the GLRX3 expression in HCC, which is implicated in the regulation of the cellular iron homeostasis and tumor growth. Furthermore, prognostic values of altered BolAs and their neighbor GLRX3 gene in HCC patients were validated by SurvExpress analysis. In conclusion, the membrane BolA family identified in this study provides very useful information for the mechanism of hepatic tumorigenesis.
Collapse
|
12
|
Maio N, Rouault TA. Mammalian iron sulfur cluster biogenesis and human diseases. IUBMB Life 2022; 74:705-714. [PMID: 35098635 PMCID: PMC9247042 DOI: 10.1002/iub.2597] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 07/30/2023]
Affiliation(s)
- Nunziata Maio
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Tracey A Rouault
- Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
13
|
The Intriguing Role of Iron-Sulfur Clusters in the CIAPIN1 Protein Family. INORGANICS 2022. [DOI: 10.3390/inorganics10040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Iron-sulfur (Fe/S) clusters are protein cofactors that play a crucial role in essential cellular functions. Their ability to rapidly exchange electrons with several redox active acceptors makes them an efficient system for fulfilling diverse cellular needs. They include the formation of a relay for long-range electron transfer in enzymes, the biosynthesis of small molecules required for several metabolic pathways and the sensing of cellular levels of reactive oxygen or nitrogen species to activate appropriate cellular responses. An emerging family of iron-sulfur cluster binding proteins is CIAPIN1, which is characterized by a C-terminal domain of about 100 residues. This domain contains two highly conserved cysteine-rich motifs, which are both involved in Fe/S cluster binding. The CIAPIN1 proteins have been described so far to be involved in electron transfer pathways, providing electrons required for the biosynthesis of important protein cofactors, such as Fe/S clusters and the diferric-tyrosyl radical, as well as in the regulation of cell death. Here, we have first investigated the occurrence of CIAPIN1 proteins in different organisms spanning the entire tree of life. Then, we discussed the function of this family of proteins, focusing specifically on the role that the Fe/S clusters play. Finally, we describe the nature of the Fe/S clusters bound to CIAPIN1 proteins and which are the cellular pathways inserting the Fe/S clusters in the two cysteine-rich motifs.
Collapse
|
14
|
Semeano AT, Tofoli FA, Corrêa-Velloso JC, de Jesus Santos AP, Oliveira-Giacomelli Á, Cardoso RR, Pessoa MA, da Rocha EL, Ribeiro G, Ferrari MFR, Pereira LV, Teng YD, Petri DFS, Ulrich H. Effects of Magnetite Nanoparticles and Static Magnetic Field on Neural Differentiation of Pluripotent Stem Cells. Stem Cell Rev Rep 2022; 18:1337-1354. [PMID: 35325357 DOI: 10.1007/s12015-022-10332-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2021] [Indexed: 12/24/2022]
Abstract
Neurodevelopmental processes of pluripotent cells, such as proliferation and differentiation, are influenced by external natural forces. Despite the presence of biogenic magnetite nanoparticles in the central nervous system and constant exposure to the Earth's magnetic fields and other sources, there is scant knowledge regarding the role of electromagnetic stimuli in neurogenesis. Moreover, emerging applications of electrical and magnetic stimulation to treat neurological disorders emphasize the relevance of understanding the impact and mechanisms behind these stimuli. Here, the effects of magnetic nanoparticles (MNPs) in polymeric coatings and the static external magnetic field (EMF) were investigated on neural induction of murine embryonic stem cells (mESCs) and human induced pluripotent stem cells (hiPSCs). The results show that the presence of 0.5% MNPs in collagen-based coatings facilitates the migration and neuronal maturation of mESCs and hiPSCs in vitro. Furthermore, the application of 0.4 Tesla EMF perpendicularly to the cell culture plane, discernibly stimulates proliferation and guide fate decisions of the pluripotent stem cells, depending on the origin of stem cells and their developmental stage. Mechanistic analysis reveals that modulation of ionic homeostasis and the expression of proteins involved in cytostructural, liposomal and cell cycle checkpoint functions provide a principal underpinning for the impact of electromagnetic stimuli on neural lineage specification and proliferation. These findings not only explore the potential of the magnetic stimuli as neural differentiation and function modulator but also highlight the risks that immoderate magnetic stimulation may affect more susceptible neurons, such as dopaminergic neurons.
Collapse
Affiliation(s)
- Ana T Semeano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.,Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 307 Bloco 3 Inferior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.,Department of Pharmaceutical Sciences, School of Pharmacy, Bouvé College of Health Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Fabiano A Tofoli
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Juliana C Corrêa-Velloso
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Ana P de Jesus Santos
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Ágatha Oliveira-Giacomelli
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil
| | - Rafaela R Cardoso
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Mateus A Pessoa
- Department of Microbiology, Immunology and Parasitology at Federal University of Santa Catarina, Florianópolis, Brazil
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology at Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gustavo Ribeiro
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Merari F R Ferrari
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Lygia V Pereira
- Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Yang D Teng
- Laboratory of SCI, Stem Cell and Recovery Neurobiology Research, Department of Physical Medicine & Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital Network, and Mass General Brigham, Boston, MA, USA
| | - Denise F S Petri
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 307 Bloco 3 Inferior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748. Sala 964 Bloco 9 Superior, Cidade Universitária, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
15
|
Lill R. From the discovery to molecular understanding of cellular iron-sulfur protein biogenesis. Biol Chem 2021; 401:855-876. [PMID: 32229650 DOI: 10.1515/hsz-2020-0117] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 03/10/2020] [Indexed: 12/23/2022]
Abstract
Protein cofactors often are the business ends of proteins, and are either synthesized inside cells or are taken up from the nutrition. A cofactor that strictly needs to be synthesized by cells is the iron-sulfur (Fe/S) cluster. This evolutionary ancient compound performs numerous biochemical functions including electron transfer, catalysis, sulfur mobilization, regulation and protein stabilization. Since the discovery of eukaryotic Fe/S protein biogenesis two decades ago, more than 30 biogenesis factors have been identified in mitochondria and cytosol. They support the synthesis, trafficking and target-specific insertion of Fe/S clusters. In this review, I first summarize what led to the initial discovery of Fe/S protein biogenesis in yeast. I then discuss the function and localization of Fe/S proteins in (non-green) eukaryotes. The major part of the review provides a detailed synopsis of the three major steps of mitochondrial Fe/S protein biogenesis, i.e. the de novo synthesis of a [2Fe-2S] cluster on a scaffold protein, the Hsp70 chaperone-mediated transfer of the cluster and integration into [2Fe-2S] recipient apoproteins, and the reductive fusion of [2Fe-2S] to [4Fe-4S] clusters and their subsequent assembly into target apoproteins. Finally, I summarize the current knowledge of the mechanisms underlying the maturation of cytosolic and nuclear Fe/S proteins.
