1
|
Zhao J, Fan H, Zhong G, Wang C, Li Z, Bi J, Xie J, Chen T, Deng J, Li J, Tan B. Improving the ion sieving performance of MOF polycrystalline membranes based on interface modification. Dalton Trans 2025; 54:7801-7809. [PMID: 40261047 DOI: 10.1039/d5dt00724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Metal-organic framework (MOF) membranes exhibit promising potential for high-precision molecule and ion sieving due to their uniform and tunable pore structures. Nevertheless, it remains a challenge to address interfacial compatibility to obtain a high-performance MOF membrane. This is because there is a weak interfacial interaction between the MOF and the substrate, which leads to non-selective areas. This work presents an interface-coating method to facilitate dense nucleation and rapid growth of MOF crystals on the substrate towards reinforcing interaction and eliminating defects. Polydopamine (PDA) and β-cyclodextrin (β-CD) were co-assembled on polyvinylidene fluoride (PVDF) substrates to modify the surface chemistry and enhance interfacial compatibility, thereby facilitating the dense growth of ZIF-8. The ZIF-8/PVDF membranes demonstrated an excellent K+ permeance of 0.33 mol m-2 h-1 and a K+/Mg2+ selectivity of 30.16. The simulation results indicate that the channel of Mg2+ through ZIF-8 must overcome a greater transport energy barrier than that of K+, resulting in a higher selectivity of K+/Mg2+.
Collapse
Affiliation(s)
- Jianfei Zhao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Haoran Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Gaofeng Zhong
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Chenfeng Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Zhan Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jintong Bi
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jingle Xie
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Tongdan Chen
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Juanli Deng
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jiang Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Bojun Tan
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| |
Collapse
|
2
|
Xue YW, Miura K, Itoh H, Inoue M. C-Terminal modification of polytheonamide B uncouples its dual functions in MCF-7 cancer cells. Chem Commun (Camb) 2023; 59:3914-3917. [PMID: 36919651 DOI: 10.1039/d2cc05915k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Polytheonamide B (1) is an exceptionally large peptide that forms a transmembrane ion channel. The potent cytotoxicity of 1 against MCF-7 cancer cells originates from its two ion transport functions. Compound 1 depolarizes the plasma membrane and neutralizes acidic lysosomes. Here, we describe how we uncoupled these functions by designing and synthesizing new analogues of 1.
Collapse
Affiliation(s)
- Yun-Wei Xue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Kensuke Miura
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
3
|
Yan X, Zhao Y, Cao G, Li X, Gao C, Liu L, Ahmed S, Altaf F, Tan H, Ma X, Xie Z, Zhang H. 2D Organic Materials: Status and Challenges. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203889. [PMID: 36683257 PMCID: PMC9982583 DOI: 10.1002/advs.202203889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Indexed: 06/17/2023]
Abstract
In the past few decades, 2D layer materials have gradually become a central focus in materials science owing to their uniquely layered structural qualities and good optoelectronic properties. However, in the development of 2D materials, several disadvantages, such as limited types of materials and the inability to synthesize large-scale materials, severely confine their application. Therefore, further exploration of new materials and preparation methods is necessary to meet technological developmental needs. Organic molecular materials have the advantage of being customizable. Therefore, if organic molecular and 2D materials are combined, the resulting 2D organic materials would have excellent optical and electrical properties. In addition, through this combination, the free design and large-scale synthesis of 2D materials can be realized in principle. Furthermore, 2D organic materials exhibit excellent properties and unique functionalities along with great potential for developing sensors, biomedicine, and electronics. In this review, 2D organic materials are divided into five categories. The preparation methods and material properties of each class of materials are also described in detail. Notably, to comprehensively understand each material's advantages, the latest research applications for each material are presented in detail and summarized. Finally, the future development and application prospects of 2D organic materials are briefly discussed.
