1
|
Sun N, Bai S, Dai L, Jia Y. Super-Resolution Microscopy as a Versatile Tool in Probing Molecular Assembly. Int J Mol Sci 2024; 25:11497. [PMID: 39519049 PMCID: PMC11545975 DOI: 10.3390/ijms252111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Molecular assembly is promising in the construction of advanced materials, obtaining structures with specific functions. In-depth investigation of the relationships between the formation, dynamics, structure, and functionality of the specific molecular assemblies is one of the greatest challenges in nanotechnology and chemistry, which is essential in the rational design and development of functional materials for a variety of applications. Super-resolution microscopy (SRM) has been used as a versatile tool for investigating and elucidating the structures of individual molecular assemblies with its nanometric resolution, multicolor ability, and minimal invasiveness, which are also complementary to conventional optical or electronic techniques that provide the direct observation. In this review, we will provide an overview of the representative studies that utilize SRM to probe molecular assemblies, mainly focusing on the imaging of biomolecular assemblies (lipid-based, peptide-based, protein-based, and DNA-based), organic-inorganic hybrid assemblies, and polymer assemblies. This review will provide guidelines for the evaluation of the dynamics of molecular assemblies, assembly and disassembly processes with distinct dynamic behaviors, and multicomponent assembly through the application of these advanced imaging techniques. We believe that this review will inspire new ideas and propel the development of structural analyses of molecular assemblies to promote the exploitation of new-generation functional materials.
Collapse
Affiliation(s)
- Nan Sun
- National Engineering Research Center for Colloidal Materials, Shandong University, Jinan 250100, China;
| | - Shiwei Bai
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luru Dai
- Wenzhou Key Laboratory of Biomedical Imaging, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China;
| | - Yi Jia
- Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Key Lab of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry Chinese Academy of Sciences, Beijing 100190, China;
| |
Collapse
|
2
|
Sun Y, Chen S, Hou Y, Kang SH, Lin JM. Organelle Proximity Analysis for Enhanced Quantification of Mitochondria-Endoplasmic Reticulum Interactions in Single Cells via Super-Resolution Microscopy. Anal Chem 2024; 96:11557-11565. [PMID: 38959297 DOI: 10.1021/acs.analchem.4c02338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Mitochondria (MT) and the endoplasmic reticulum (ER) maintain lipid and calcium homeostasis through membrane contacts, particularly MT-ER contacts (MERCs), spanning distances from 10 to 50 nm. However, the variation of different distance ranges and the metabolic factors influencing this variation remain poorly understood. This study employed microfluidic chip-based super-resolution microscopy in conjunction with a Moore-Neighbor tracing-incorporated organelle proximity analysis algorithm. This approach enabled precise three-dimensional localization of single-fluorescence protein molecules within narrow and irregular membrane proximities. It achieved lateral localization precision of less than 20 nm, resulting in a minimum MERC distance of approximately 8 nm in spatial and mean distances across multiple threshold ranges. Additionally, we demonstrated that the MERC distance variation was correlated with MT size rather than ER width. The proportion of each distance range varied significantly after the stimuli. Free cholesterol showed a negative correlation with various distances, while distances of 10-30 nm were associated with glucose, glutamine, and pyruvic acid. Furthermore, the 30-40 nm range was influenced by citric acid. These results underscore the role of advanced subcellular organelle analysis in elucidating the single-molecule behavior and organelle morphology in single-cell studies.
