1
|
Shi S, Ma ZD, Li YX, Qi SC, Sun LB. Spiropyran-Incorporated Y Zeolite: A Visible-Light-Responsive System for Controllable CO adsorption. CHEM & BIO ENGINEERING 2024; 1:783-789. [PMID: 39974184 PMCID: PMC11792910 DOI: 10.1021/cbe.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 02/21/2025]
Abstract
The development of high-performance adsorbents is vital for adsorptive separation. Conventional adsorbents have limitations in combining selective adsorption and efficient desorption due to their fixed surface properties. In this work, we have constructed spiropyran (SP)-based visible-light-responsive adsorbents for controllable CO adsorption by synthesizing SP in situ in Y zeolite via the ship-in-the-bottle method. This avoids the drawbacks associated with the vast majority of systems that modulate adsorption capacity by UV light. SP molecules can undergo reversible isomerization within the Y zeolite, which exhibit the merocyanine (MC) state in the dark and revert to the SP form upon visible light stimulation. The results show that the isomerization of MC to SP leads to a tunable CO adsorption capacity of up to 34%. Simulations performed by density functional theory reveal that MC is more likely to trap CO molecules than SP due to its higher binding energy with CO. We further demonstrate that the isomerization-induced tunable adsorption capacity can be maintained during cycles without degradation.
Collapse
Affiliation(s)
- Shu Shi
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zi-Da Ma
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu-Xia Li
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Shi-Chao Qi
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented
Chemical Engineering, Jiangsu National Synergetic Innovation Center
for Advanced Materials (SICAM), College of Chemical Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
2
|
Wang C, Zhang XW, Chen XX, Zhang WX, Zhang JP. Isomeric Porous Cu(I) Triazolate Frameworks Showing Periodic and Aperiodic Flexibility for Efficient CO Separation. J Am Chem Soc 2024; 146:13886-13893. [PMID: 38739909 DOI: 10.1021/jacs.4c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Guest-induced (crystal-to-crystal) transformation, i.e., periodic flexibility, is a typical feature of molecule-based crystalline porous materials, but its role for adsorptive separation is controversial. On the other hand, aperiodic flexibility is rarely studied. This work reports a pair of isomeric Cu(I) triazolate frameworks, namely, α-[Cu(fetz)] (MAF-2Fa) and β-[Cu(fetz)] (MAF-2Fb), which show typical periodic and aperiodic flexibility for CO chemical adsorption, respectively. Quantitative mixture breakthrough experiments show that, while MAF-2Fa exhibits high adsorption capacity at high pressures but negligible adsorption below the threshold pressure and with leakage concentrations of 3-8%, MAF-2Fb exhibits relatively low adsorption capacity at high pressures but no leakage (residual CO concentration <1 ppb). Tandem connection of MAF-2Fa and MAF-2Fb can combine their advantages of high CO adsorption capacities at high and low pressures, respectively. MAF-2Fa and MAF-2Fb can both keep the separation performances unchanged at high relative humidities, but only MAF-2Fb shows a unique coadsorption behavior at a relative humidity of 82%, which can be used to improve purification performances.
Collapse
Affiliation(s)
- Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiao-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Leng J, Xu J, Li Y, Wang SM, Qin HL. A mild protocol for efficient preparation of functional molecules containing triazole. RSC Adv 2024; 14:7601-7608. [PMID: 38440271 PMCID: PMC10911410 DOI: 10.1039/d4ra01271b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/06/2024] Open
Abstract
The construction of a class of novel triazole molecules containing sulfonyl fluoride functionalities was achieved through Cu-catalyzed click chemistry in good to excellent yields. The sulfonyl fluoride moieties were cleaved completely under base conditions to produce N-unsubstituted triazoles quantitatively, which provides a strategy to combine SuFEx click chemistry with Cu-catalyzed click chemistry ingeniously.
Collapse
Affiliation(s)
- Jing Leng
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Jie Xu
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Yanan Li
- School of Chemistry and Chemical Engineering, Yangzhou Polytechnic Institute Yangzhou Jiangsu 225127 P. R. China
| | - Shi-Meng Wang
- Xiangyang Public Inspection and Testing Center No. 69, Taiziwan Road Xiangyang Hubei Province 441000 P. R. China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures, School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology 205 Luoshi Road Wuhan Hubei Province 430070 P. R. China
| |
Collapse
|
4
|
Zhang XW, Wang C, Mo ZW, Chen XX, Zhang WX, Zhang JP. Quasi-open Cu(I) sites for efficient CO separation with high O 2/H 2O tolerance. NATURE MATERIALS 2024; 23:116-123. [PMID: 37957269 DOI: 10.1038/s41563-023-01729-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/16/2023] [Indexed: 11/15/2023]
Abstract
Carbon monoxide (CO) separation relies on chemical adsorption but suffers from the difficulty of desorption and instability of open metal sites against O2, H2O and so on. Here we demonstrate quasi-open metal sites with hidden or shielded coordination sites as a promising solution. Possessing the trigonal coordination geometry (sp2), Cu(I) ions in porous frameworks show weak physical adsorption for non-target guests. Rational regulation of framework flexibility enables geometry transformation to tetrahedral geometry (sp3), generating a fourth coordination site for the chemical adsorption of CO. Quantitative breakthrough experiments at ambient conditions show CO uptakes up to 4.1 mmol g-1 and CO selectivity up to 347 against CO2, CH4, O2, N2 and H2. The adsorbents can be completely regenerated at 333-373 K to recover CO with a purity of >99.99%, and the separation performances are stable in high-concentration O2 and H2O. Although CO leakage concentration generally follows the structural transition pressure, large amounts (>3 mmol g-1) of ultrahigh-purity (99.9999999%, 9N; CO concentration < 1 part per billion) gases can be produced in a single adsorption process, demonstrating the usefulness of this approach for separation applications.