Collapse
Affiliation(s)
- Xiaobing Yan
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Ying Zhao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Gang Cao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Xiaoyu Li
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Chao Gao
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Luan Liu
- School of Life Sciences, Institute of Life Science and Green Development, Key Laboratory of Brain‐Like Neuromorphic Devices and Systems of Hebei ProvinceCollege of Electronic and Information EngineeringHebei UniversityBaoding071002China
| | - Shakeel Ahmed
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| | - Faizah Altaf
- Department of ChemistryWomen University Bagh Azad KashmirBagh Azad KashmirBagh12500Pakistan
- School of Materials Science and EngineeringGeorgia Institute of Technology North AvenueAtlantaGA30332USA
| | - Hui Tan
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Xiaopeng Ma
- Department of RespiratoryShenzhen Children's HospitalShenzhen518036P. R. China
| | - Zhongjian Xie
- Institute of PediatricsShenzhen Children's HospitalShenzhenGuangdong518038P. R. China
- Shenzhen International Institute for Biomedical ResearchShenzhenGuangdong518116China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhen518060P. R. China
| |
Collapse
|
4
|
Tian Z, Yin J, Guo T, Zhao Z, Zhu Y, Wang Y, Yin J, Zou Y, Lei Y, Ming J, Bakr O, Mohammed OF, Alshareef HN. A Sustainable NH 4 + Ion Battery by Electrolyte Engineering. Angew Chem Int Ed Engl 2022; 61:e202213757. [PMID: 36287573 DOI: 10.1002/anie.202213757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Indexed: 11/05/2022]
Abstract
Aqueous ammonium ion battery is a promising sustainable energy storage system. However, the side reactions originating from electrolytes (the water decomposition and host material dissolution) preclude its practical applications. Unlike the metal-based aqueous batteries, the idea of "ultrahigh concentrated electrolyte" is not feasible due to the strong hydrolysis of ammonium ions. Therefore, we propose an effective and sustainable strategy for the water hydrogen bond network modulation by adding sucrose into the electrolytes. The sucrose can form sucrose-water hydrogen bond networks to break the continuous water hydrogen bond network, thereby inhibiting water decomposition significantly. Moreover, the weak hydrogen bond interaction between ammonium and sucrose facilitates rapid ion migration, leading to an improved ionic conductivity. This work presents a new electrolyte modulating strategy for the practical application of aqueous ammonium ion batteries.
Collapse
Affiliation(s)
- Zhengnan Tian
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Tianchao Guo
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Zhiming Zhao
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yunpei Zhu
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yizhou Wang
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jian Yin
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yeguo Zou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Yongjiu Lei
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Jun Ming
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Osman Bakr
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.,Advanced Membranes and Porous Materials Center, KAUST Catalysis Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Husam N Alshareef
- Materials Science and Engineering, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
5
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
6
|
Lu J, Xu H, Yu H, Hu X, Xia J, Zhu Y, Wang F, Wu HA, Jiang L, Wang H. Ultrafast rectifying counter-directional transport of proton and metal ions in metal-organic framework-based nanochannels. SCIENCE ADVANCES 2022; 8:eabl5070. [PMID: 35385302 PMCID: PMC8985916 DOI: 10.1126/sciadv.abl5070] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 02/16/2022] [Indexed: 06/01/2023]
Abstract
Bioinspired control of ion transport at the subnanoscale has become a major focus in the fields of nanofluidics and membrane separation. It is fundamentally important to achieve rectifying ion-specific transport in artificial ion channels, but it remains a challenge. Here, we report a previously unidentified metal-organic framework nanochannel (MOF NC) nanofluidic system to achieve unidirectional ultrafast counter-directional transport of alkaline metal ions and proton. This highly effective ion-specific rectifying transport behavior is attributed to two distinct mechanisms for metal ions and proton, elucidated by theoretical simulations. Notably, the MOF NC exhibits ultrafast proton conduction stemming from ultrahigh proton mobility, i.e., 11.3 × 10-7 m2 /V·s, and low energy barrier of 0.075 eV in MIL-53-COOH subnanochannels. Furthermore, the MOF NC shows excellent osmotic power-harvesting performance in reverse electrodialysis. This work expects to inspire further research into multifunctional biomimetic ion channels for advanced nanofluidics, biomimetics, and separation applications.
Collapse
Affiliation(s)
- Jun Lu
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| | - Hengyu Xu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Hao Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Xiaoyi Hu
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Yinlong Zhu
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| | - Fengchao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials; Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Lei Jiang
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash Center for Membrane Innovation, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
7
|
Zhang H, Li X, Hou J, Jiang L, Wang H. Angstrom-scale ion channels towards single-ion selectivity. Chem Soc Rev 2022; 51:2224-2254. [PMID: 35225300 DOI: 10.1039/d1cs00582k] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.
Collapse
Affiliation(s)
- Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia.
| | - Xingya Li
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, P. R. China.