Collapse
Affiliation(s)
- Yucheng Sun
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shiyu Chen
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ying Hou
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Seong Ho Kang
- Department of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Jin-Ming Lin
- Beijing Key Laboratory of Microanalytical Methods and Instrumentation, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Qiao Q, Liu W, Zhang Y, Chen J, Wang G, Tao Y, Miao L, Jiang W, An K, Xu Z. In Situ Real‐Time Nanoscale Resolution of Structural Evolution and Dynamics of Fluorescent Self‐Assemblies by Super‐Resolution Imaging. Angew Chem Int Ed Engl 2022; 61:e202208678. [DOI: 10.1002/anie.202208678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenjuan Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yinchan Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jie Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangying Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yi Tao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lu Miao
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| | - Wenchao Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Kai An
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry Dalian Institute of Chemical Physics Chinese Academy of Sciences 457 Zhongshan Road Dalian 116023 China
| |
Collapse
|
4
|
Qiao Q, Liu W, Zhang Y, Chen J, Wang G, Tao Y, Miao L, Jiang W, An K, Xu Z. In Situ Real‐time Nanoscale Resolution of Structural Evolution and Dynamics of Fluorescent Self‐assemblies by Super‐Resolution Imaging. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qinglong Qiao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Wenjuan Liu
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Yinchan Zhang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Jie Chen
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Guangying Wang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Yi Tao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Lu Miao
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Wenchao Jiang
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Kai An
- Dalian Institute of Chemical Physics Department of Biotechnology department of biotechnology CHINA
| | - Zhaochao Xu
- Dalian Institute of Chemical Physics Department of Biotechnology Department of Biological Technology 457 Zhongshan Road 116023 Dalian CHINA
| |
Collapse
|
5
|
Gerth M, Berrocal JA, Bochicchio D, Pavan GM, Voets IK. Discordant Supramolecular Fibres Reversibly Depolymerised by Temperature and Light. Chemistry 2021; 27:1829-1838. [PMID: 33176038 PMCID: PMC7898537 DOI: 10.1002/chem.202004115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/09/2020] [Indexed: 11/24/2022]
Abstract
Synthetic stimuli responsive supramolecular polymers attract increasing interest for their ability to mimic the unique properties of natural assemblies. Here we focus on the well-studied benzene-1,3,5-tricarboxamide (BTA) motif, and substitute it with two (S)-3,7-dimethyloctyl groups and an azobenzene photoswitch. We demonstrate the UV (λ=365 nm) induced depolymerisation of the helical hydrogen-bonded polymers in methylcyclohexane (MCH) through circular dichroism and UV-vis spectroscopy in dilute solution (15 μm), and NMR and iPAINT super-resolution microscopy in concentrated solution (300 μm). The superstructure can be regenerated after thermal depolymerization, whilst repeated depolymerisation can be reversed without degradation by irradiating at λ=455 nm. Molecular dynamics simulations show that the most energetically favourable configuration for these polymers in MCH is a left-handed helical network of hydrogen-bonds between the BTA cores surrounded by two right-handed helices of azobenzenes. The responsiveness to two orthogonal triggers across a broad concentration range holds promise for use in, for example, photo-responsive gelation.
Collapse
Affiliation(s)
- Marieke Gerth
- Self-Organizing Soft Matter groupFaculty of Chemical Engineering and ChemistryEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
- Laboratory of Physical ChemistryFaculty of Chemical Engineering and ChemistryEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
- Van't Hoff Laboratory for Physical and Colloid ChemistryDebye Institute for Nanomaterials ScienceUtrecht UniversityPadualaan 83584CHUtrechtThe Netherlands
| | - José Augusto Berrocal
- Adolphe Merkle InstituteUniversity of FribourgChemin des Verdiers 41700FribourgSwitzerland
| | - Davide Bochicchio
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandGalleria 2, Via Cantonale 2c6928MannoSwitzerland
| | - Giovanni M. Pavan
- Department of Innovative TechnologiesUniversity of Applied Sciences and Arts of Southern SwitzerlandGalleria 2, Via Cantonale 2c6928MannoSwitzerland
- Department of Applied Science and TechnologyPolitecnico di TorinoCorso Duca degli Abruzzi 2410129TorinoItaly
| | - Ilja K. Voets
- Self-Organizing Soft Matter groupFaculty of Chemical Engineering and ChemistryEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
- Institute for Complex Molecular SystemsEindhoven University of TechnologyGroene Loper 35612AEEindhovenThe Netherlands
| |
Collapse
|
6
|
Calabrase W, Bishop LDC, Dutta C, Misiura A, Landes CF, Kisley L. Transforming Separation Science with Single-Molecule Methods. Anal Chem 2020; 92:13622-13629. [PMID: 32936608 DOI: 10.1021/acs.analchem.0c02572] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Empirical optimization of the multiscale parameters underlying chromatographic and membrane separations leads to enormous resource waste and production costs. A bottom-up approach to understand the physical phenomena underlying challenges in separations is possible with single-molecule observations of solute-stationary phase interactions. We outline single-molecule fluorescence techniques that can identify key interactions under ambient conditions. Next, we describe how studying increasingly complex samples heightens the relevance of single-molecule results to industrial applications. Finally, we illustrate how separation methods that have not been studied at the single-molecule scale can be advanced, using chiral chromatography as an example case. We hope new research directions based on a molecular approach to separations will emerge based on the ideas, technologies, and open scientific questions presented in this Perspective.