Collapse
Affiliation(s)
- Xue-Wen Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Chao Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Zong-Wen Mo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Xiao-Xian Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Wei-Xiong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China
| | - Jie-Peng Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, GBRCE for Functional Molecular Engineering, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
5
|
Hu X, Su NQ. Targeted Spin-State Regulation to Boost Oxygen Reduction Reaction. J Phys Chem Lett 2023; 14:9872-9882. [PMID: 37902469 DOI: 10.1021/acs.jpclett.3c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Catalytic reactions are known to be significantly affected by spin states and their variations during reaction processes, yet the mechanisms behind them remain not fully understood, thus preventing the rational optimization of catalysis. Here, we explore the relationship between the spin states of active sites and their catalytic performance, taking the oxygen reduction reaction as an example. We demonstrate that the catalytic performance is spin-state-dependent and can be improved by adjusting spin states during the catalytic process. To this end, we further investigate the possibility of altering the spin states of transition metals through the application of external fields, such as adsorbed species. By studying the influence of the strength of adsorbed ligands on spin states and its impact on catalytic performance, our results show that optimal catalytic performance is achieved when the strength of the external field is neither too strong nor too weak, forming a volcano-like relationship between the catalytic performance and the external field strength. Our findings can have far-reaching implications for the rational design of high-performance catalysis.
Collapse
Affiliation(s)
- Xiuli Hu
- Department of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| | - Neil Qiang Su
- Department of Chemistry, Frontiers Science Center for New Organic Matter, State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
6
|
Mariano AL, Fernández-Blanco A, Poloni R. Perspective from a Hubbard U-density corrected scheme towards a spin crossover-mediated change in gas affinity. J Chem Phys 2023; 159:154108. [PMID: 37855313 DOI: 10.1063/5.0157971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023] Open
Abstract
By employing a recently proposed Hubbard U density-corrected scheme within density functional theory, we provide design principles towards the design of materials exhibiting a spin crossover-assisted gas release. Small molecular fragments are used as case study to identify two main mechanisms behind the change in binding energy upon spin transitions. The feasibility of the proposed mechanism in porous crystals is assessed by correlating the change in binding energy of CO2, CO, N2, and H2, upon spin crossover, with the adiabatic energy difference associated with the spin state change of the square-planar metal in Hofmann-type clathrates (M = Fe, Mn, Ni). A few promising cases are identified for the adsorption of intermediate ligand field strength molecules such as N2 and H2. The latter stands out as the most original result as the strong interaction in low spin, as expected from a Kubas mechanism, results in a large change in binding energy. This work provides a general perspective towards the engineering of open-metal site frameworks exhibiting local environments designed to have a spin crossover upon adsorption of specific gas molecules.
Collapse
Affiliation(s)
- A L Mariano
- SIMaP, Grenoble-INP, CNRS, University of Grenoble Alpes, 38042 Grenoble, France
| | - A Fernández-Blanco
- SIMaP, Grenoble-INP, CNRS, University of Grenoble Alpes, 38042 Grenoble, France
- Institut Laue Langevin, 71 Avenue des Martyrs, CS 20156-38042 Grenoble, France
| | - R Poloni
- SIMaP, Grenoble-INP, CNRS, University of Grenoble Alpes, 38042 Grenoble, France
| |
Collapse
|
7
|
Ma X, Albertsma J, Gabriels D, Horst R, Polat S, Snoeks C, Kapteijn F, Eral HB, Vermaas DA, Mei B, de Beer S, van der Veen MA. Carbon monoxide separation: past, present and future. Chem Soc Rev 2023; 52:3741-3777. [PMID: 37083229 PMCID: PMC10243283 DOI: 10.1039/d3cs00147d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Indexed: 04/22/2023]
Abstract
Large amounts of carbon monoxide are produced by industrial processes such as biomass gasification and steel manufacturing. The CO present in vent streams is often burnt, this produces a large amount of CO2, e.g., oxidation of CO from metallurgic flue gasses is solely responsible for 2.7% of manmade CO2 emissions. The separation of N2 from CO due to their very similar physical properties is very challenging, meaning that numerous energy-intensive steps are required for CO separation, making the CO separation from many process streams uneconomical in spite of CO being a valuable building block in the production of major chemicals through C1 chemistry and the production of linear hydrocarbons by the Fischer-Tropsch process. The development of suitable processes for the separation of carbon monoxide has both industrial and environmental significance. Especially since CO is a main product of electrocatalytic CO2 reduction, an emerging sustainable technology to enable carbon neutrality. This technology also requires an energy-efficient separation process. Therefore, there is a great need to develop energy efficient CO separation processes adequate for these different process streams. As such the urgency of separating carbon monoxide is gaining greater recognition, with research in the field becoming more and more crucial. This review details the principles on which CO separation is based and provides an overview of currently commercialised CO separation processes and their limitations. Adsorption is identified as a technology with the potential for CO separation with high selectivity and energy efficiency. We review the research efforts, mainly seen in the last decades, in developing new materials for CO separation via ad/bsorption and membrane technology. We have geared our review to both traditional CO sources and emerging CO sources, including CO production from CO2 conversion. To that end, a variety of emerging processes as potential CO2-to-CO technologies are discussed and, specifically, the need for CO capture after electrochemical CO2 reduction is highlighted, which is still underexposed in the available literature. Altogether, we aim to highlight the knowledge gaps that could guide future research to improve CO separation performance for industrial implementation.