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
8
|
Li S, Wu L, Zhu M, Cheng X, Jiang X. Effect of dipole potential on the orientation of Voltage-gated Alamethicin peptides regulated by chaotropic anions. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Kalathingal M, Sumikama T, Oiki S, Saito S. Vectorial insertion of a β-helical peptide into membrane: a theoretical study on polytheonamide B. Biophys J 2021; 120:4786-4797. [PMID: 34555359 DOI: 10.1016/j.bpj.2021.09.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/07/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022] Open
Abstract
Spontaneous unidirectional, or vectorial, insertion of transmembrane peptides is a fundamental biophysical process for toxin and viral actions. Polytheonamide B (pTB) is a potent cytotoxic peptide with a β6.3-helical structure. Previous experimental studies revealed that the pTB inserts into the membrane in a vectorial fashion and forms a channel with its single molecular length long enough to span the membrane. Also, molecular dynamics simulation studies demonstrated that the pTB is prefolded in aqueous solution. These are unique features of pTB because most of the peptide toxins form channels through oligomerization of transmembrane helices. Here, we performed all-atom molecular dynamics simulations to examine the dynamic mechanism of the vectorial insertion of pTB, providing underlying elementary processes of the membrane insertion of a prefolded single transmembrane peptide. We find that the insertion of pTB proceeds with only the local lateral compression of the membrane in three successive phases: "landing," "penetration," and "equilibration" phases. The free energy calculations using the replica-exchange umbrella sampling simulations present an energy cost of 4.3 kcal/mol at the membrane surface for the membrane insertion of pTB from bulk water. The trajectories of membrane insertion revealed that the insertion process can occur in two possible pathways, namely "trapped" and "untrapped" insertions; in some cases, pTB is trapped in the upper leaflet during the penetration phase. Our simulations demonstrated the importance of membrane anchoring by the hydrophobic N-terminal blocking group in the landing phase, leading to subsequent vectorial insertion.
Collapse
Affiliation(s)
- Mahroof Kalathingal
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Japan
| | - Takashi Sumikama
- PRESTO, JST, Kawaguchi, Japan; Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| | - Shigetoshi Oiki
- Biomedical Imaging Research Center, University of Fukui, Fukui, Japan.
| | - Shinji Saito
- School of Physical Sciences, The Graduate University for Advanced Studies, Okazaki, Japan; Institute for Molecular Science, Okazaki, Japan.
| |
Collapse
|
10
|
Zou Y, Xiao K, Qin Q, Shi JW, Heil T, Markushyna Y, Jiang L, Antonietti M, Savateev A. Enhanced Organic Photocatalysis in Confined Flow through a Carbon Nitride Nanotube Membrane with Conversions in the Millisecond Regime. ACS NANO 2021; 15:6551-6561. [PMID: 33822587 PMCID: PMC8155341 DOI: 10.1021/acsnano.0c09661] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Bioinspired nanoconfined catalysis has developed to become an important tool for improving the performance of a wide range of chemical reactions. However, photocatalysis in a nanoconfined environment remains largely unexplored. Here, we report the application of a free-standing and flow-through carbon nitride nanotube (CNN) membrane with pore diameters of 40 nm for confined photocatalytic reactions where reactants are in contact with the catalyst for <65 ms, as calculated from the flow. Due to the well-defined tubular structure of the membrane, we are able to assess quantitatively the photocatalytic performance in each of the parallelized single carbon nitride nanotubes, which act as spatially isolated nanoreactors. In oxidation of benzylamine, the confined reaction shows an improved performance when compared to the corresponding bulk reaction, reaching a turnover frequency of (9.63 ± 1.87) × 105 s-1. Such high rates are otherwise only known for special enzymes and are clearly attributed to the confinement of the studied reactions within the one-dimensional nanochannels of the CNN membrane. Namely, a concave surface maintains the internal electric field induced by the polar surface of the carbon nitride inside the nanotube, which is essential for polarization of reagent molecules and extension of the lifetime of the photogenerated charge carriers. The enhanced flow rate upon confinement provides crucial insight on catalysis in such an environment from a physical chemistry perspective. This confinement strategy is envisioned not only to realize highly efficient reactions but also to gain a fundamental understanding of complex chemical processes.