Collapse
Affiliation(s)
- William Calabrase
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Logan D C Bishop
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Chayan Dutta
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Anastasiia Misiura
- Department of Chemistry, Rice University, Houston, Texas 77251, United States
| | - Christy F Landes
- Department of Chemistry, Rice University, Houston, Texas 77251, United States.,Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77251, United States.,Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77251, United States.,Smalley-Curl Institute, Rice University, Houston, Texas 77251, United States
| | - Lydia Kisley
- Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, United States.,Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
Davis JL, Zhang Y, Yi S, Du F, Song KH, Scott EA, Sun C, Zhang HF. Super-Resolution Imaging of Self-Assembled Nanocarriers Using Quantitative Spectroscopic Analysis for Cluster Extraction. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2291-2299. [PMID: 32069413 PMCID: PMC7445082 DOI: 10.1021/acs.langmuir.9b03149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Self-assembled nanocarriers have inspired a range of applications for bioimaging, diagnostics, and drug delivery. The noninvasive visualization and characterization of these nanocarriers are important to understand their structure to function relationship. However, the quantitative visualization of nanocarriers in the sample's native environment remains challenging with the use of existing technologies. Single-molecule localization microscopy (SMLM) has the potential to provide both high-resolution visualization and quantitative analysis of nanocarriers in their native environment. However, nonspecific binding of fluorescent probes used in SMLM can introduce artifacts, which imposes challenges in the quantitative analysis of SMLM images. We showed the feasibility of using spectroscopic point accumulation for imaging in nanoscale topography (sPAINT) to visualize self-assembled polymersomes (PS) with molecular specificity. Furthermore, we analyzed the unique spectral signatures of Nile Red (NR) molecules bound to the PS to reject artifacts from nonspecific NR bindings. We further developed quantitative spectroscopic analysis for cluster extraction (qSPACE) to increase the localization density by 4-fold compared to sPAINT; thus, reducing variations in PS size measurements to less than 5%. Finally, using qSPACE, we quantitatively imaged PS at various concentrations in aqueous solutions with ∼20 nm localization precision and 97% reduction in sample misidentification relative to conventional SMLM.
Collapse
Affiliation(s)
- Janel L. Davis
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Yang Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Sijia Yi
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Fanfan Du
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Ki-Hee Song
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Evan A. Scott
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Cheng Sun
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| | - Hao F. Zhang
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208
| |
Collapse
|
8
|
Chen S, Wang J, Xin B, Yang Y, Ma Y, Zhou Y, Yuan L, Huang Z, Yuan Q. Direct Observation of Nanoparticles within Cells at Subcellular Levels by Super-Resolution Fluorescence Imaging. Anal Chem 2019; 91:5747-5752. [PMID: 30938156 DOI: 10.1021/acs.analchem.8b05919] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Direct observation of nanoparticles with high spatial resolution at subcellular levels is of great importance to understand the nanotoxicology and promote the biomedical applications of nanoparticles. Super-resolution fluorescence microscopy can break the diffraction resolution limit to achieve spatial resolution of tens of nanometers, making it ideal for highly accurate observation of nanoparticles in the cellular world. In this study, we introduced the employment of super-resolution fluorescence imaging for monitoring nanoparticles within cells. Carbocyanine dyes Alexa Flour 647 labeled mesoporous silica nanoparticles (designated as MSNs-AF647) were constructed as the super-resolution imaging nanoplatform in this work as proof of concept. The MSNs-AF647 were incubated with Hela cells, and the nanoparticles within cells were further monitored by super-resolution fluorescence microscopy. The fluorescence images of MSNs-AF647 within cells captured with the super-resolution fluorescence microscopy showed a much higher spatial resolution than that obtained using conventional fluorescence microscopy, showing that super-resolution fluorescence images can provide more accurate information to locate the nanoparticles at the subcellular levels. Moreover, other functional molecules can be easily loaded into the MSNs-AF647 super-resolution imaging nanoplatform, which suggested that super-resolution fluorescence imaging can further be applied to various bioimaging-related areas, such as imaging-guided therapy, with the aid of the MSNs-AF647 nanoplatform. This study demonstrates that super-resolution fluorescence microscopy offers a highly accurate method to study nanoparticles in the cellular world. We anticipate this strategy may further be applied to research areas such as studying the nanotoxicology and optimization of nanoparticle-based bioprobes or drugs by designing new nanostructured materials with multifunctional properties based on MSNs-AF647.