Collapse
Affiliation(s)
- Xiaozhou Ma
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Jelco Albertsma
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Dieke Gabriels
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Rens Horst
- Science and Technology Faculty, University Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Sevgi Polat
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
- Chemical Engineering Department, Marmara University, 34854 İstanbul, Turkey
| | - Casper Snoeks
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - Freek Kapteijn
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Hüseyin Burak Eral
- Process & Energy Department, Delft University of Technology, Leeghwaterstraat 39, 2628 CB Delft, The Netherlands
| | - David A Vermaas
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| | - Bastian Mei
- Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Sissi de Beer
- Science and Technology Faculty, University Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
| | - Monique Ann van der Veen
- Chemical Engineering Department, Delft University of Technology, van der Maasweg 9, 2629 HZ Delft, The Netherlands.
| |
Collapse
|
8
|
James J, Lücking LE, van Dijk H, Boon J. Review of technologies for carbon monoxide recovery from nitrogen- containing industrial streams. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1066091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Carbon monoxide (CO) is an important gas required for various industrial processes. Whether produced directly from syngas or as part of by-product gas streams, valorization of CO streams will play an important role in the decarbonization of industry. CO is often generated in mixtures with other gases such as H2, CO2, CH4, and N2 and therefore separation of CO from the other gases is required. In particular, separation of CO from N2 is difficult given their similar molecular properties. This paper summarizes the current state of knowledge on the four processes for separation of CO from gas mixtures: cryogenic purification, absorption, adsorption and membrane separation. Particular emphasis is placed on technical processes for industrial applications and separation of N2 and CO. Cryogenic processes are not suitable for separation of CO from N2. Absorption developments focus on the use of ionic liquids to replace solvents, with promising progress being made in the field of CO solubility in ionic liquids. Advancements in adsorption processes have focused on the development of new materials however future work is required to develop materials that do not require vacuum regeneration. Membrane processes are most promising in the form of solid state and mixed matrix membranes. In general, there is limited development beyond lab scale for new advancements in CO separation from gas streams. This highlights an opportunity and need to investigate and develop beyond state-of-the-art processes for CO separation at industrial scale, especially for separation of CO from N2.
Collapse
|
9
|
Dong A, Chen D, Li Q, Qian J. Metal-Organic Frameworks for Greenhouse Gas Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2201550. [PMID: 36563116 DOI: 10.1002/smll.202201550] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Using petrol to supply energy for a car or burning coal to heat a building generates plenty of greenhouse gas (GHG) emissions, including carbon dioxide (CO2 ), water vapor (H2 O), methane (CH4 ), nitrous oxide (N2 O), ozone (O3 ), fluorinated gases. These up-and-coming metal-organic frameworks (MOFs) are structurally endowed with rigid inorganic nodes and versatile organic linkers, which have been extensively used in the GHG-related applications to improve the lives and protect the environment. Porous MOF materials and their derivatives have been demonstrated to be competitive and promising candidates for GHG separation, storage and conversions as they shows facile preparation, large porosity, adjustable nanostructure, abundant topology, and tunable physicochemical property. Enormous progress has been made in GHG storage and separation intrinsically stemmed from the different interaction between guest molecule and host framework from MOF itself in the recent five years. Meanwhile, the use of porous MOF materials to transform GHG and the influence of external conditions on the adsorption performance of MOFs for GHG are also enclosed. In this review, it is also highlighted that the existing challenges and future directions are discussed and envisioned in the rational design, facile synthesis and comprehensive utilization of MOFs and their derivatives for practical applications.
Collapse
Affiliation(s)
- Anrui Dong
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Dandan Chen
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
| | - Qipeng Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong, 657099, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, P. R. China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
| |
Collapse
|
10
|
Lei B, Zhang H, Zhao Q, Liu W, Wei Y, Lu Y, Xiao T, Kong J, Cai W. Facile Synthesis of ZnO/WO 3 Nanocomposite Porous Films for High-Performance Gas Sensing of Multiple VOCs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:733. [PMID: 36839101 PMCID: PMC9965940 DOI: 10.3390/nano13040733] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Volatile organic compounds (VOCs) in indoor environments have typical features of multiple components, high concentration, and long duration. The development of gas sensors with high sensitivity to multiple VOCs is of great significance to protect human health. Herein, we proposed a sensitive ZnO/WO3 composite chemi-resistive sensor facilely fabricated via a sacrificial template approach. Based on the transferable properties of self-assembled monolayer colloidal crystal (MCC) templates, two-dimensional honeycomb-like ordered porous ZnO/WO3 sensing matrixes were constructed in situ on commercial ceramic tube substrates with curved and rough surfaces. The nanocomposite thin films are about 250 nm in thickness with large-scale structural consistency and integrity, which facilitates characteristic responses with highly sensitivity and reliability. Furthermore, the nanocomposite sensor shows simultaneous responses to multiple VOCs that commonly exist in daily life with an obvious suppression sensing for traditional flammable gases. Particularly, a detection limit of 0.1 ppm with a second-level response/recovery time can be achieved, which is beneficial for real-time air quality assessments. We proposed a heterojunction-induced sensing enhancement mechanism for the ZnO/WO3 nanocomposite film in which the formation of abundant heterojunctions between ZnO and WO3 NPs significantly increases the thickness of the electron depletion layer in the bulk film and improves the formation of active oxygen species on the surface, which is conducive to enhanced responses for reducing VOC gases. This work not only provides a simple approach for the fabrication of high-performance gas sensors but also opens an achievable avenue for air quality assessment based on VOC concentration detection.