Collapse
Affiliation(s)
- Yajun Zou
- State
Key Laboratory of Electrical Insulation and Power Equipment, Center
of Nanomaterials for Renewable Energy, School
of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Kai Xiao
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Qing Qin
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Jian-Wen Shi
- State
Key Laboratory of Electrical Insulation and Power Equipment, Center
of Nanomaterials for Renewable Energy, School
of Electrical Engineering, Xi’an Jiaotong University, Xi’an 710049, People’s Republic of China
| | - Tobias Heil
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Yevheniia Markushyna
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Lei Jiang
- Key
Laboratory of Bio-inspired Materials and Interfacial Science, Technical
Institute of Physics and Chemistry, Chinese
Academy of Sciences, Beijing 100190, People’s Republic
of China
| | - Markus Antonietti
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Aleksandr Savateev
- Department
of Colloid Chemistry, Max Planck Institute
of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
11
|
Jiang E, Huo J, Luo Y, Li Z, Zhang X, Bao J, Yan X, He G, Zhang N. Influence of electric field on nanoconfined proton behaviours: A molecular dynamics simulation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
12
|
Li X, Zhang H, Yu H, Xia J, Zhu YB, Wu HA, Hou J, Lu J, Ou R, Easton CD, Selomulya C, Hill MR, Jiang L, Wang H. Unidirectional and Selective Proton Transport in Artificial Heterostructured Nanochannels with Nano-to-Subnano Confined Water Clusters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001777. [PMID: 32390263 DOI: 10.1002/adma.202001777] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/07/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
The construction of biological proton channel analogues has attracted substantial interest owing to their wide potential in separation of ions, sensing, and energy conversion. Here, metal-organic framework (MOF)/polymer heterogeneous nanochannels are presented, in which water molecules are confined to disordered clusters in the nanometer-sized polymer regions and to ordered chains with unique molecular configurations in the 1D sub-1-nm porous MOF regions, to realize unidirectional, fast, and selective proton transport properties, analogous to natural proton channels. Given the nano-to-subnano confined water junctions, experimental proton conductivities in the polymer-to-MOF direction of the channels are much higher than those in the opposite direction, showing a high rectification up to 500 and one to two orders of magnitude enhancement compared to the conductivity of proton transport in bulk water. The channels also show a good proton selectivity over other cations. Theoretical simulations further reveal that the preferential and fast proton conduction in the nano-to-subnano channel direction is attributed to extremely low energy barriers for proton transport from disordered to ordered water clusters. This study opens a novel approach to regulate ion permeability and selectivity of artificial ion channels.
Collapse
Affiliation(s)
- Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Hao Yu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jun Xia
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Yin-Bo Zhu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Heng-An Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Jun Lu
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | - Ranwen Ou
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| | | | | | - Matthew R Hill
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Manufacturing, CSIRO, Clayton, Victoria, 3168, Australia
| | - Lei Jiang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
- Key Laboratory of Bioinspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
13
|
Li X, Zhang H, Hou J, Ou R, Zhu Y, Zhao C, Qian T, Easton CD, Selomulya C, Hill MR, Wang H. Sulfonated Sub-1-nm Metal–Organic Framework Channels with Ultrahigh Proton Selectivity. J Am Chem Soc 2020; 142:9827-9833. [DOI: 10.1021/jacs.0c03554] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xingya Li
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Huacheng Zhang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Jue Hou
- Manufacturing, CSIRO, Clayton, 3168, Australia
| | - Ranwen Ou
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yinlong Zhu
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Chen Zhao
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Tianyue Qian
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | | | | | - Matthew R. Hill
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
- Manufacturing, CSIRO, Clayton, 3168, Australia
| | - Huanting Wang
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
14
|
Nishimura S, Matsumori N. Chemical diversity and mode of action of natural products targeting lipids in the eukaryotic cell membrane. Nat Prod Rep 2020; 37:677-702. [PMID: 32022056 DOI: 10.1039/c9np00059c] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: up to 2019Nature furnishes bioactive compounds (natural products) with complex chemical structures, yet with simple, sophisticated molecular mechanisms. When natural products exhibit their activities in cells or bodies, they first have to bind or react with a target molecule in/on the cell. The cell membrane is a major target for bioactive compounds. Recently, our understanding of the molecular mechanism of interactions between natural products and membrane lipids progressed with the aid of newly-developed analytical methods. New technology reconnects old compounds with membrane lipids, while new membrane-targeting molecules are being discovered through the screening for antimicrobial potential of natural products. This review article focuses on natural products that bind to eukaryotic membrane lipids, and includes clinically important molecules and key research tools. The chemical diversity of membrane-targeting natural products and the molecular basis of lipid recognition are described. The history of how their mechanism was unveiled, and how these natural products are used in research are also mentioned.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113-8657, Japan.