Collapse
Affiliation(s)
- Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, D-35032 Marburg, Germany.,SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Str., D-35043 Marburg, Germany
| |
Collapse
|
16
|
The iron chaperone and nucleic acid-binding activities of poly(rC)-binding protein 1 are separable and independently essential. Proc Natl Acad Sci U S A 2021; 118:2104666118. [PMID: 34161287 DOI: 10.1073/pnas.2104666118] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Poly(rC)-binding protein (PCBP1) is a multifunctional adaptor protein that can coordinate single-stranded nucleic acids and iron-glutathione complexes, altering the processing and transfer of these ligands through interactions with other proteins. Multiple phenotypes are ascribed to cells lacking PCBP1, but the relative contribution of RNA, DNA, or iron chaperone activity is not consistently clear. Here, we report the identification of amino acid residues required for iron coordination on each structural domain of PCBP1 and confirm the requirement of iron coordination for binding target proteins BolA2 and ferritin. We further construct PCBP1 variants that lack either nucleic acid- or iron-binding activity and examine their functions in human cells and mouse tissues depleted of endogenous PCBP1. We find that these activities are separable and independently confer essential functions. While iron chaperone activity controls cell cycle progression and suppression of DNA damage, RNA/DNA-binding activity maintains cell viability in both cultured cell and mouse models. The coevolution of RNA/DNA binding and iron chaperone activities on a single protein may prove advantageous for nucleic acid processing that depends on enzymes with iron cofactors.
Collapse
|
17
|
Saudino G, Suraci D, Nasta V, Ciofi-Baffoni S, Banci L. Molecular Basis of Multiple Mitochondrial Dysfunctions Syndrome 2 Caused by CYS59TYR BOLA3 Mutation. Int J Mol Sci 2021; 22:4848. [PMID: 34063696 PMCID: PMC8125686 DOI: 10.3390/ijms22094848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple mitochondrial dysfunctions syndrome (MMDS) is a rare neurodegenerative disorder associated with mutations in genes with a vital role in the biogenesis of mitochondrial [4Fe-4S] proteins. Mutations in one of these genes encoding for BOLA3 protein lead to MMDS type 2 (MMDS2). Recently, a novel phenotype for MMDS2 with complete clinical recovery was observed in a patient containing a novel variant (c.176G > A, p.Cys59Tyr) in compound heterozygosity. In this work, we aimed to rationalize this unique phenotype observed in MMDS2. To do so, we first investigated the structural impact of the Cys59Tyr mutation on BOLA3 by NMR, and then we analyzed how the mutation affects both the formation of a hetero-complex between BOLA3 and its protein partner GLRX5 and the iron-sulfur cluster-binding properties of the hetero-complex by various spectroscopic techniques and by experimentally driven molecular docking. We show that (1) the mutation structurally perturbed the iron-sulfur cluster-binding region of BOLA3, but without abolishing [2Fe-2S]2+ cluster-binding on the hetero-complex; (2) tyrosine 59 did not replace cysteine 59 as iron-sulfur cluster ligand; and (3) the mutation promoted the formation of an aberrant apo C59Y BOLA3-GLRX5 complex. All these aspects allowed us to rationalize the unique phenotype observed in MMDS2 caused by Cys59Tyr mutation.
Collapse
Affiliation(s)
- Giovanni Saudino
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Dafne Suraci
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Veronica Nasta
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lucia Banci
- Magnetic Resonance Center (CERM), University of Florence, 50019 Sesto Fiorentino, Italy; (G.S.); (D.S.); (V.N.)
- Department of Chemistry “Ugo Schiff”, University of Florence, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metalloproteine (CIRMMP), 50019 Sesto Fiorentino, Italy
| |
Collapse
|
18
|
Prusty NR, Camponeschi F, Ciofi-Baffoni S, Banci L. The human YAE1-ORAOV1 complex of the cytosolic iron-sulfur protein assembly machinery binds a [4Fe-4S] cluster. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Suraci D, Saudino G, Nasta V, Ciofi-Baffoni S, Banci L. ISCA1 Orchestrates ISCA2 and NFU1 in the Maturation of Human Mitochondrial [4Fe-4S] Proteins. J Mol Biol 2021; 433:166924. [PMID: 33711344 DOI: 10.1016/j.jmb.2021.166924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
The late-acting steps of the pathway responsible for the maturation of mitochondrial [4Fe-4S] proteins are still elusive. Three proteins ISCA1, ISCA2 and NFU1 were shown to be implicated in the assembly of [4Fe-4S] clusters and their transfer into mitochondrial apo proteins. We present here a NMR-based study showing a detailed molecular model of the succession of events performed in a coordinated manner by ISCA1, ISCA2 and NFU1 to make [4Fe-4S] clusters available to mitochondrial apo proteins. We show that ISCA1 is the key player of the [4Fe-4S] protein maturation process because of its ability to interact with both NFU1 and ISCA2, which, instead do not interact each other. ISCA1 works as the promoter of the interaction between ISCA2 and NFU1 being able to determine the formation of a transient ISCA1-ISCA2-NFU1 ternary complex. We also show that ISCA1, thanks to its specific interaction with the C-terminal cluster-binding domain of NFU1, drives [4Fe-4S] cluster transfer from the site where the cluster is assembled on the ISCA1-ISCA2 complex to a cluster binding site formed by ISCA1 and NFU1 in the ternary ISCA1-ISCA2-NFU1 complex. Such mechanism guarantees that the [4Fe-4S] cluster can be safely moved from where it is assembled on the ISCA1-ISCA2 complex to NFU1, thereby resulting the [4Fe-4S] cluster available for the mitochondrial apo proteins specifically requiring NFU1 for their maturation.
Collapse
Affiliation(s)
- Dafne Suraci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Giovanni Saudino
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Veronica Nasta
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
20
|
Sinorhizobium meliloti YrbA binds divalent metal cations using two conserved histidines. Biosci Rep 2020; 40:226508. [PMID: 32970113 PMCID: PMC7538681 DOI: 10.1042/bsr20202956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 11/23/2022] Open
Abstract
Sinorhizobium meliloti is a nitrogen-fixing bacterium forming symbiotic nodules with the legume Medicago truncatula. S. meliloti possesses two BolA-like proteins (BolA and YrbA), the function of which is unknown. In organisms where BolA proteins and monothiol glutaredoxins (Grxs) are present, they contribute to the regulation of iron homeostasis by bridging a [2Fe–2S] cluster into heterodimers. A role in the maturation of iron–sulfur (Fe–S) proteins is also attributed to both proteins. In the present study, we have performed a structure–function analysis of SmYrbA showing that it coordinates diverse divalent metal ions (Fe2+, Co2+, Ni2+, Cu2+ and Zn2+) using His32 and His67 residues, that are also used for Fe–S cluster binding in BolA–Grx heterodimers. It also possesses the capacity to form heterodimers with the sole monothiol glutaredoxin (SmGrx2) present in this species. Using cellular approaches analyzing the metal tolerance of S. meliloti mutant strains inactivated in the yrbA and/or bolA genes, we provide evidence for a connection of YrbA with the regulation of iron homeostasis. The mild defects in M. truncatula nodulation reported for the yrbA bolA mutant as compared with the stronger defects in nodule development previously observed for a grx2 mutant suggest functions independent of SmGrx2. These results help in clarifying the physiological role of BolA-type proteins in bacteria.