Collapse
Affiliation(s)
- Biao Lei
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Lu’an Branch, Anhui Institute of Innovation for Industrial Technology, Lu’an 237100, China
| | - Qian Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Weiwei Liu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yi Wei
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Yanyan Lu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| | - Tingting Xiao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
| | - Jinglin Kong
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
- Science Island Branch of Graduate School, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
11
|
Jose R, Pal S, Rajaraman G. A Theoretical Perspective to Decipher the Origin of High Hydrogen Storage Capacity in Mn(II) Metal-Organic Framework. Chemphyschem 2023; 24:e202200257. [PMID: 36330697 DOI: 10.1002/cphc.202200257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 11/03/2022] [Indexed: 11/06/2022]
Abstract
Herein, we report a detailed periodic DFT investigation of Mn(II)-based [(Mn4 Cl)3 (BTT)8 ]3- (BTT3- =1,3,5-benzenetristetrazolate) metal-organic framework (MOF) to explore various hydrogen binding pockets, nature of MOF…H2 interactions, magnetic coupling and, H2 uptake capacity. Earlier experiments found an uptake capacity of 6.9 wt % of H2, with the heat of adsorption estimated to be ∼10 kJ/mol, which is one among the highest for any MOFs reported. Our calculations unveil different binding sites with computed binding energy varying from -6 to -15 kJ/mol. The binding of H2 at the Mn2+ site is found to be the strongest (site I), with H2 found to bind Mn2+ ion in a η2 fashion with a distance of 2.27 Å and binding energy of -15.4 kJ/mol. The bonding analysis performed using NBO and AIM reveal a strong donation of σ (H2 ) to the dz 2 orbital of the Mn2+ ion responsible for such large binding energy. The other binding pockets, such as -Cl (site II) and BTT ligands (site III and IV) were found to be weaker, with the binding energy decreasing in the order I>II>III>IV. The average binding energy computed for these four sites put together is 9.6 kJ/mol, which is in excellent agreement with the experimental value of ∼10 kJ/mol. We have expanded our calculations to compute binding energy for multiple sites simultaneously, and in this model, the binding energy per site was found to decrease as we increased the number of H2 molecules suggesting electronic and steric factors controlling the overall uptake capacity. The calculated adsorption isotherm using the GCMC method reproduces the experimental observations. Further, the magnetic coupling computed for the unbound MOF reveals moderate ferromagnetic and strong antiferromagnetic coupling within the tetrameric {Mn4 } unit leading to a three-up-one-down spin configuration as the ground state. These were then coupled ferromagnetically to other tetrameric units in the MOF network. The magnetic coupling was found to alter only marginally upon gas binding, suggesting that both exchange interaction and the spin-states are unlikely to play a role in the H2 uptake. This is contrary to the O2 uptake studied lately, where strong dependence on exchange-coupling/spin state was witnessed, suggesting exchange-coupling/magnetic field dependent binding as a viable route for gas separation.
Collapse
Affiliation(s)
- Reshma Jose
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Sourav Pal
- Department of Chemistry, Indian Institute of Science Education and Research, Kolkata, Mohanpur, Nadia, 741246, India.,Department of Chemistry, Ashoka University, Sonipat, Haryana, 131029, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
12
|
Resines-Urien E, Fernandez-Bartolome E, Martinez-Martinez A, Gamonal A, Piñeiro-López L, Costa JS. Vapochromic effect in switchable molecular-based spin crossover compounds. Chem Soc Rev 2023; 52:705-727. [PMID: 36484276 DOI: 10.1039/d2cs00790h] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coordination complexes based on transition metal ions displaying [Ar]3d4-3d7 electronic configurations can undergo the likely most spectacular switchable phenomena found in molecular coordination chemistry, the well-known Spin Crossover (SCO). SCO phenomena is a detectable, reproducible and reversible switch that occurs between the high spin (HS) and low spin (LS) electronic states of the transition metal actuated by different stimuli (i.e. light, temperature, pressure, the presence of an analyte). Moreover, the occurrence of SCO phenomena causes different outputs, one of them being a colour change. Altogether, an analyte in gas form could be detected by naked eye once it has triggered the corresponding HS ↔ LS transition. This vapochromic effect could be used to detect volatile molecules using a low-cost technology, including harmful chemical substances, gases and/or volatile organic compounds (VOCs) that are present in our environment, in our home or at our workplace. The present review condenses all reported iron coordination compounds where the colour change induced by a given molecule in its gas form is coupled to a HS ↔ LS spin transition. Special emphasis has been made on describing the nature of the post-synthetic modification (PSM) taking place in the material upon the analyte uptake. In this case, three types of PSM can be distinguished: based on supramolecular contacts and/or leading to a coordinative or covalent bond. In the latter, a colour change not only indicates the switch of the spin state in the material but also the formation of a new compound with different properties. It is important to indicate that some of the SCO coordination compounds discussed in the current report have been part of other spin crossover reviews, that have gathered thermally induced SCO compounds and the influence of guest molecules on the SCO behaviour. However, in the majority of examples in these reviews, the change of colour upon the uptake of analytes is not associated with a spin transition at room temperature. In addition, the observed colour variations have been mainly discussed in terms of host-guest interactions, when they can also be induced by a PSM taking place in different sites of the molecule, like the Fe(II) coordination sphere or by chemically altering its inorganic and/or organic linkers. Therefore, we present here for the first time an exhaustive compilation of all systems in which the interaction between the coordination compounds and the vapour analytes leads to a colour change due to a spin transition in the metal centre at room temperature.
Collapse
|
13
|
A review on metal-organic frameworks for the removal of hazardous environmental contaminants. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Jaramillo DE, Jaffe A, Snyder BER, Smith A, Taw E, Rohde RC, Dods MN, DeSnoo W, Meihaus KR, Harris TD, Neaton JB, Long JR. Metal-organic frameworks as O 2-selective adsorbents for air separations. Chem Sci 2022; 13:10216-10237. [PMID: 36277628 PMCID: PMC9473493 DOI: 10.1039/d2sc03577d] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N2-selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O2-selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O2 production and utilization and advance new uses for O2. Here, we present a detailed evaluation of the potential of metal-organic frameworks (MOFs) to serve as O2-selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O2, we survey the field of O2-selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O2 adsorption enthalpy, ΔH, is emphasized, and the free energy of O2 adsorption, ΔG, is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O2 binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal ΔG values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.