| | | |
Collapse
|
15
|
Xue YW, Hayata A, Itoh H, Inoue M. Biological Effects of a Simplified Synthetic Analogue of Ion-Channel-Forming Polytheonamide B on Plasma Membrane and Lysosomes. Chemistry 2019; 25:15198-15204. [PMID: 31549755 DOI: 10.1002/chem.201903974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/24/2019] [Indexed: 11/09/2022]
Abstract
Polytheonamide B (1) is a linear 48-mer natural peptide with alternating d- and l-amino acid residues. Compound 1 forms conducting channels for monovalent ions and exhibits potent cytotoxicity against MCF-7 cells. Previously, we reported that nanomolar concentrations of 1 induce plasma membrane depolarization and lysosomal pH disruption, which triggers apoptosis. Here, we report the cellular localization and biological action of a simplified synthetic analogue of 1, polytheonamide mimic 3. Compared with 1, the toxicity of 3 against MCF-7 cells is 16 times weaker. Although its plasma membrane depolarization effect is only 3.6 times lower, more 3 (20-fold) is required to neutralize lysosomal pH. Thus, the effective concentrations for lysosomal neutralization and cytotoxicity by 3 are comparable. These results strongly suggest that the activity of 3 against the lysosomal membrane is more important for apoptotic cell death than its effects on the plasma membrane, and provide valuable information regarding the unique behavior of polytheonamide-based molecules.
Collapse
Affiliation(s)
- Yun-Wei Xue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Atsushi Hayata
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
16
|
Saraei N, Hietsoi O, Frye BC, Gupta AJ, Mashuta MS, Gupta G, Buchanan RM, Grapperhaus CA. Water wire clusters in isostructural Cu(II) and Ni(II) complexes: Synthesis, characterization, and thermal analyses. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2019.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Zhang X, Wen Q, Wang L, Ding L, Yang J, Ji D, Zhang Y, Jiang L, Guo W. Asymmetric Electrokinetic Proton Transport through 2D Nanofluidic Heterojunctions. ACS NANO 2019; 13:4238-4245. [PMID: 30865824 DOI: 10.1021/acsnano.8b09285] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanofluidic ion transport in nacre-like 2D layered materials attracts broad research interest due to subnanometer confined space and versatile surface chemistry for precisely ionic sieving and ultrafast water permeation. Currently, most of the 2D-material-based nanofluidic systems are homogeneous, and the investigations of proton conduction therein are restricted to symmetric transport behaviors. It remains a great challenge to endow the 2D nanofluidic systems with asymmetric proton transport characteristics and adaptive responsibilities. Herein, we report the asymmetric proton transport phenomena through a 2D nanofluidic heterojunction membrane under three different types of electrokinetic driving force, that is, the external electric field, the transmembrane concentration gradient, and the hydraulic pressure difference. The heterogeneous 2D nanofluidic membrane comprises of sequentially stacked negatively and positively charged graphene oxide (n-GO and p-GO) multilayers. We find that the preferential direction for proton transport is opposite under the three types of electrokinetic driving force. The preferential direction for electric-field-driven proton transport is from the n-GO multilayers to the p-GO multilayers, showing rectified behaviors. Intriguingly, when the transmembrane concentration difference and the hydraulic flow are used as the driving force, a preferred diffusive and streaming proton current is found in the reverse direction, from the p-GO to the n-GO multilayers. The asymmetric proton transport phenomena are explained in terms of asymmetric proton concentration polarization and difference in proton selectivity. The membrane-scale heterogeneous 2D nanofluidic devices with electrokinetically controlled asymmetric proton flow provide a facile and general strategy for potential applications in biomimetic energy conversion and chemical sensing.
Collapse
Affiliation(s)
- Xiaopeng Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Qi Wen
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Lili Wang
- College of Science , Beijing University of Chemical Technology , Beijing 100029 , P. R. China
| | - Liping Ding
- Center for Physiochemical Analysis and Measurement, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Jinlei Yang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Danyan Ji
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yanbing Zhang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Wei Guo
- CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| |
Collapse
|
18
|
Urakubo K, Iwamoto M, Oiki S. Drop-in-well chamber for droplet interface bilayer with built-in electrodes. Methods Enzymol 2019; 621:347-363. [PMID: 31128788 DOI: 10.1016/bs.mie.2019.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Various methods have been developed for the formation of planar lipid bilayers, and recent techniques using water-in-oil droplets, such as droplet interface bilayer (DIB) and contact bubble bilayer (CBB) methods, allow the ready formation of bilayers with arbitrary lipid compositions. Here, we developed a simple and portable DIB system using drop-in-wells, shaping two merging wells for settling electrolyte droplets. An aliquot of the electrolyte solution (1μL) is dropped into an organic solvent, and the droplet sinks to the drop-in-well at the bottom, where two monolayer-lined droplets come in contact to form the bilayer. Pre-installed electrodes allow electrophysiological measurements. The detailed drop-in-well method is presented, and some variations of the method, such as the use of microelectrodes and a sheet with a small hole for low-noise recordings, are extended. Examples of single channel current recordings of the KcsA potassium channel are demonstrated.