Collapse
|
21
|
Talib EA, Outten CE. Iron-sulfur cluster biogenesis, trafficking, and signaling: Roles for CGFS glutaredoxins and BolA proteins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118847. [PMID: 32910989 DOI: 10.1016/j.bbamcr.2020.118847] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/24/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
The synthesis and trafficking of iron-sulfur (Fe-S) clusters in both prokaryotes and eukaryotes requires coordination within an expanding network of proteins that function in the cytosol, nucleus, mitochondria, and chloroplasts in order to assemble and deliver these ancient and essential cofactors to a wide variety of Fe-S-dependent enzymes and proteins. This review focuses on the evolving roles of two ubiquitous classes of proteins that operate in this network: CGFS glutaredoxins and BolA proteins. Monothiol or CGFS glutaredoxins possess a Cys-Gly-Phe-Ser active site that coordinates an Fe-S cluster in a homodimeric complex. CGFS glutaredoxins also form [2Fe-2S]-bridged heterocomplexes with BolA proteins, which possess an invariant His and an additional His or Cys residue that serve as cluster ligands. Here we focus on recent discoveries in bacteria, fungi, humans, and plants that highlight the shared and distinct roles of CGFS glutaredoxins and BolA proteins in Fe-S cluster biogenesis, Fe-S cluster storage and trafficking, and Fe-S cluster signaling to transcriptional factors that control iron metabolism--.
Collapse
Affiliation(s)
- Evan A Talib
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Caryn E Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
22
|
Daniel T, Faruq HM, Laura Magdalena J, Manuela G, Christopher Horst L. Role of GSH and Iron-Sulfur Glutaredoxins in Iron Metabolism-Review. Molecules 2020; 25:E3860. [PMID: 32854270 PMCID: PMC7503856 DOI: 10.3390/molecules25173860] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 12/26/2022] Open
Abstract
Glutathione (GSH) was initially identified and characterized for its redox properties and later for its contributions to detoxification reactions. Over the past decade, however, the essential contributions of glutathione to cellular iron metabolism have come more and more into focus. GSH is indispensable in mitochondrial iron-sulfur (FeS) cluster biosynthesis, primarily by co-ligating FeS clusters as a cofactor of the CGFS-type (class II) glutaredoxins (Grxs). GSH is required for the export of the yet to be defined FeS precursor from the mitochondria to the cytosol. In the cytosol, it is an essential cofactor, again of the multi-domain CGFS-type Grxs, master players in cellular iron and FeS trafficking. In this review, we summarize the recent advances and progress in this field. The most urgent open questions are discussed, such as the role of GSH in the export of FeS precursors from mitochondria, the physiological roles of the CGFS-type Grx interactions with BolA-like proteins and the cluster transfer between Grxs and recipient proteins.
Collapse
Affiliation(s)
- Trnka Daniel
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Hossain Md Faruq
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Jordt Laura Magdalena
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Gellert Manuela
- Institute for Medical Biochemistry and Molecular Biology, University Medicine, University of Greifswald, 17475 Greifswald, Germany; (T.D.); (H.M.F.); (J.L.M.); (G.M.)
| | - Lillig Christopher Horst
- Christopher Horst Lillig, Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17475 Greifswald, Germany
| |
Collapse
|
23
|
Philpott CC, Patel SJ, Protchenko O. Management versus miscues in the cytosolic labile iron pool: The varied functions of iron chaperones. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118830. [PMID: 32835748 DOI: 10.1016/j.bbamcr.2020.118830] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 01/01/2023]
Abstract
Iron-containing proteins rely on the incorporation of a set of iron cofactors for activity. The cofactors must be synthesized or assembled from raw materials located within the cell. The chemical nature of this pool of raw material - referred to as the labile iron pool - has become clearer with the identification of micro- and macro-molecules that coordinate iron within the cell. These molecules function as a buffer system for the management of intracellular iron and are the focus of this review, with emphasis on the major iron chaperone protein coordinating the labile iron pool: poly C-binding protein 1.
Collapse
Affiliation(s)
| | - Sarju J Patel
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| | - Olga Protchenko
- Genetics and Metabolism Section, NIDDK, NIH, Bethesda, MD, USA
| |
Collapse
|
24
|
The Requirement of Inorganic Fe-S Clusters for the Biosynthesis of the Organometallic Molybdenum Cofactor. INORGANICS 2020. [DOI: 10.3390/inorganics8070043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur from l-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.
Collapse
|
25
|
Sen S, Hendricks AL, Cowan JA. Cluster exchange reactivity of [2Fe-2S]-bridged heterodimeric BOLA1-GLRX5. FEBS J 2020; 288:920-929. [PMID: 32542995 DOI: 10.1111/febs.15452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 01/19/2023]
Abstract
Mitochondrial BOLA1 is known to form a [2Fe-2S] cluster-bridged heterodimeric complex with mitochondrial monothiol glutaredoxin GLRX5; however, the function of this heterodimeric complex is unclear. Some reports suggest redundant roles for BOLA1 and a related protein, BOLA3, with both involved in the maturation of [4Fe-4S] clusters in a subset of mitochondrial proteins. However, a later report on the structure of BOLA1-GLRX5 heterodimeric complex demonstrated a buried cluster environment and predicted a redox role instead of the cluster trafficking role suggested for the BOLA3-GLRX5 heterodimeric complex. Herein, we describe a detailed kinetic study of relative cluster exchange reactivity involving heterodimeric complex of BOLA1 with GLRX5. By the use of CD spectroscopy, it is demonstrated that [2Fe-2S]-bridged BOLA1-GLRX5 can be readily formed by cluster uptake from donors such as ISCU or [2Fe-2S](GS)4 complex, but not from ISCA1 or ISCA2. Rapid holo-formation following delivery from [2Fe-2S](GS)4 supports possible physiological relevance in the cellular labile iron pool. Holo [2Fe-2S] BOLA1-GLRX5 heterodimeric complex is incapable of donating cluster to apo protein acceptors, providing experimental support for a nontrafficking role. Finally, we report the formation and reactivity of the holo [2Fe-2S]-bridged BOLA1 homodimer (lacking a partner GLRX). While the holo-heterodimer is thermodynamically more stable, by contrast the holo BOLA1 homodimer does demonstrate facile cluster exchange reactivity.
Collapse
Affiliation(s)
- Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Amber L Hendricks
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - James A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
26
|
Camponeschi F, Prusty NR, Heider SAE, Ciofi-Baffoni S, Banci L. GLRX3 Acts as a [2Fe-2S] Cluster Chaperone in the Cytosolic Iron-Sulfur Assembly Machinery Transferring [2Fe-2S] Clusters to NUBP1. J Am Chem Soc 2020; 142:10794-10805. [PMID: 32429669 PMCID: PMC8007109 DOI: 10.1021/jacs.0c02266] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
![]()
Human
cytosolic monothiol glutaredoxin-3 (GLRX3) is a protein essential
for the maturation of cytosolic [4Fe–4S] proteins. We show
here that dimeric cluster-bridged GLRX3 transfers its [2Fe–2S]2+ clusters to the human P-loop NTPase NUBP1, an essential
early component of the cytosolic iron–sulfur assembly (CIA)
machinery. Specifically, we observed that [2Fe–2S]2+ clusters are transferred from GLRX3 to monomeric apo NUBP1 and reductively
coupled to form [4Fe–4S]2+ clusters on both N-terminal
CX13CX2CX5C and C-terminal CPXC motifs
of NUBP1 in the presence of glutathione that acts as a reductant.