Collapse
Affiliation(s)
- David E Jaramillo
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Adam Jaffe
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Benjamin E R Snyder
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Alex Smith
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
| | - Eric Taw
- Department of Chemical and Biomolecular Engineering, University of California Berkeley Berkeley California 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Rachel C Rohde
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Matthew N Dods
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - William DeSnoo
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
| | - Katie R Meihaus
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - T David Harris
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
- Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kavli Nanosciences Institute at Berkeley Berkeley California 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley Berkeley California 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
15
|
Sutton AL, Melag L, Sadiq MM, Hill MR. Capture, Storage, and Release of Oxygen by Metal-Organic Frameworks (MOFs). Angew Chem Int Ed Engl 2022; 61:e202208305. [PMID: 35836372 PMCID: PMC9543296 DOI: 10.1002/anie.202208305] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Oxygen is a critical gas for medical and industrial settings. Much of today's global oxygen supply is via inefficient technologies such as cryogenic distillation, membranes or zeolites. Metal-organic frameworks (MOFs) promise a superior alternative for oxygen separation, as their fundamental chemistry can in principle be tailored for reversible and selective oxygen capture. We evaluate the characteristics for reversible and selective uptake of oxygen by MOFs, focussing on redox-active sites. Key characteristics for separation can also be seen in MOFs for oxygen storage roles. Engineering solutions to release adsorbed oxygen from the MOFs are discussed including Temperature Swing Adsorption (TSA), Pressure Swing Adsorption (PSA) and the highly efficient Magnetic Induction Swing Adsorption (MISA). We conclude with the applications and outlooks for oxygen capture, storage and release, and the likely impacts the next generation of MOFs will have on industry and the broader community.
Collapse
Affiliation(s)
- Ashley L. Sutton
- ManufacturingCSIROPrivate Bag 33Clayton South MDCVic 3169Australia
| | - Leena Melag
- Department of Chemical EngineeringMonash UniversityClaytonVic 3168Australia
| | - M. Munir Sadiq
- Department of Chemical EngineeringMonash UniversityClaytonVic 3168Australia
| | - Matthew R. Hill
- ManufacturingCSIROPrivate Bag 33Clayton South MDCVic 3169Australia
- Department of Chemical EngineeringMonash UniversityClaytonVic 3168Australia
| |
Collapse
|
16
|
Sutton A, Melag L, Sadiq MM, Hill MR. Capture, storage, and release of Oxygen by Metal‐Organic Frameworks (MOFs) – a review. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ashley Sutton
- CSIRO: Commonwealth Scientific and Industrial Research Organisation Manufacturing Private Bag 33 3169 Clayton South MDC AUSTRALIA
| | - Leena Melag
- Monash University Department of Chemical Engineering AUSTRALIA
| | - M. Munir Sadiq
- Monash University Department of Chemical Engineering AUSTRALIA
| | - Matthew R. Hill
- CSIRO: Commonwealth Scientific and Industrial Research Organisation Manufacturing AUSTRALIA
| |
Collapse
|
17
|
Sarkar R, Gajurel S, Gupta A, Kumar Pal A. Synergistic Catalysis by Copper Oxide/Graphene Oxide Nanocomposites: A Facile Approach to Prepare Quinazolines and Quinazoline Containing Triazole/Tetrazole Moieties under Mild Reaction Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rajib Sarkar
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Sushmita Gajurel
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| |
Collapse
|
18
|
Yamauchi Y, Hoshimoto Y, Kawakita T, Kinoshita T, Uetake Y, Sakurai H, Ogoshi S. Room-Temperature Reversible Chemisorption of Carbon Monoxide on Nickel(0) Complexes. J Am Chem Soc 2022; 144:8818-8826. [PMID: 35504015 PMCID: PMC9348812 DOI: 10.1021/jacs.2c02870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Chemisorption
on organometallic-based adsorbents is crucial for
the controlled separation and long-term storage of gaseous molecules.
The formation of covalent bonds between the metal centers in the adsorbents
and the targeted gases affects the desorption efficiency, especially
when the oxidation state of the metal is low. Herein, we report a
pressure-responsive nickel(0)-based system that is able to reversibly
chemisorb carbon monoxide (CO) at room temperature. The use of N-heterocyclic carbene ligands with hemi-labile N-phosphine oxide substituents facilitates both the adsorption
and desorption of CO on nickel(0) via ligand substitution. Ionic liquids
were used as the reaction medium to enhance the desorption rate and
establish a reusable system. These results showcase a way for the
sustainable chemisorption of CO using a zero-valent transition-metal
complex.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yoichi Hoshimoto
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Kawakita
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Kinoshita
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuta Uetake
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Hidehiro Sakurai
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.,Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Sensuke Ogoshi
- Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
19
|
Amine-Functionalized Metal-Organic Frameworks: from Synthetic Design to Scrutiny in Application. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Marimuthu M, Arumugam SS, Jiao T, Sabarinathan D, Li H, Chen Q. Metal organic framework based sensors for the detection of food contaminants. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Rai V, P K, Harmalkar SS, Dhuri SN, Maddani MR. 1,6-Addition of 1,2,3-NH triazoles to para-quinone methides: Facile access to highly selective N 1 and N 2 substituted triazoles. Org Biomol Chem 2022; 20:345-351. [PMID: 34908078 DOI: 10.1039/d1ob01717a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The regioselective syntheses of N1 and N2 substituted triazoles through a 1,6-addition reaction of 1,2,3-NH triazoles to p-quinone methide were achieved under mild reaction conditions. The present reactions showed superior results in terms of selectivity, mild reaction conditions, short reaction time and broad substrate scope with good functional-group compatibility. Considering the high synthetic value of N1- and N2-substituted compounds and p-QM related research, the present strategy will greatly benefit researchers in various fields.