Collapse
Affiliation(s)
- Kazuhiro Urakubo
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan
| | - Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui, Fukui, Japan.
| |
Collapse
|
19
|
Branda MM, Guérin DMA. Alkalinization of Icosahedral Non-enveloped Viral Capsid Interior Through Proton Channeling. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1215:181-199. [DOI: 10.1007/978-3-030-14741-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Oiki S, Iwamoto M. Lipid Bilayers Manipulated through Monolayer Technologies for Studies of Channel-Membrane Interplay. Biol Pharm Bull 2018; 41:303-311. [PMID: 29491206 DOI: 10.1248/bpb.b17-00708] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Fluidity and mosaicity are two critical features of biomembranes, by which membrane proteins function through chemical and physical interactions within a bilayer. To understand this complex and dynamic system, artificial lipid bilayer membranes have served as unprecedented tools for experimental examination, in which some aspects of biomembrane features have been extracted, and to which various methodologies have been applied. Among the lipid bilayers involving liposomes, planar lipid bilayers and nanodiscs, recent developments of lipid bilayer methods and the results of our channel studies are reviewed herein. Principles and techniques of bilayer formation are summarized, which have been extended to the current techniques, where a bilayer is formed from lipid-coated water-in-oil droplets (water-in-oil bilayer). In our newly developed method, termed the contact bubble bilayer (CBB) method, a water bubble is blown from a pipette into a bulk oil phase, and monolayer-lined bubbles are docked to form a bilayer through manipulation by pipette. An asymmetric bilayer can be readily formed, and changes in composition in one leaflet were possible. Taking advantage of the topological configuration of the CBB, such that the membrane's hydrophobic interior is contiguous with the surrounding bulk organic phase, oil-dissolved substances such as cholesterol were delivered directly to the bilayer interior to perfuse around the membrane-embedded channels (membrane perfusion), and current recordings in the single-channel allowed detection of immediate changes in the channels' response to cholesterol. Chemical and mechanical manipulation in each monolayer (monolayer technology) allows the examination of dynamic channel-membrane interplay.
Collapse
Affiliation(s)
- Shigetoshi Oiki
- Department of Molecular Physiology & Biophysics, University of Fukui Faculty of Medical Sciences
| | - Masayuki Iwamoto
- Department of Molecular Physiology & Biophysics, University of Fukui Faculty of Medical Sciences
| |
Collapse
|
21
|
Hayata A, Itoh H, Inoue M. Solid-Phase Total Synthesis and Dual Mechanism of Action of the Channel-Forming 48-mer Peptide Polytheonamide B. J Am Chem Soc 2018; 140:10602-10611. [PMID: 30040396 DOI: 10.1021/jacs.8b06755] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polytheonamide B (1) is a unique peptide natural product because of its extremely complex structure, a channel-forming ability in vitro, and the extremely potent cytotoxicity. The 48-mer sequence of 1 comprises alternating d,l-amino acids and possesses an array of sterically bulky β-tetrasubstituted and hydrogen bond forming residues. These unusual structural features are believed to drive 1 to fold into a 4.5 nm long tube, form a transmembrane ion channel at the plasma membrane, and exert cytotoxicity. Despite its potential biological application, however, multiple substitutions by these unusual residues significantly heightened the synthetic challenges, impeding the solid-phase peptide synthesis (SPPS) of 1. In this study, we first addressed the synthesis problem by extensive optimization of various factors of the SPPS. Adaptation of a new protective group strategy allowed for elongation of a 37-mer peptide on resin, to which an N-terminal 11-mer fragment was condensed. Removal of the 18 protective groups and resin gave rise to 1 in excellent overall yield (4.5%, 76 steps from 17). The SPPS protocol is operationally simple and was proven easily amenable to total synthesis of the fluorescent 48-mer probe 2. Synthetic 1 and 2 were utilized for analysis of their cellular behavior. Reflecting its ion-channel function, the addition of 1 to MCF-7 cells rapidly diminished a potential across the plasma membrane. Furthermore, fluorescence imaging study revealed that 1 and 2 were also internalized into the cells, accumulating in acidic lysosomes and neutralizing the lysosomal pH gradient. These new findings indicated that 1 is capable of exerting two functions upon causing apoptotic cell death of mammalian cells: It induces free cation transport across the plasma as well as lysosomal membranes. The present chemical and biological studies provide valuable information for the design and synthesis of polytheonamide-based molecules with more potent and selective biological activities.