In this process, cluster binding to the C-terminal motif of NUBP1
promotes protein dimerization, while cluster binding to the N-terminal
motif does not affect the quaternary structure of NUBP1. The cluster
transfer/assembly process is not complete on both N- and C-terminal
motifs and indeed requires a reductant stronger than GSH to increase
its efficiency. We also showed that the [4Fe–4S]2+ cluster formed at the N-terminal motif of NUBP1 is tightly bound,
while the [4Fe–4S]2+ cluster bound at the C-terminal
motif is labile. Our findings provide the first evidence for GLRX3
acting as a [2Fe–2S] cluster chaperone in the early stage of
the CIA machinery.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy
| | - Nihar Ranjan Prusty
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy
| | - Sabine Annemarie Elisabeth Heider
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| | - Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, Florence 50019, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Florence 50019, Italy
| |
Collapse
|
27
|
Maione V, Grifagni D, Torricella F, Cantini F, Banci L. CIAO3 protein forms a stable ternary complex with two key players of the human cytosolic iron–sulfur cluster assembly machinery. J Biol Inorg Chem 2020; 25:501-508. [DOI: 10.1007/s00775-020-01778-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/16/2020] [Indexed: 11/24/2022]
|
28
|
Outlining the Complex Pathway of Mammalian Fe-S Cluster Biogenesis. Trends Biochem Sci 2020; 45:411-426. [PMID: 32311335 DOI: 10.1016/j.tibs.2020.02.001] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/27/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Iron-sulfur (Fe-S) clusters (ISCs) are ubiquitous cofactors essential to numerous fundamental cellular processes. Assembly of ISCs and their insertion into apoproteins involves the function of complex cellular machineries that operate in parallel in the mitochondrial and cytosolic/nuclear compartments of mammalian cells. The spectrum of diseases caused by inherited defects in genes that encode the Fe-S assembly proteins has recently expanded to include multiple rare human diseases, which manifest distinctive combinations and severities of global and tissue-specific impairments. In this review, we provide an overview of our understanding of ISC biogenesis in mammalian cells, discuss recent work that has shed light on the molecular interactions that govern ISC assembly, and focus on human diseases caused by failures of the biogenesis pathway.
Collapse
|
29
|
Bai N, Ma J, Alimujiang M, Xu J, Hu F, Xu Y, Leng Q, Chen S, Li X, Han J, Jia W, Bao Y, Yang Y. Bola3 Regulates Beige Adipocyte Thermogenesis via Maintaining Mitochondrial Homeostasis and Lipolysis. Front Endocrinol (Lausanne) 2020; 11:592154. [PMID: 33505355 PMCID: PMC7829353 DOI: 10.3389/fendo.2020.592154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondrial iron-sulfur (Fe-S) cluster is an important cofactor for the maturation of Fe-S proteins, which are ubiquitously involved in energy metabolism; however, factors facilitating this process in beige fat have not been established. Here, we identified BolA family member 3 (Bola3), as one of 17 mitochondrial Fe-S cluster assembly genes, was the most significant induced gene in the browning program of white adipose tissue. Using lentiviral-delivered shRNA in vitro, we determined that Bola3 deficiency inhibited thermogenesis activity without affecting lipogenesis in differentiated beige adipocytes. The inhibition effect of Bola3 knockdown might be through impairing mitochondrial homeostasis and lipolysis. This was evidenced by the decreased expression of mitochondria related genes and respiratory chain complexes, attenuated mitochondrial formation, reduced mitochondrial maximal respiration and inhibited isoproterenol-stimulated lipolysis. Furthermore, BOLA3 mRNA levels were higher in human deep neck brown fat than in the paired subcutaneous white fat, and were positively correlated with thermogenesis related genes (UCP1, CIDEA, PRDM16, PPARG, COX7A1, and LIPE) expression in human omental adipose depots. This study demonstrates that Bola3 is associated with adipose tissue oxidative capacity both in mice and human, and it plays an indispensable role in beige adipocyte thermogenesis via maintaining mitochondrial homeostasis and adrenergic signaling-induced lipolysis.
Collapse
Affiliation(s)
- Ningning Bai
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jingyuan Ma
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Miriayi Alimujiang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Jun Xu
- Department of Geriatrics, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Fan Hu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuejie Xu
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Qingyang Leng
- Department of Endocrinology, Seventh People’s Hospital of Shanghai University of TCM, Shanghai, China
| | - Shuqing Chen
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Xiaohua Li
- Department of Endocrinology, Seventh People’s Hospital of Shanghai University of TCM, Shanghai, China
| | - Junfeng Han
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Weiping Jia
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Ying Yang, ; Yuqian Bao,
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Clinical Center for Diabetes, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
- *Correspondence: Ying Yang, ; Yuqian Bao,
| |
Collapse
|
30
|
Giannuzzi G, Schmidt PJ, Porcu E, Willemin G, Munson KM, Nuttle X, Earl R, Chrast J, Hoekzema K, Risso D, Männik K, De Nittis P, Baratz ED, Herault Y, Gao X, Philpott CC, Bernier RA, Kutalik Z, Fleming MD, Eichler EE, Reymond A. The Human-Specific BOLA2 Duplication Modifies Iron Homeostasis and Anemia Predisposition in Chromosome 16p11.2 Autism Individuals. Am J Hum Genet 2019; 105:947-958. [PMID: 31668704 DOI: 10.1016/j.ajhg.2019.09.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/18/2019] [Indexed: 12/12/2022] Open
Abstract
Human-specific duplications at chromosome 16p11.2 mediate recurrent pathogenic 600 kbp BP4-BP5 copy-number variations, which are among the most common genetic causes of autism. These copy-number polymorphic duplications are under positive selection and include three to eight copies of BOLA2, a gene involved in the maturation of cytosolic iron-sulfur proteins. To investigate the potential advantage provided by the rapid expansion of BOLA2, we assessed hematological traits and anemia prevalence in 379,385 controls and individuals who have lost or gained copies of BOLA2: 89 chromosome 16p11.2 BP4-BP5 deletion carriers and 56 reciprocal duplication carriers in the UK Biobank. We found that the 16p11.2 deletion is associated with anemia (18/89 carriers, 20%, p = 4e-7, OR = 5), particularly iron-deficiency anemia. We observed similar enrichments in two clinical 16p11.2 deletion cohorts, which included 6/63 (10%) and 7/20 (35%) unrelated individuals with anemia, microcytosis, low serum iron, or low blood hemoglobin. Upon stratification by BOLA2 copy number, our data showed an association between low BOLA2 dosage and the above phenotypes (8/15 individuals with three copies, 53%, p = 1e-4). In parallel, we analyzed hematological traits in mice carrying the 16p11.2 orthologous deletion or duplication, as well as Bola2+/- and Bola2-/- animals. The Bola2-deficient mice and the mice carrying the deletion showed early evidence of iron deficiency, including a mild decrease in hemoglobin, lower plasma iron, microcytosis, and an increased red blood cell zinc-protoporphyrin-to-heme ratio. Our results indicate that BOLA2 participates in iron homeostasis in vivo, and its expansion has a potential adaptive role in protecting against iron deficiency.