Collapse
Affiliation(s)
- Vishakha Rai
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, Karnataka, India.
| | - Kavyashree P
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, India
| | | | - Sundar N Dhuri
- School of Chemical Sciences, Goa University, Goa 403206, India
| | - Mahagundappa R Maddani
- Department of Chemistry, Mangalore University, Mangalagangothri, Mangalore, Karnataka, India.
| |
Collapse
|
22
|
Demir H, Keskin S. Computational insights into efficient CO2 and H2S capture through zirconium MOFs. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Mashhadimoslem H, Safarzadeh M, Ghaemi A, Banna Motejadded Emrooz H, Barzegar M. Biomass derived hierarchical porous carbon for high-performance O 2/N 2 adsorption; a new green self-activation approach. RSC Adv 2021; 11:36125-36142. [PMID: 35492770 PMCID: PMC9043437 DOI: 10.1039/d1ra06781h] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
Biomass-derived porous carbons are the most common adsorbent materials for O2/N2 adsorption because of their excellent textural properties, high surface area, and low expense. A new synthesis method based on a self-activation technique was developed for a new green porous carbon adsorbent. This ecofriendly system was used for the synthesis of hierarchical porous carbons from walnut-shell precursors. The sorbent was successfully synthesized by facile one-step carbonization, with the activating reagents being gases released during the activation. The sample morphology and structure were characterized by field emission scanning electron microscopy, high-resolution transmission electron microscopy, Raman, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, X-ray powder diffraction, thermogravimetric, and differential thermal analysis. The optimal porous carbons were synthesized at 1000 °C, providing a surface area as high as 2042.4 (m2 g−1) and micropore volume of about 0.499 (m3 g−1). At 298 °K under 9.5 bar pressure, the potential for O2/N2 separation using porous carbon samples was studied, and the sips isotherms with the highest adsorption potential were determined to be 2.94 (mmol g−1) and 2.67 (mmol g−1), respectively. The sample exhibited stable O2/N2 separation over ten cycles, showing high reusability for air separation. Finally, the technology described presents a promising strategy for producing eco-friendly porous carbon from a variety of biomass on an industrial scale. Green porous carbon was synthesized by self-activation methodology with facile one-step carbonization from a walnut-shell precursor for air separation. The adsorption process behavior was surveyed using isotherm, kinetic and thermodynamic models.![]()
Collapse
Affiliation(s)
- Hossein Mashhadimoslem
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Narmak 16846 Tehran Iran
| | - Mobin Safarzadeh
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST) Narmak 16846 Tehran Iran +98 21 77240496
| | - Ahad Ghaemi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST) Narmak 16846 Tehran Iran
| | - Hosein Banna Motejadded Emrooz
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST) Narmak 16846 Tehran Iran +98 21 77240496
| | - Masoud Barzegar
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST) Narmak 16846 Tehran Iran +98 21 77240496
| |
Collapse
|
24
|
Wang T, Tang Z, Luo H, Tian Y, Xu M, Lu Q, Li B. Access to ( Z)-β-Substituted Enamides from N1-H-1,2,3-Triazoles. Org Lett 2021; 23:6293-6298. [PMID: 34346679 DOI: 10.1021/acs.orglett.1c02087] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A direct ring-opening/nucleophilic substitution reaction of N1-H-1,2,3-triazoles has been described. Divergent (Z)-β-halogen- or sulfonyl-substituted enamides could be stereospecifically synthesized in a tunable manner. This strategy might not only enable a new ring-opening method of N1-H-1,2,3-triazoles under nonmetal catalysis and mild reaction conditions but also offer a good opportunity to reliably access versatile (Z)-β-substituted enamides that could be used as synthetic precursors for further synthetic transformations.
Collapse
Affiliation(s)
- Tao Wang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, People's Republic of China
| | - Zongyuan Tang
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, People's Republic of China
| | - Han Luo
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, People's Republic of China
| | - Yi Tian
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, People's Republic of China
| | - Mingchuan Xu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, People's Republic of China
| | - Qixing Lu
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, People's Republic of China
| | - Baosheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, People's Republic of China
| |
Collapse
|
25
|
Abstract
Metal–organic frameworks (MOFs) are emerging porous materials with highly tunable structures developed in the 1990s, while organometallic chemistry is of fundamental importance for catalytic transformation in the academic and industrial world for many decades. Through the years, organometallic chemistry has been incorporated into functional MOF construction for diverse applications. Here, we will focus on how organometallic chemistry is applied in MOF design and modifications from linker-centric and metal-cluster-centric perspectives, respectively. Through structural design, MOFs can function as a tailorable platform for traditional organometallic transformations, including reaction of alkenes, cross-coupling reactions, and C–H activations. Besides, an overview will be made on other application categories of organometallic MOFs, such as gas adsorption, magnetism, quantum computing, and therapeutics.
Collapse
|
26
|
Metal-organic frameworks for food applications: A review. Food Chem 2021; 354:129533. [PMID: 33743447 DOI: 10.1016/j.foodchem.2021.129533] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022]
Abstract
Metal-organic frameworks (MOFs) are high surface-to-volume ratio crystalline hybrid porous coordination materials composed of metal ions as nodes and organic linkers. The goal of this paper was to provide an updated and comprehensive state-of-the-art review of MOFs for different food applications such as active food contact materials, antimicrobial nanocarriers, controlled release nanosystems for active compounds, nanofillers for food packaging materials, food nanoreactors, food substance nanosensors, stabilizers and immobilizers for active compounds and enzymes, and extractors of food contaminants. Extraction and sensing of several food contaminants have been the main food applications of MOFs. The other applications listed above require further investigation, as they are at an early stage. However, interesting results are being reported for these other fields. Finally, an important limitation of MOFs has been the use of non-renewable feedstocks for their synthesis, but this has recently been solved through the manufacture and use of γ-cyclodextrin-based MOFs.