Collapse
Affiliation(s)
- Shasha Chen
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Jie Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Bo Xin
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - Yanbing Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Yurou Ma
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Yu Zhou
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Liangjie Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| | - Zhenli Huang
- Wuhan National Laboratory for Optoelectronics , Huazhong University of Science and Technology , Wuhan 430074 , PR China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences , Wuhan University , Wuhan 430072 , PR China
| |
Collapse
|
9
|
Pujals S, Feiner-Gracia N, Delcanale P, Voets I, Albertazzi L. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat Rev Chem 2019. [DOI: 10.1038/s41570-018-0070-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
10
|
Qiang Z, Shebek KM, Irie M, Wang M. A Polymerizable Photoswitchable Fluorophore for Super-Resolution Imaging of Polymer Self-Assembly and Dynamics. ACS Macro Lett 2018; 7:1432-1437. [PMID: 35651234 DOI: 10.1021/acsmacrolett.8b00686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-molecule super-resolution microscopy has become a standard imaging tool in the life sciences for visualizing nanostructures in situ, but the application of this technique in polymer science is much less explored. A key bottleneck is the lack of fluorophores and simple covalent attachment strategies onto polymer chains. Here, we report a functional diarylethene-based photoswitchable fluorophore that can be directly incorporated into polymer backbones through copolymerization, which significantly streamlines the labeling strategy, with no further postcoupling reactions or purifications needed. The attachment of fluorophores onto selectively labeled polymers enables super-resolution imaging of a series of model polymer blend systems with different nanostructures and chemical compositions. As each individual fluorophore is able to switch several times on average between its bright and dark state, multiple time-lapse images can be acquired to observe the dynamic nanostructural evolution of polymer blends upon solvent vapor annealing. With this demonstration of a universal, simplified labeling strategy and the ability to image polymer assembly under native conditions, this reported fluorophore may promote the widespread use of super-resolution microscopy in the polymer community.
Collapse
Affiliation(s)
- Zhe Qiang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Kevin M. Shebek
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Masahiro Irie
- Department of Chemistry and Research Center for Smart Molecules, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshimaku, Tokyo 171-8501, Japan
| | - Muzhou Wang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Potential enthalpic energy of water in oils exploited to control supramolecular structure. Nature 2018; 558:100-103. [DOI: 10.1038/s41586-018-0169-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 03/16/2018] [Indexed: 11/09/2022]
|
12
|
Adelizzi B, Aloi A, Van Zee NJ, Palmans ARA, Meijer EW, Voets IK. Painting Supramolecular Polymers in Organic Solvents by Super-resolution Microscopy. ACS NANO 2018; 12:4431-4439. [PMID: 29697958 PMCID: PMC5968428 DOI: 10.1021/acsnano.8b00396] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/26/2018] [Indexed: 05/29/2023]
Abstract
Despite the rapid development of complex functional supramolecular systems, visualization of these architectures under native conditions at high resolution has remained a challenging endeavor. Super-resolution microscopy was recently proposed as an effective tool to unveil one-dimensional nanoscale structures in aqueous media upon chemical functionalization with suitable fluorescent probes. Building upon our previous work, which enabled photoactivation localization microscopy in organic solvents, herein, we present the imaging of one-dimensional supramolecular polymers in their native environment by interface point accumulation for imaging in nanoscale topography (iPAINT). The noncovalent staining, typical of iPAINT, allows the investigation of supramolecular polymers' structure in situ without any chemical modification. The quasi-permanent adsorption of the dye to the polymer is exploited to identify block-like arrangements within supramolecular fibers, which were obtained upon mixing homopolymers that were prestained with different colors. The staining of the blocks, maintained by the lack of exchange of the dyes, permits the imaging of complex structures for multiple days. This study showcases the potential of PAINT-like strategies such as iPAINT to visualize multicomponent dynamic systems in their native environment with an easy, synthesis-free approach and high spatial resolution.