Collapse
Affiliation(s)
- Atsushi Hayata
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Hiroaki Itoh
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| | - Masayuki Inoue
- Graduate School of Pharmaceutical Sciences , The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku , Tokyo 113-0033 , Japan
| |
Collapse
|
22
|
Dorčák V, Novák D, Kabeláč M, Kroutil O, Bednárová L, Veverka V, Vacek J. Structural Stability of Peptidic His-Containing Proton Wire in Solution and in the Adsorbed State. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:6997-7005. [PMID: 29763545 DOI: 10.1021/acs.langmuir.7b04139] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Molecular wires are functional molecules applicable in the field of transfer processes in technological and biochemical applications. Besides molecular wires with the ability to transfer electrons, research is currently focused on molecular wires with high proton affinity and proton transfer ability. Recently, proposed peptidic proton wires (H wires) are one example. Their ability to mediate the transport of protons from aqueous solutions onto the surface of a Hg electrode in a catalytic hydrogen evolution reaction was investigated by constant-current chronopotentiometric stripping. However, elucidating the structure of H wires and rationalizing their stability are key requirements for their further research and application. In this article, we focus on the His (H) and Ala (A)-containing peptidic H wire A3-(H-A2)6 in solution and after its immobilization onto the electrode surface in the presence of the secondary structure stabilizer 2,2,2-trifluoroethanol (TFE). We found that the solvent containing more than 25% of TFE stabilizes the helical structure of A3-(H-A2)6 not only in solution but also in the adsorbed state. The TFE efficacy to stabilize α-helical structure was confirmed using high-resolution nuclear magnetic resonance, circular dichroism, and molecular dynamics simulation. Experimental and theoretical results indicated A3-(H-A2)6 to be a high proton-affinity peptidic H wire with an α-helical structure stabilized by TFE, which was confirmed in a comparative study with hexahistidine as an example of a peptide with a definitely disordered and random coil structure. The results presented here could be used for further investigation of the peptidic H wires and for the application of electrochemical methods in the research of proton transfer phenomena in general.
Collapse
Affiliation(s)
- Vlastimil Dorčák
- The Czech Academy of Sciences , Institute of Biophysics , Kralovopolska 135 , 612 65 Brno , Czech Republic
| | - David Novák
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry , Palacky University , Hnevotinska 3 , 775 15 Olomouc , Czech Republic
| | - Martin Kabeláč
- Department of Chemistry, Faculty of Science , University of South Bohemia , Branisovska 31 , 370 05 Ceske Budejovice , Czech Republic
| | - Ondřej Kroutil
- Institute of Physics and Biophysics, Faculty of Science , University of South Bohemia , Branisovska 1760 , 370 05 Ceske Budejovice , Czech Republic
| | - Lucie Bednárová
- The Czech Academy of Sciences , Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2 , 160 00 Prague , Czech Republic
| | - Václav Veverka
- The Czech Academy of Sciences , Institute of Organic Chemistry and Biochemistry , Flemingovo nam. 2 , 160 00 Prague , Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry , Palacky University , Hnevotinska 3 , 775 15 Olomouc , Czech Republic
| |
Collapse
|
23
|
Saraei N, Hietsoi O, Mullins CS, Gupta AJ, Frye BC, Mashuta MS, Buchanan RM, Grapperhaus CA. Streams, cascades, and pools: various water cluster motifs in structurally similar Ni( ii) complexes. CrystEngComm 2018. [DOI: 10.1039/c8ce01153b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hydrogen bonding (HB) interactions are well known to impact the properties of water in the bulk and within hydrated materials.
Collapse
Affiliation(s)
- Nina Saraei
- Department of Chemistry
- University of Louisville
- Louisville
- USA
| | | | | | | | - Brian C. Frye
- Department of Chemistry
- University of Louisville
- Louisville
- USA
| | - Mark S. Mashuta
- Department of Chemistry
- University of Louisville
- Louisville
- USA
| | | | | |
Collapse
|
24
|
Kalathingal M, Sumikama T, Mori T, Oiki S, Saito S. Structure and dynamics of solvent molecules inside the polytheonamide B channel in different environments: a molecular dynamics study. Phys Chem Chem Phys 2018; 20:3334-3348. [DOI: 10.1039/c7cp06299k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The β6.3-helical channel of the marine cytotoxic peptide, polytheonamide B (pTB), is examined in water, the POPC bilayer, and a 1 : 1 chloroform/methanol mixture using all-atom molecular dynamics simulations.