Collapse
Affiliation(s)
- Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland.
| | - Paul J Schmidt
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland
| | - Gilles Willemin
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Xander Nuttle
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Rachel Earl
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Davide Risso
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Katrin Männik
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Pasquelena De Nittis
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| | - Ethan D Baratz
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yann Herault
- University of Strasbourg, CNRS, INSERM, PHENOMIN-ICS, Institute of Genetics and Molecular and Cellular Biology, Illkirch, 67404, France
| | - Xiang Gao
- Model Animal Research Center, Collaborative Innovation Center for Genetics and Development, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, 210061 China
| | - Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raphael A Bernier
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195, USA
| | - Zoltan Kutalik
- Swiss Institute of Bioinformatics, Lausanne, 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne, 1010, Switzerland
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, 1015, Switzerland
| |
Collapse
|
31
|
Graça-Lopes G, Graça G, Barahona S, Moreira RN, Arraiano CM, Gonçalves LG. NMR-Metabolomics Shows That BolA Is an Important Modulator of Salmonella Typhimurium Metabolic Processes under Virulence Conditions. Metabolites 2019; 9:metabo9110243. [PMID: 31652780 PMCID: PMC6918366 DOI: 10.3390/metabo9110243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/28/2022] Open
Abstract
BolA is a ubiquitous global transcription factor. Despite its clear role in the induction of important stress-resistant physiological changes and its recent implication in the virulence of Salmonella, further research is required to shed light on the pathways modulated by BolA. In this study, we resorted to untargeted 1H-NMR metabolomics to understand the impact of BolA on the metabolic profile of Salmonella Typhimurium, under virulence conditions. Three strains of S. Typhimurium SL1344 were studied: An SL1344 strain transformed with an empty plasmid (control), a bolA knockout mutant (ΔbolA), and a strain overexpressing bolA (bolA+). These strains were grown in a minimal virulence-inducing medium and cells were collected at the end of the exponential and stationary phases. The extracts were analyzed by NMR, and multivariate and univariate statistical analysis were performed to identify significant alterations. Principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) of 1H-NMR data allowed the discrimination between the metabolic profiles of these strains, revealing increased levels of acetate, valine, alanine, NAD+, succinate, coenzyme A, glutathione, and putrescine in bolA+. These results indicate that BolA regulates pathways related to stress resistance and virulence, being an important modulator of the metabolic processes needed for S. Typhimurium infection.
Collapse
Affiliation(s)
- Gil Graça-Lopes
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Gonçalo Graça
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, London, SW7 2AZ, UK.
| | - Susana Barahona
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Ricardo N Moreira
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Cecília M Arraiano
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| | - Luís G Gonçalves
- ITQB Nova-Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
32
|
Wachnowsky C, Rao B, Sen S, Fries B, Howard CJ, Ottesen JJ, Cowan JA. Reconstitution, characterization, and [2Fe-2S] cluster exchange reactivity of a holo human BOLA3 homodimer. J Biol Inorg Chem 2019; 24:1035-1045. [PMID: 31486956 PMCID: PMC6812618 DOI: 10.1007/s00775-019-01713-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 08/23/2019] [Indexed: 10/26/2022]
Abstract
A new class of mitochondrial disease has been identified and characterized as Multiple Mitochondrial Dysfunctions Syndrome (MMDS). Four different forms of the disease have each been attributed to point mutations in proteins involved in iron-sulfur (Fe-S) biosynthesis; in particular, MMDS2 has been associated with the protein BOLA3. To date, this protein has been characterized in vitro concerning its ability to form heterodimeric complexes with two putative Fe-S cluster-binding partners: GLRX5 and NFU. However, BOLA3 has yet to be characterized in its own discrete holo form. Herein we describe procedures to isolate and characterize the human holo BOLA3 protein in terms of Fe-S cluster binding and trafficking and demonstrate that human BOLA3 can form a functional homodimer capable of engaging in Fe-S cluster transfer.
Collapse
Affiliation(s)
- Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - Brian Rao
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, USA
| | - Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Brian Fries
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Cecil J Howard
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - Jennifer J Ottesen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.
- The Ohio State Biochemistry Program, The Ohio State University, Columbus, USA.
| |
Collapse
|
33
|
A PCBP1-BolA2 chaperone complex delivers iron for cytosolic [2Fe-2S] cluster assembly. Nat Chem Biol 2019; 15:872-881. [PMID: 31406370 PMCID: PMC6702080 DOI: 10.1038/s41589-019-0330-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 06/26/2019] [Indexed: 12/13/2022]
Abstract
Hundreds of cellular proteins require iron cofactors for activity, and cells express systems for their assembly and distribution. Molecular details of the cytosolic iron pool used for iron cofactors are lacking, but iron chaperones of the poly(rC)-binding protein (PCBP) family play a key role in ferrous ion distribution. Here we show that, in cells and in vitro, PCBP1 coordinates iron via conserved cysteine and glutamate residues and a molecule of noncovalently bound glutathione (GSH). Proteomics analysis of PCBP1-interacting proteins identified BolA2, which functions, in complex with Glrx3, as a cytosolic [2Fe-2S] cluster chaperone. The Fe-GSH-bound form of PCBP1 complexes with cytosolic BolA2 via a bridging Fe ligand. Biochemical analysis of PCBP1 and BolA2, in cells and in vitro, indicates that PCBP1-Fe-GSH-BolA2 serves as an intermediate complex required for the assembly of [2Fe-2S] clusters on BolA2-Glrx3, thereby linking the ferrous iron and Fe-S distribution systems in cells.
Collapse
|
34
|
Sen S, Rao B, Wachnowsky C, Cowan JA. Cluster exchange reactivity of [2Fe-2S] cluster-bridged complexes of BOLA3 with monothiol glutaredoxins. Metallomics 2019; 10:1282-1290. [PMID: 30137089 DOI: 10.1039/c8mt00128f] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The [2Fe-2S] cluster-bridged complex of BOLA3 with GLRX5 has been implicated in cluster trafficking, but cluster exchange involving this heterocomplex has not been reported. Herein we describe an investigation of the cluster exchange reactivity of holo BOLA3-GLRX complexes using two different monothiol glutaredoxins, H.s. GLRX5 and S.c. Grx3, which share significant identity. We observe that a 1 : 1 mixture of apo BOLA3 and glutaredoxin protein is able to accept a cluster from donors such as ISCU and a [2Fe-2S](GS)4 complex, with preferential formation of the cluster-bridged heterodimer over the plausible holo homodimeric glutaredoxin. Holo BOLA3-GLRX5 transfers clusters to apo acceptors at rates comparable to other Fe-S cluster trafficking proteins. Isothermal titration calorimetry experiments with apo proteins demonstrated a strong binding of BOLA3 with both GLRX5 and Grx3, while binding with an alternative mitochondrial partner, NFU1, was weak. Cluster exchange and calorimetry experiments resulted in a very similar behavior for yeast Grx3 (cytosolic) and human GLRX5 (mitochondrial), indicating conservation across the monothiol glutaredoxin family for interactions with BOLA3 and supporting a functional role for the BOLA3-GLRX5 heterocomplex relative to the previously proposed BOLA3-NFU1 interaction. The results also demonstrate rapid formation of the heterocomplexed holo cluster via delivery from a glutathione-complexed cluster, again indicative of the physiological relevance of the [2Fe-2S](GS)4 complex in the cellular labile iron pool.