Collapse
Affiliation(s)
- Beatrice Adelizzi
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and
Organic Chemistry, Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry, and Laboratory of
Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Antonio Aloi
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and
Organic Chemistry, Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry, and Laboratory of
Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Nathan J. Van Zee
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and
Organic Chemistry, Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry, and Laboratory of
Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Anja R. A. Palmans
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and
Organic Chemistry, Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry, and Laboratory of
Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - E. W. Meijer
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and
Organic Chemistry, Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry, and Laboratory of
Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Ilja K. Voets
- Institute
for Complex Molecular Systems, Laboratory of Macromolecular and
Organic Chemistry, Department of Chemical Engineering and Chemistry, Laboratory of Self-Organizing
Soft Matter, Department of Chemical Engineering and Chemistry, and Laboratory of
Physical Chemistry, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
13
|
Adelizzi B, Aloi A, Markvoort AJ, Ten Eikelder HMM, Voets IK, Palmans ARA, Meijer EW. Supramolecular Block Copolymers under Thermodynamic Control. J Am Chem Soc 2018; 140:7168-7175. [PMID: 29733207 PMCID: PMC6002778 DOI: 10.1021/jacs.8b02706] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
![]()
Supramolecular
block copolymers are becoming attractive materials
in nascent optoelectronic and catalytic technologies. However, their
dynamic nature precludes the straightforward tuning and analysis of
the polymer’s structure. Here we report the elucidation on
the microstructure of triarylamine triamide-based supramolecular block
copolymers through a comprehensive battery of spectroscopic, theoretical,
and super-resolution microscopic techniques. Via spectroscopic analysis
we demonstrate that the direct mixing of preassembled homopolymers
and the copolymerization induced by slow cooling of monomers lead
to the formation of the same copolymer’s architecture. The
small but pronounced deviation of the experimental spectra from the
linear combination of the homopolymers’ spectra hints at the
formation of block copolymers. A mass balance model is introduced
to further unravel the microstructure of the copolymers formed, and
it confirms that stable multiblock supramolecular copolymers can be
accessed from different routes. The multiblock structure of the supramolecular
copolymers originates from the fine balance between favorable hydrogen-bonding
interactions and a small mismatch penalty between two different monomers.
Finally, we visualized the formation of the supramolecular block copolymers
by adapting a recently developed super-resolution microscopy technique,
interface point accumulation for imaging in nanoscale topography (iPAINT),
for visualizing the architectures formed in organic media. Combining
multiple techniques was crucial to unveil the microstructure of these
complex dynamic supramolecular systems.