Collapse
Affiliation(s)
- Mahroof Kalathingal
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| | - Takashi Sumikama
- Department of Molecular Physiology and Biophysics
- Faculty of Medical Sciences
- University of Fukui
- Fukui 910-1193
- Japan
| | - Toshifumi Mori
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics
- Faculty of Medical Sciences
- University of Fukui
- Fukui 910-1193
- Japan
| | - Shinji Saito
- Institute for Molecular Science
- Myodaiji
- Okazaki
- Aichi 444-8585
- Japan & School of Physical Sciences
| |
Collapse
|
25
|
Delpuech JJ, Dupont-Leclercq L, Parant S, Henry B. NMR Evidence for Grotthuss-like Proton Diffusion on the Surface of N-Alkyl-ammonium Micelles in Acidic Aqueous Solution. J SOLUTION CHEM 2017. [DOI: 10.1007/s10953-017-0672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
26
|
Lang C, Deng X, Yang F, Yang B, Wang W, Qi S, Zhang X, Zhang C, Dong Z, Liu J. Highly Selective Artificial Potassium Ion Channels Constructed from Pore‐Containing Helical Oligomers. Angew Chem Int Ed Engl 2017; 56:12668-12671. [DOI: 10.1002/anie.201705048] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 07/20/2017] [Indexed: 01/22/2023]
Affiliation(s)
- Chao Lang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xiaoli Deng
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Wei Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xin Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Chenyang Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
27
|
Lang C, Deng X, Yang F, Yang B, Wang W, Qi S, Zhang X, Zhang C, Dong Z, Liu J. Highly Selective Artificial Potassium Ion Channels Constructed from Pore‐Containing Helical Oligomers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705048] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Chao Lang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xiaoli Deng
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Feihu Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Bing Yang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Wei Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Shuaiwei Qi
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Xin Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Chenyang Zhang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Zeyuan Dong
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
| |
Collapse
|
28
|
Iwamoto M, Oiki S. Membrane Perfusion of Hydrophobic Substances Around Channels Embedded in the Contact Bubble Bilayer. Sci Rep 2017; 7:6857. [PMID: 28761089 PMCID: PMC5537337 DOI: 10.1038/s41598-017-07048-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 06/20/2017] [Indexed: 11/12/2022] Open
Abstract
In fluidic biomembranes, lipids and membrane proteins diffuse restlessly, and lipid compositions change steadily. To mimic dynamic behavior of the biomembranes, a method for introducing rapid changes in the constituents in the lipid bilayer was developed. In contact bubble bilayers (CBB), as a water-in-oil droplet bilayer system, the bilayer hydrophobic interior is contiguous with the bulk oil phase. Making use of this geometrical feature as an access route, hydrophobic substances were administered into the bilayer. Polytheonamide B, a cytotoxic hydrophobic peptide, was applied, and oriented incorporation and relevant single-channel current recordings were enabled. Nystatin was pre-loaded in the CBB, and sterol perfusion exhibited slow development of the macroscopic current. On the contrary, the reconstituted KcsA potassium channels immediately attenuate the channel activity when cholesterol was applied. This oil-phase route in the CBB allows rapid perfusion of hydrophobic substances around the bilayer-embedded channels during continuous recordings of channel currents.
Collapse
Affiliation(s)
- Masayuki Iwamoto
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, 910-1193, Fukui, Japan
| | - Shigetoshi Oiki
- Department of Molecular Physiology and Biophysics, University of Fukui Faculty of Medical Sciences, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, 910-1193, Fukui, Japan.
| |
Collapse
|
29
|
Zhou Z, Chen NN, Luo Q, Jia LY, Wang J, Tao JQ. Mixed ligand coordination polymer based on 4,4′-sulfonyldibenzoic acid and 1,3-bis(2-methyl-1-imidazolyl)benzene: Synthesis, characterization, luminescent and proton conducting properties. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.01.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
30
|
Petrosko SH, Johnson R, White H, Mirkin CA. Nanoreactors: Small Spaces, Big Implications in Chemistry. J Am Chem Soc 2016; 138:7443-5. [DOI: 10.1021/jacs.6b05393] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|