Collapse
Affiliation(s)
- Sambuddha Sen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA.
| | | | | | | |
Collapse
|
35
|
Luo J, Wang D, Zhang S, Hu K, Wu H, Li J, Wang Z, Tao Y. BolA family member 2 enhances cell proliferation and predicts a poor prognosis in hepatocellular carcinoma with tumor hemorrhage. J Cancer 2019; 10:4293-4304. [PMID: 31413749 PMCID: PMC6691716 DOI: 10.7150/jca.31829] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 05/26/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: BolA family member 2 (BOLA2) is a novel gene highly associated with human hepatocellular carcinoma (HCC) progression. Tumor hemorrhage (TH) acts as a poor marker for HCC patients and is a community affair in the tumor microenvironment. In the present study, we examined a possible association between BOLA2 levels and HCC patients with TH. Methods: The mRNA and protein levels of BOLA2 were determined in two independent cohorts of HCC specimens by quantitative real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC) analysis, respectively. Survival curves and Cox regression models were used to evaluate the prognosis of HCC patients. The CRISPR/Cas9 system was used to knock out BOLA2 in HCC cells, and the functional role of BOLA2 in HCC cell proliferation in vitro and growth in vivo was examined. Results: BOLA2 mRNA expression is significantly higher in HCC tumour tissue than in nontumour tissue. Immunohistochemistry analysis of HCC tissues showed that BOLA2 protein was significantly correlated with TH, a more metastatic phenotype and worse HCC survival. The potential clinical relevance of BOLA2 expression and TH was validated by a Cox regression model. Furthermore, loss-of-function studies determined that BOLA2 plays critical roles in promoting iron overload, tumor growth and TH. Bioinformatics analysis from Gene Expression Profiling Interactive Analysis (GEPIA) revealed that BOLA2 is closely associated with the activation of p62-Keap1 signalling and ATG4B expression. These results were confirmed by immunohistochemistry analysis in HCC tissues. Conclusions: Our results suggest that BOLA2 plays an important role in cancer biology and is an independent predictor of prognosis in HCC.
Collapse
Affiliation(s)
- Jia Luo
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Surgery, Hunan Provincial Tumor Hospital, Changsha 410006, Hunan, China
| | - Dong Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Sai Zhang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Kuan Hu
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Haijun Wu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Juanni Li
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhiming Wang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yiming Tao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
36
|
Wang X, Chen X, Sun L, Qian W. Canonical cytosolic iron-sulfur cluster assembly and non-canonical functions of DRE2 in Arabidopsis. PLoS Genet 2019; 15:e1008094. [PMID: 31034471 PMCID: PMC6508740 DOI: 10.1371/journal.pgen.1008094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 05/09/2019] [Accepted: 03/16/2019] [Indexed: 11/17/2022] Open
Abstract
As a component of the Cytosolic Iron-sulfur cluster Assembly (CIA) pathway, DRE2 is essential in organisms from yeast to mammals. However, the roles of DRE2 remain incompletely understood largely due to the lack of viable dre2 mutants. In this study, we successfully created hypomorphic dre2 mutants using the CRISPR/Cas9 technology. Like other CIA pathway mutants, the dre2 mutants have accumulation of DNA lesions and show constitutive DNA damage response. In addition, the dre2 mutants exhibit DNA hypermethylation at hundreds of loci. The mutant forms of DRE2 in the dre2 mutants, which bear deletions in the linker region of DRE2, lost interaction with GRXS17 but have stronger interaction with NBP35, resulting in the CIA-related defects of dre2. Interestingly, we find that DRE2 is also involved in auxin response that may be independent of its CIA role. DRE2 localizes in both the cytoplasm and the nucleus and nuclear DRE2 associates with euchromatin. Furthermore, DRE2 directly associates with multiple auxin responsive genes and maintains their normal expression. Our study highlights the importance of the linker region of DRE2 in coordinating CIA-related protein interactions and identifies the canonical and non-canonical roles of DRE2 in maintaining genome stability, epigenomic patterns, and auxin response. The Cytosolic Iron-sulfur cluster Assembly (CIA) pathway is essential for the maturation of Fe-S proteins localized in the cytosol and the nucleus. As an important component of the CIA pathway, DRE2 is essential from yeast to mammals. To study the CIA-related functions of DRE2 and further explore novel non-CIA roles of DRE2 in Arabidopsis, we for the first time created two homozygous dre2 hypomorphic mutants using the CRISPR/Cas9 technology. The dre2 mutants exhibit hallmark features of the CIA pathway mutants indicating CIA-dependent functions of DRE2 in Arabidopsis. Unexpectedly, we find that DRE2 participates in auxin response and nuclear DRE2 directly binds multiple auxin responsive genes and regulates their expression, suggesting that DRE2 plays CIA-independent roles. Our findings significantly expand our understanding of the biological functions of DRE2 in eukaryotes.
Collapse
Affiliation(s)
- Xiaokang Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Xudong Chen
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Linhua Sun
- Academy for Advanced Interdisciplinary Studies, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Weiqiang Qian
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| |
Collapse
|
37
|
Ciofi-Baffoni S, Nasta V, Banci L. Protein networks in the maturation of human iron-sulfur proteins. Metallomics 2019; 10:49-72. [PMID: 29219157 DOI: 10.1039/c7mt00269f] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biogenesis of iron-sulfur (Fe-S) proteins in humans is a multistage process occurring in different cellular compartments. The mitochondrial iron-sulfur cluster (ISC) assembly machinery composed of at least 17 proteins assembles mitochondrial Fe-S proteins. A cytosolic iron-sulfur assembly (CIA) machinery composed of at least 13 proteins has been more recently identified and shown to be responsible for the Fe-S cluster incorporation into cytosolic and nuclear Fe-S proteins. Cytosolic and nuclear Fe-S protein maturation requires not only the CIA machinery, but also the components of the mitochondrial ISC assembly machinery. An ISC export machinery, composed of a protein transporter located in the mitochondrial inner membrane, has been proposed to act in mediating the export process of a still unknown component that is required for the CIA machinery. Several functional and molecular aspects of the protein networks operative in the three machineries are still largely obscure. This Review focuses on the Fe-S protein maturation processes in humans with the specific aim of providing a molecular picture of the currently known protein-protein interaction networks. The human ISC and CIA machineries are presented, and the ISC export machinery is discussed with respect to possible molecules being the substrates of the mitochondrial protein transporter.
Collapse
Affiliation(s)
- Simone Ciofi-Baffoni
- Magnetic Resonance Center-CERM, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy.
| | | | | |
Collapse
|
38
|
Khodour Y, Kaguni LS, Stiban J. Iron-sulfur clusters in nucleic acid metabolism: Varying roles of ancient cofactors. Enzymes 2019; 45:225-256. [PMID: 31627878 DOI: 10.1016/bs.enz.2019.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite their relative simplicity, iron-sulfur clusters have been omnipresent as cofactors in myriad cellular processes such as oxidative phosphorylation and other respiratory pathways. Recent research advances confirm the presence of different clusters in enzymes involved in nucleic acid metabolism. Iron-sulfur clusters can therefore be considered hallmarks of cellular metabolism. Helicases, nucleases, glycosylases, DNA polymerases and transcription factors, among others, incorporate various types of clusters that serve differing roles. In this chapter, we review our current understanding of the identity and functions of iron-sulfur clusters in DNA and RNA metabolizing enzymes, highlighting their importance as regulators of cellular function.