Collapse
|
14
|
Roubinet B, Bischoff M, Nizamov S, Yan S, Geisler C, Stoldt S, Mitronova GY, Belov VN, Bossi ML, Hell SW. Photoactivatable Rhodamine Spiroamides and Diazoketones Decorated with “Universal Hydrophilizer” or Hydroxyl Groups. J Org Chem 2018; 83:6466-6476. [DOI: 10.1021/acs.joc.8b00756] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Benôit Roubinet
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Matthias Bischoff
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Shamil Nizamov
- Abberior GmbH, Hans-Adolf-Krebs-Weg 1, 37077 Göttingen, Germany
| | - Sergey Yan
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Claudia Geisler
- Department of Optical Nanoscopy, Laser-Laboratorium Göttingen e.V., 37077 Göttingen, Germany
| | - Stefan Stoldt
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Gyuzel Y. Mitronova
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Vladimir N. Belov
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Mariano L. Bossi
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Stefan W. Hell
- Department of Nanobiophotonics, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
15
|
Nevskyi O, Sysoiev D, Dreier J, Stein SC, Oppermann A, Lemken F, Janke T, Enderlein J, Testa I, Huhn T, Wöll D. Fluorescent Diarylethene Photoswitches-A Universal Tool for Super-Resolution Microscopy in Nanostructured Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703333. [PMID: 29325203 DOI: 10.1002/smll.201703333] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Super-resolution fluorescence microscopy allows for unprecedented in situ visualization of biological structures, but its application to materials science has so far been comparatively limited. One of the main reasons is the lack of powerful dyes that allow for labeling and photoswitching in materials science systems. In this study it is shown that appropriate substitution of diarylethenes bearing a fluorescent closed and dark open form paves the way for imaging nanostructured materials with three of the most popular super-resolution fluorescence microscopy methods that are based on different concepts to achieve imaging beyond the diffraction limit of light. The key to obtain optimal resolution lies in a proper control over the photochemistry of the photoswitches and its adaption to the system to be imaged. It is hoped that the present work will provide researchers with a guide to choose the best photoswitch derivative for super-resolution microscopy in materials science, just like the correct choice of a Swiss Army Knife's tool is essential to fulfill a given task.
Collapse
Affiliation(s)
- Oleksii Nevskyi
- Institute for Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Dmytro Sysoiev
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Jes Dreier
- Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17121, Solna, Sweden
| | - Simon Christoph Stein
- III. Institute of Physics - Biophysics, Georg-August University, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Alex Oppermann
- Institute for Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Florian Lemken
- Institute for Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Tobias Janke
- Institute for Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Jörg Enderlein
- III. Institute of Physics - Biophysics, Georg-August University, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Ilaria Testa
- Science for Life Laboratory, KTH Royal Institute of Technology, Tomtebodavägen 23A, 17121, Solna, Sweden
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, Universitätsstr. 10, 78464, Konstanz, Germany
| | - Dominik Wöll
- Institute for Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| |
Collapse
|
16
|
Cerbino R. Quantitative optical microscopy of colloids: The legacy of Jean Perrin. Curr Opin Colloid Interface Sci 2018. [DOI: 10.1016/j.cocis.2018.03.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
17
|
|
18
|
Deng G, Zhou F, Wu Z, Zhang F, Niu K, Kang Y, Liu X, Wang Q, Wang Y, Wang Q. Inhibition of cancer cell migration with CuS@ mSiO 2-PEG nanoparticles by repressing MMP-2/MMP-9 expression. Int J Nanomedicine 2017; 13:103-116. [PMID: 29317819 PMCID: PMC5743130 DOI: 10.2147/ijn.s148487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The metastasis of cancer cells is a vital aspect of disease progression and therapy. Although a few nanoparticles (NPs) aimed at controlling metastasis in cancer therapy have been reported, the NPs are normally combined with drugs, yet the direct therapeutic effects of the NPs are not reported. To study the direct influence of NPs on cancer metastasis, the potential suppression capacity of CuS@mSiO2-PEG NPs to tumor cell migration, a kind of typical photothermal NPs, was systemically evaluated in this study. Using CuS@mSiO2-PEG NP stimulation and a transwell migration assay, we found that the migration of HeLa cells was significantly decreased. This phenomenon may be associated with two classical proteins in metastasis: matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9). In addition, the mechanism may closely associate with non-receptor tyrosine kinase protein (SRC)/focal adhesion kinase (FAK) signaling pathway which varies in vivo and in vitro. To confirm the differences in the expression of SRC and FAK, related inhibitors were studied for additional comparison. Also, the results indicated that even though the migration inhibition was closely related to SRC and FAK signaling pathway, there may be another unknown regulation mechanism existing and its metastasis inhibition was significant. Confirmed by long-term survival curve study, CuS@mSiO2-PEG NPs significantly reduced the metastasis of cancer cells and improved the survival rates of metastasis in a mouse model. Thus, we believe that the direct influence of NPs on cancer cell metastasis is a promising study topic.