Collapse
|
27
|
Hadjiivanov KI, Panayotov DA, Mihaylov MY, Ivanova EZ, Chakarova KK, Andonova SM, Drenchev NL. Power of Infrared and Raman Spectroscopies to Characterize Metal-Organic Frameworks and Investigate Their Interaction with Guest Molecules. Chem Rev 2020; 121:1286-1424. [DOI: 10.1021/acs.chemrev.0c00487] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dimitar A. Panayotov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Mihail Y. Mihaylov
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Elena Z. Ivanova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Kristina K. Chakarova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Stanislava M. Andonova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Nikola L. Drenchev
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| |
Collapse
|
28
|
Zhu B, Huang G, He Y, Xie J, He T, Wang J, Zong Z. Synthesis and characterization of MOFs constructed from 5-(benzimidazole-1-yl)isophthalic acid and highly selective fluorescence detection of Fe(iii) and Cr(vi) in water. RSC Adv 2020; 10:34943-34952. [PMID: 35514377 PMCID: PMC9056870 DOI: 10.1039/d0ra06529c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/12/2020] [Indexed: 12/18/2022] Open
Abstract
In this work, four novel metal–organic frameworks [Cd(bipa)]n (1), {[Zn2(bipa)2]·2C2H5OH}n (2), {[Co(bipa)]·C2H5OH}n (3), {[Ni(bipa)2]·2DMA}n (4), (H2bipa = 5-(benzimidazole-1-yl)isophthalic acid) were successfully synthesized under solvothermal conditions. Complexes 1–4 were characterized by powder X-ray diffraction, elemental analysis, infrared spectroscopy and thermogravimetric analysis. Interestingly, the coordination patterns and 3D network structures of complexes 1–3 are very similar, while complex 4 is relatively unique. Complexes 1–2 exhibit potential fluorescent properties. Complex 1 can selectively and sensitively detect trace Fe(iii) and Cr(vi) in water by fluorescence quenching detection, and the quenching mechanism is further discussed. In this work, four novel MOFs [Cd(bipa)]n (1), {[Zn2(bipa)2]·2C2H5OH}n (2), {[Co(bipa)]·C2H5OH}n (3), {[Ni(bipa)2]·2DMA}n (4), (H2bipa = 5-(benzimidazole-1-yl)isophthalic acid) were successfully synthesized under solvothermal conditions.![]()
Collapse
Affiliation(s)
- Bin Zhu
- College of Chemistry and Chemical Engineering, Ocean University of China Qingdao 266100 Shandong China
| | - Guimei Huang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Yanni He
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Jisheng Xie
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Tao He
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Junli Wang
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| | - Ziao Zong
- School of Laboratory Medicine, Youjiang Medical University for Nationalities Baise 533000 Guangxi China
| |
Collapse
|
29
|
Wang YC, Gu MX, Huang L, Qi SC, Tan P, Liu XQ, Sun LB. Unusual Copper Oxide Dispersion Achieved by Combining the Confinement Effect and Guest–Host Interaction Modulation. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c02950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yu-Chao Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Meng-Xuan Gu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Li Huang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Shi-Chao Qi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Peng Tan
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiao-Qin Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin-Bing Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
30
|
Nakaya M, Ohtani R, Hayami S. Guest Modulated Spin States of Metal Complex Assemblies. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000553] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Manabu Nakaya
- Department of Chemistry Faculty of Science Josai University 1‐1 Keyakidai Sakado Saitama 350‐0295 Japan
| | - Ryo Ohtani
- Department of Chemistry Faculty of Science Kyushu University 744 Motooka Nishi‐ku Fukuoka 819‐0395 Japan
| | - Shinya Hayami
- Department of Chemistry Faculty of Advanced Science and Technology Kumamoto University 2‐39‐1, Kurokami Chuo‐ku Kumamoto 860‐8555 Japan
- Institute of Industrial Nanomaterials (IINa) Kumamoto University Chuo‐ku Kumamoto 860‐8555 Japan
| |
Collapse
|
31
|
Nakaya M, Kosaka W, Miyasaka H, Komatsumaru Y, Kawaguchi S, Sugimoto K, Zhang Y, Nakamura M, Lindoy LF, Hayami S. CO 2 -Induced Spin-State Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the Porous Nature. Angew Chem Int Ed Engl 2020; 59:10658-10665. [PMID: 32189464 DOI: 10.1002/anie.202003811] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Indexed: 01/08/2023]
Abstract
CO2 -responsive spin-state conversion between high-spin (HS) and low-spin (LS) states at room temperature was achieved in a monomeric cobalt(II) complex. A neutral cobalt(II) complex, [CoII (COO-terpy)2 ]⋅4 H2 O (1⋅4 H2 O), stably formed cavities generated via π-π stacking motifs and hydrogen bond networks, resulting in the accommodation of four water molecules. Crystalline 1⋅4 H2 O transformed to solvent-free 1 without loss of porosity by heating to 420 K. Compound 1 exhibited a selective CO2 adsorption via a gate-open type of the structural modification. Furthermore, the HS/LS transition temperature (T1/2 ) was able to be tuned by the CO2 pressure over a wide temperature range. Unlike 1 exhibits the HS state at 290 K, the CO2 -accomodated form 1⊃CO2 (P CO 2 =110 kPa) was stabilized in the LS state at 290 K, probably caused by a chemical pressure effect by CO2 accommodation, which provides reversible spin-state conversion by introducing/evacuating CO2 gas into/from 1.