Collapse
Affiliation(s)
- Yara Khodour
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biology and Biochemistry, Birzeit University, West Bank, Palestine.
| |
Collapse
|
39
|
Rey P, Taupin-Broggini M, Couturier J, Vignols F, Rouhier N. Is There a Role for Glutaredoxins and BOLAs in the Perception of the Cellular Iron Status in Plants? FRONTIERS IN PLANT SCIENCE 2019; 10:712. [PMID: 31231405 PMCID: PMC6558291 DOI: 10.3389/fpls.2019.00712] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/14/2019] [Indexed: 05/12/2023]
Abstract
Glutaredoxins (GRXs) have at least three major identified functions. In apoforms, they exhibit oxidoreductase activity controlling notably protein glutathionylation/deglutathionylation. In holoforms, i.e., iron-sulfur (Fe-S) cluster-bridging forms, they act as maturation factors for the biogenesis of Fe-S proteins or as regulators of iron homeostasis contributing directly or indirectly to the sensing of cellular iron status and/or distribution. The latter functions seem intimately connected with the capacity of specific GRXs to form [2Fe-2S] cluster-bridging homodimeric or heterodimeric complexes with BOLA proteins. In yeast species, both proteins modulate the localization and/or activity of transcription factors regulating genes coding for proteins involved in iron uptake and intracellular sequestration in response notably to iron deficiency. Whereas vertebrate GRX and BOLA isoforms may display similar functions, the involved partner proteins are different. We perform here a critical evaluation of the results supporting the implication of both protein families in similar signaling pathways in plants and provide ideas and experimental strategies to delineate further their functions.
Collapse
Affiliation(s)
- Pascal Rey
- Plant Protective Proteins Team, CEA, CNRS, BIAM, Aix-Marseille University, Saint-Paul-lez-Durance, France
| | - Maël Taupin-Broggini
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université de Montpellier/SupAgro, Montpellier, France
| | | | - Florence Vignols
- Biochimie et Physiologie Moléculaire des Plantes, CNRS/INRA/Université de Montpellier/SupAgro, Montpellier, France
| | - Nicolas Rouhier
- Université de Lorraine, INRA, IAM, Nancy, France
- *Correspondence: Nicolas Rouhier,
| |
Collapse
|
40
|
Abstract
Abstract
Metal ions are essential cofactors required by the proteome of organisms from any kingdom of life to correctly exert their functions. Dedicated cellular import, transport and homeostasis systems assure that the needed metal ion is correctly delivered and inserted into the target proteins and avoid the presence of free metal ions in the cell, preventing oxidative damaging. Among metal ions, in eukaryotic organisms copper and iron are required by proteins involved in absolutely essential functions, such as respiration, oxidative stress protection, catalysis, gene expression regulation. Copper and iron binding proteins are localized in essentially all cellular compartments. Copper is physiologically present mainly as individual metal ion. Iron can be present both as individual metal ion or as part of cofactors, such as hemes and iron-sulfur (Fe-S) clusters. Both metal ions are characterized by the ability to cycle between different oxidation states, which enable them to catalyze redox reactions and to participate in electron transfer processes. Here we describe in detail the main processes responsible for the trafficking of copper and iron sulfur clusters, with particular interest for the structural aspects of the maturation of copper and iron-sulfur-binding proteins.
Collapse
|
41
|
Maione V, Cantini F, Severi M, Banci L. Investigating the role of the human CIA2A-CIAO1 complex in the maturation of aconitase. Biochim Biophys Acta Gen Subj 2018; 1862:1980-1987. [DOI: 10.1016/j.bbagen.2018.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/15/2018] [Accepted: 05/24/2018] [Indexed: 02/08/2023]
|
42
|
NMR as a Tool to Investigate the Processes of Mitochondrial and Cytosolic Iron-Sulfur Cluster Biosynthesis. Molecules 2018; 23:molecules23092213. [PMID: 30200358 PMCID: PMC6205161 DOI: 10.3390/molecules23092213] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/20/2018] [Indexed: 12/15/2022] Open
Abstract
Iron-sulfur (Fe-S) clusters, the ubiquitous protein cofactors found in all kingdoms of life, perform a myriad of functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. The biogenesis of Fe-S clusters is a multi-step process that involves the participation of many protein partners. Recent biophysical studies, involving X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, mass spectrometry (MS), and small angle X-ray scattering (SAXS), have greatly improved our understanding of these steps. In this review, after describing the biological importance of iron sulfur proteins, we focus on the contributions of NMR spectroscopy has made to our understanding of the structures, dynamics, and interactions of proteins involved in the biosynthesis of Fe-S cluster proteins.
Collapse
|
43
|
Banci L, Camponeschi F, Ciofi-Baffoni S, Piccioli M. The NMR contribution to protein-protein networking in Fe-S protein maturation. J Biol Inorg Chem 2018; 23:665-685. [PMID: 29569085 PMCID: PMC6006191 DOI: 10.1007/s00775-018-1552-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/12/2018] [Indexed: 12/12/2022]
Abstract
Iron–sulfur proteins were among the first class of metalloproteins that were actively studied using NMR spectroscopy tailored to paramagnetic systems. The hyperfine shifts, their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues are an efficient fingerprint of the nature and the oxidation state of the Fe–S cluster. NMR significantly contributed to the analysis of the magnetic coupling patterns and to the understanding of the electronic structure occurring in [2Fe–2S], [3Fe–4S] and [4Fe–4S] clusters bound to proteins. After the first NMR structure of a paramagnetic protein was obtained for the reduced E. halophila HiPIP I, many NMR structures were determined for several Fe–S proteins in different oxidation states. It was found that differences in chemical shifts, in patterns of unobserved residues, in internal mobility and in thermodynamic stability are suitable data to map subtle changes between the two different oxidation states of the protein. Recently, the interaction networks responsible for maturing human mitochondrial and cytosolic Fe–S proteins have been largely characterized by combining solution NMR standard experiments with those tailored to paramagnetic systems. We show here the contribution of solution NMR in providing a detailed molecular view of “Fe–S interactomics”. This contribution was particularly effective when protein–protein interactions are weak and transient, and thus difficult to be characterized at high resolution with other methodologies.
Collapse
Affiliation(s)
- Lucia Banci
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| | - Francesca Camponeschi
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Simone Ciofi-Baffoni
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy
| | - Mario Piccioli
- Magnetic Resonance Center CERM, University of Florence, Via Luigi Sacconi 6, Sesto Fiorentino, 50019, Florence, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
44
|
Albetel AN, Outten CE. Characterization of Glutaredoxin Fe-S Cluster-Binding Interactions Using Circular Dichroism Spectroscopy. Methods Enzymol 2017; 599:327-353. [PMID: 29746245 DOI: 10.1016/bs.mie.2017.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Monothiol glutaredoxins (Grxs) with a conserved Cys-Gly-Phe-Ser (CGFS) active site are iron-sulfur (Fe-S) cluster-binding proteins that interact with a variety of partner proteins and perform crucial roles in iron metabolism including Fe-S cluster transfer, Fe-S cluster repair, and iron signaling. Various analytical and spectroscopic methods are currently being used to monitor and characterize glutaredoxin Fe-S cluster-dependent interactions at the molecular level. The electronic, magnetic, and vibrational properties of the protein-bound Fe-S cluster provide a convenient handle to probe the structure, function, and coordination chemistry of Grx complexes. However, some limitations arise from sample preparation requirements, complexity of individual techniques, or the necessity for combining multiple methods in order to achieve a complete investigation. In this chapter, we focus on the use of UV-visible circular dichroism spectroscopy as a fast and simple initial approach for investigating glutaredoxin Fe-S cluster-dependent interactions.