Collapse
Affiliation(s)
| | | | - Zizheng Wu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine.,Department of Orthopaedics, Shanghai General Hospital of Nanjing Medical University.,Department of Orthopaedics, Baoshan Branch of Shanghai General Hospital of Shanghai Jiaotong University
| | | | - Kerun Niu
- Department of Orthopaedics, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine.,Department of Orthopaedics, Shanghai General Hospital of Nanjing Medical University
| | - Yingjie Kang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine
| | - Xijian Liu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science
| | | | - Yin Wang
- Ultrasound Department of Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | | |
Collapse
|
19
|
Pujals S, Tao K, Terradellas A, Gazit E, Albertazzi L. Studying structure and dynamics of self-assembled peptide nanostructures using fluorescence and super resolution microscopy. Chem Commun (Camb) 2017; 53:7294-7297. [PMID: 28447085 PMCID: PMC6354906 DOI: 10.1039/c7cc02176c] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Understanding the formation and properties of self-assembled peptide nanostructures is the basis for the design of new architectures for various applications. Here we show the potential of fluorescence and super resolution imaging to unveil the structural and dynamic features of peptide nanofibers with high spatiotemporal resolution.
Collapse
Affiliation(s)
- Sílvia Pujals
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), C\ Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Kai Tao
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adrià Terradellas
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), C\ Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Lorenzo Albertazzi
- Nanoscopy for Nanomedicine Group, Institute for Bioengineering of Catalonia (IBEC), C\ Baldiri Reixac 15-21, Helix Building, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Osakada Y, Zhang K. Single-Particle Tracking Reveals a Dynamic Role of Actin Filaments in Assisting Long-Range Axonal Transport in Neurons. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yasuko Osakada
- Department of Chemistry, Stanford University, Stanford, CA 94305 (USA)
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047
| | - Kai Zhang
- Department of Biochemistry, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, 314 B Roger Adams Laboratory, Urbana, Illinois, 61801 (USA)
| |
Collapse
|
21
|
Jazi AA, Ploetz E, Arizki M, Dhandayuthapani B, Waclawska I, Krämer R, Ziegler C, Cordes T. Caging and Photoactivation in Single-Molecule Förster Resonance Energy Transfer Experiments. Biochemistry 2017; 56:2031-2041. [PMID: 28362086 PMCID: PMC5390306 DOI: 10.1021/acs.biochem.6b00916] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Caged
organic fluorophores are established tools for localization-based
super-resolution imaging. Their use relies on reversible deactivation
of standard organic fluorophores by chemical reduction or commercially
available caged dyes with ON switching of the fluorescent signal by
ultraviolet (UV) light. Here, we establish caging of cyanine fluorophores
and caged rhodamine dyes, i.e., chemical deactivation of fluorescence,
for single-molecule Förster resonance energy transfer (smFRET)
experiments with freely diffusing molecules. They allow temporal separation
and sorting of multiple intramolecular donor–acceptor pairs
during solution-based smFRET. We use this “caged FRET”
methodology for the study of complex biochemical species such as multisubunit
proteins or nucleic acids containing more than two fluorescent labels.
Proof-of-principle experiments and a characterization of the uncaging
process in the confocal volume are presented. These reveal that chemical
caging and UV reactivation allow temporal uncoupling of convoluted
fluorescence signals from, e.g., multiple spectrally similar donor
or acceptor molecules on nucleic acids. We also use caging without
UV reactivation to remove unwanted overlabeled species in experiments
with the homotrimeric membrane transporter BetP. We finally outline
further possible applications of the caged FRET methodology, such
as the study of weak biochemical interactions, which are otherwise
impossible with diffusion-based smFRET techniques because of the required
low concentrations of fluorescently labeled biomolecules.