Collapse
Affiliation(s)
| | - Caryn E Outten
- University of South Carolina, Columbia, SC, United States.
| |
Collapse
|
45
|
Abstract
Iron-sulfur clusters (Fe/S clusters) are essential cofactors required throughout the clades of biology for performing a myriad of unique functions including nitrogen fixation, ribosome assembly, DNA repair, mitochondrial respiration, and metabolite catabolism. Although Fe/S clusters can be synthesized in vitro and transferred to a client protein without enzymatic assistance, biology has evolved intricate mechanisms to assemble and transfer Fe/S clusters within the cellular environment. In eukaryotes, the foundation of all cellular clusters starts within the mitochondria. The focus of this review is to detail the mitochondrial Fe/S biogenesis (ISC) pathway along with the Fe/S cluster transfer steps necessary to mature Fe/S proteins. New advances in our understanding of the mitochondrial Fe/S biogenesis machinery will be highlighted. Additionally, we will address various experimental approaches that have been successful in the identification and characterization of components of the ISC pathway.
Collapse
Affiliation(s)
- Andrew Melber
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Dennis R Winge
- University of Utah Health Sciences Center, Salt Lake City, Utah, United States.
| |
Collapse
|
46
|
Fidai I, Wachnowsky C, Cowan JA. Mapping cellular Fe-S cluster uptake and exchange reactions - divergent pathways for iron-sulfur cluster delivery to human ferredoxins. Metallomics 2017; 8:1283-1293. [PMID: 27878189 DOI: 10.1039/c6mt00193a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ferredoxins are protein mediators of biological electron-transfer reactions and typically contain either [2Fe-2S] or [4Fe-4S] clusters. Two ferredoxin homologues have been identified in the human genome, Fdx1 and Fdx2, that share 43% identity and 69% similarity in protein sequence and both bind [2Fe-2S] clusters. Despite the high similarity, the two ferredoxins play very specific roles in distinct physiological pathways and cannot replace each other in function. Both eukaryotic and prokaryotic ferredoxins and homologues have been reported to receive their Fe-S cluster from scaffold/delivery proteins such as IscU, Isa, glutaredoxins, and Nfu. However, the preferred and physiologically relevant pathway for receiving the [2Fe-2S] cluster by ferredoxins is subject to speculation and is not clearly identified. In this work, we report on in vitro UV-visible (UV-vis) circular dichroism studies of [2Fe-2S] cluster transfer to the ferredoxins from a variety of partners. The results reveal rapid and quantitative transfer to both ferredoxins from several donor proteins (IscU, Isa1, Grx2, and Grx3). Transfer from Isa1 to Fdx2 was also observed to be faster than that of IscU to Fdx2, suggesting that Fdx2 could receive its cluster from Isa1 instead of IscU. Several other transfer combinations were also investigated and the results suggest a complex, but kinetically detailed map for cellular cluster trafficking. This is the first step toward building a network map for all of the possible iron-sulfur cluster transfer pathways in the mitochondria and cytosol, providing insights on the most likely cellular pathways and possible redundancies in these pathways.
Collapse
Affiliation(s)
- Insiya Fidai
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Biophysics Graduate Program, The Ohio State University, USA
| | - Christine Wachnowsky
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Ohio State Biochemistry Program, The Ohio State University, USA
| | - J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, Ohio 43210, USA. and The Biophysics Graduate Program, The Ohio State University, USA and The Ohio State Biochemistry Program, The Ohio State University, USA
| |
Collapse
|
47
|
The interaction of iron and the genome: For better and for worse. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 774:25-32. [DOI: 10.1016/j.mrrev.2017.09.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/28/2017] [Accepted: 09/12/2017] [Indexed: 12/11/2022]
|
48
|
Role of protein-glutathione contacts in defining glutaredoxin-3 [2Fe–2S] cluster chirality, ligand exchange and transfer chemistry. J Biol Inorg Chem 2017; 22:1075-1087. [DOI: 10.1007/s00775-017-1485-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 08/16/2017] [Indexed: 01/27/2023]
|
49
|
Dlouhy AC, Beaudoin J, Labbé S, Outten CE. Schizosaccharomyces pombe Grx4 regulates the transcriptional repressor Php4 via [2Fe-2S] cluster binding. Metallomics 2017; 9:1096-1105. [PMID: 28725905 PMCID: PMC5595146 DOI: 10.1039/c7mt00144d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The fission yeast Schizosaccharomyces pombe expresses the CCAAT-binding factor Php4 in response to iron deprivation. Php4 forms a transcription complex with Php2, Php3, and Php5 to repress the expression of iron proteins as a means to economize iron usage. Previous in vivo results demonstrate that the function and location of Php4 are regulated in an iron-dependent manner by the cytosolic CGFS type glutaredoxin Grx4. In this study, we aimed to biochemically define these protein-protein and protein-metal interactions. Grx4 was found to bind a [2Fe-2S] cluster with spectroscopic features similar to other CGFS glutaredoxins. Grx4 and Php4 also copurify as a complex with a [2Fe-2S] cluster that is spectroscopically distinct from the cluster on Grx4 alone. In vitro titration experiments suggest that these Fe-S complexes may not be interconvertible in the absence of additional factors. Furthermore, conserved cysteines in Grx4 (Cys172) and Php4 (Cys221 and Cys227) are necessary for Fe-S cluster binding and stable complex formation. Together, these results show that Grx4 controls Php4 function through binding of a bridging [2Fe-2S] cluster.
Collapse
Affiliation(s)
- Adrienne C Dlouhy
- Department of Chemistry and Biochemistry, University of South Carolina, 631 Sumter Street, Columbia, South Carolina 29208, USA.
| | | | | | | |
Collapse
|
50
|
Philpott CC, Ryu MS, Frey A, Patel S. Cytosolic iron chaperones: Proteins delivering iron cofactors in the cytosol of mammalian cells. J Biol Chem 2017; 292:12764-12771. [PMID: 28615454 DOI: 10.1074/jbc.r117.791962] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cells contain hundreds of metalloproteins that are supported by intracellular systems coordinating the uptake and distribution of metal cofactors. Iron cofactors include heme, iron-sulfur clusters, and simple iron ions. Poly(rC)-binding proteins are multifunctional adaptors that serve as iron ion chaperones in the cytosolic/nuclear compartment, binding iron at import and delivering it to enzymes, for storage (ferritin) and export (ferroportin). Ferritin iron is mobilized by autophagy through the cargo receptor, nuclear co-activator 4. The monothiol glutaredoxin Glrx3 and BolA2 function as a [2Fe-2S] chaperone complex. These proteins form a core system of cytosolic iron cofactor chaperones in mammalian cells.
Collapse
Affiliation(s)
- Caroline C Philpott
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892.
| | - Moon-Suhn Ryu
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, Minnesota 55108
| | | | - Sarju Patel
- Genetics and Metabolism Section, Liver Diseases Branch, NIDDK, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|