Collapse
Affiliation(s)
- Atieh Aminian Jazi
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Institute of Biophysics and Biophysical Chemistry, Universität Regensburg , 95053 Regensburg, Germany
| | - Evelyn Ploetz
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Muhamad Arizki
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | | | - Izabela Waclawska
- Institute of Biophysics and Biophysical Chemistry, Universität Regensburg , 95053 Regensburg, Germany
| | - Reinhard Krämer
- Institute for Biochemistry, Universität Köln , 50674 Köln, Germany
| | - Christine Ziegler
- Institute of Biophysics and Biophysical Chemistry, Universität Regensburg , 95053 Regensburg, Germany
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Materials, University of Groningen , Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
22
|
Chen T, Dong B, Chen K, Zhao F, Cheng X, Ma C, Lee S, Zhang P, Kang SH, Ha JW, Xu W, Fang N. Optical Super-Resolution Imaging of Surface Reactions. Chem Rev 2017; 117:7510-7537. [DOI: 10.1021/acs.chemrev.6b00673] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Chen
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Bin Dong
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kuangcai Chen
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Fei Zhao
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaodong Cheng
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Changbei Ma
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Seungah Lee
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Peng Zhang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seong Ho Kang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ji Won Ha
- Department
of Chemistry, University of Ulsan, 93 Dahak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| | - Weilin Xu
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Ning Fang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
23
|
Aloi A, Guibert C, Olijve LL, Voets IK. Morphological evolution of complex coacervate core micelles revealed by iPAINT microscopy. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
24
|
Nevskyi O, Sysoiev D, Oppermann A, Huhn T, Wöll D. Nanoscopic Visualization of Soft Matter Using Fluorescent Diarylethene Photoswitches. Angew Chem Int Ed Engl 2016; 55:12698-702. [PMID: 27619176 DOI: 10.1002/anie.201606791] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 11/07/2022]
Abstract
The in situ imaging of soft matter is of paramount importance for a detailed understanding of functionality on the nanoscopic scale. Although super-resolution fluorescence microscopy methods with their unprecedented imaging capabilities have revolutionized research in the life sciences, this potential has been far less exploited in materials science. One of the main obstacles for a more universal application of super-resolved fluorescence microscopy methods is the limitation of readily available suitable dyes to overcome the diffraction limit. Here, we report a novel diarylethene-based photoswitch with a highly fluorescent closed and a nonfluorescent open form. Its photophysical properties, switching behavior, and high photostability make the dye an ideal candidate for photoactivation localization microscopy (PALM). It is capable of resolving apolar structures with an accuracy far beyond the diffraction limit of optical light in cylindrical micelles formed by amphiphilic block copolymers.
Collapse
Affiliation(s)
- Oleksii Nevskyi
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Dmytro Sysoiev
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Alex Oppermann
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany
| | - Thomas Huhn
- Department of Chemistry, University of Konstanz, Universitätsstrasse 10, 78464, Konstanz, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074, Aachen, Germany.
| |
Collapse
|
25
|
Nevskyi O, Sysoiev D, Oppermann A, Huhn T, Wöll D. Nanoskopische Bildgebung weicher Materie mittels fluoreszierender Diarylethen-Photoschalter. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201606791] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Oleksii Nevskyi
- Institut für Physikalische Chemie; RWTH Aachen University; Landoltweg 2 52074 Aachen Deutschland
| | - Dmytro Sysoiev
- Fachbereich Chemie; Universität Konstanz; Universitätsstraße 10 78464 Konstanz Deutschland
| | - Alex Oppermann
- Institut für Physikalische Chemie; RWTH Aachen University; Landoltweg 2 52074 Aachen Deutschland
| | - Thomas Huhn
- Fachbereich Chemie; Universität Konstanz; Universitätsstraße 10 78464 Konstanz Deutschland
| | - Dominik Wöll
- Institut für Physikalische Chemie; RWTH Aachen University; Landoltweg 2 52074 Aachen Deutschland
| |
Collapse
|