Collapse
Affiliation(s)
- Manabu Nakaya
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Wataru Kosaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577, Japan
| | - Yuki Komatsumaru
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Shogo Kawaguchi
- Diffraction & Scattering Division Japan, Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (, Japan
| | - Kunihisa Sugimoto
- Diffraction & Scattering Division Japan, Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198 (, Japan
| | - Yingjie Zhang
- Australian Nuclear Science and Technology Organization, Locked Bag 2001, Kirrawee DC, NSW, 2232, Australia
| | - Masaaki Nakamura
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| | - Leonard F Lindoy
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1, Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan.,Institute of Pulsed Power Science (IPPS), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555, Japan
| |
Collapse
|
32
|
Nakaya M, Kosaka W, Miyasaka H, Komatsumaru Y, Kawaguchi S, Sugimoto K, Zhang Y, Nakamura M, Lindoy LF, Hayami S. CO
2
‐Induced Spin‐State Switching at Room Temperature in a Monomeric Cobalt(II) Complex with the Porous Nature. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manabu Nakaya
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Wataru Kosaka
- Institute for Materials Research Tohoku University 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
| | - Hitoshi Miyasaka
- Institute for Materials Research Tohoku University 2-1-1 Katahira Aoba-ku Sendai 980-8577 Japan
| | - Yuki Komatsumaru
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Shogo Kawaguchi
- Diffraction & Scattering Division Japan Synchrotron Radiation Research Institute (JASRI) 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5198 ( Japan
| | - Kunihisa Sugimoto
- Diffraction & Scattering Division Japan Synchrotron Radiation Research Institute (JASRI) 1-1-1 Kouto, Sayo-cho Sayo-gun Hyogo 679-5198 ( Japan
| | - Yingjie Zhang
- Australian Nuclear Science and Technology Organization Locked Bag 2001 Kirrawee DC NSW 2232 Australia
| | - Masaaki Nakamura
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami Chuo-ku Kumamoto 860-8555 Japan
| | - Leonard F. Lindoy
- School of Chemistry The University of Sydney Sydney NSW 2006 Australia
| | - Shinya Hayami
- Department of Chemistry Graduate School of Science and Technology Kumamoto University 2-39-1, Kurokami Chuo-ku Kumamoto 860-8555 Japan
- Institute of Pulsed Power Science (IPPS) Kumamoto University 2-39-1 Kurokami Chuo-ku Kumamoto 860-8555 Japan
| |
Collapse
|
33
|
Rosen AS, Notestein JM, Snurr RQ. High‐Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State Reactivity for C−H Bond Activation. Angew Chem Int Ed Engl 2020; 59:19494-19502. [DOI: 10.1002/anie.202004458] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Indexed: 01/18/2023]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
34
|
Rosen AS, Notestein JM, Snurr RQ. High‐Valent Metal–Oxo Species at the Nodes of Metal–Triazolate Frameworks: The Effects of Ligand Exchange and Two‐State Reactivity for C−H Bond Activation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Justin M. Notestein
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| | - Randall Q. Snurr
- Department of Chemical and Biological Engineering Northwestern University 2145 Sheridan Rd. Evanston IL 60208 USA
| |
Collapse
|
35
|
Sule R, Mishra AK. MOFs-carbon hybrid nanocomposites in environmental protection applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:16004-16018. [PMID: 32170617 DOI: 10.1007/s11356-020-08299-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The demand for green engineering environmentally friendly nanomaterials had made carbon nanotube a suitable material to keep metal-organic frameworks (MOFs) in the application of wastewater treatment and air pollution monitoring systems. This review summarizes many of the recent research accomplishments in the synthesis of MOFs and MOFs-carbon hybrid nanocomposites for various applications such as wastewater treatment and removal of hazardous gases (CO, SO2, H2S and NH3) with emphasis on MOF/CNTs composites. This review focuses on the efficient removal of pollutants from the environment using adsorption techniques. Another important application of MOFs composite discussed in this review is sensor materials for environmental pollution.
Collapse
Affiliation(s)
- Rasidi Sule
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering & Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa.
| | - Ajay Kumar Mishra
- Nanotechnology and Water Sustainability Research Unit, College of Science, Engineering & Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa.
| |
Collapse
|
36
|
Jaramillo DE, Reed DA, Jiang HZH, Oktawiec J, Mara MW, Forse AC, Lussier DJ, Murphy RA, Cunningham M, Colombo V, Shuh DK, Reimer JA, Long JR. Selective nitrogen adsorption via backbonding in a metal-organic framework with exposed vanadium sites. NATURE MATERIALS 2020; 19:517-521. [PMID: 32015534 DOI: 10.1038/s41563-019-0597-8] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/18/2019] [Indexed: 05/23/2023]
Abstract
Industrial processes prominently feature π-acidic gases, and an adsorbent capable of selectively interacting with these molecules could enable important chemical separations1-4. Biological systems use accessible, reducing metal centres to bind and activate weakly π-acidic species, such as N2, through backbonding interactions5-7, and incorporating analogous moieties into a porous material should give rise to a similar adsorption mechanism for these gaseous substrates8. Here, we report a metal-organic framework featuring exposed vanadium(II) centres capable of back-donating electron density to weak π acids to successfully target π acidity for separation applications. This adsorption mechanism, together with a high concentration of available adsorption sites, results in record N2 capacities and selectivities for the removal of N2 from mixtures with CH4, while further enabling olefin/paraffin separations at elevated temperatures. Ultimately, incorporating such π-basic metal centres into porous materials offers a handle for capturing and activating key molecular species within next-generation adsorbents.
Collapse
Affiliation(s)
- David E Jaramillo
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Douglas A Reed
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Julia Oktawiec
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Michael W Mara
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Alexander C Forse
- Department of Chemistry, University of California, Berkeley, CA, USA
- Berkeley Energy and Climate Institute, University of California, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | - Daniel J Lussier
- Department of Chemistry, University of California, Berkeley, CA, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ryan A Murphy
- Department of Chemistry, University of California, Berkeley, CA, USA
| | - Marc Cunningham
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
| | | | - David K Shuh
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeffrey A Reimer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jeffrey R Long
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA.
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
37
|
Taylor MG, Yang T, Lin S, Nandy A, Janet JP, Duan C, Kulik HJ. Seeing Is Believing: Experimental Spin States from Machine Learning Model Structure Predictions. J Phys Chem A 2020; 124:3286-3299. [PMID: 32223165 PMCID: PMC7311053 DOI: 10.1021/acs.jpca.0c01458] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
![]()
Determination of ground-state spins
of open-shell transition-metal
complexes is critical to understanding catalytic and materials properties
but also challenging with approximate electronic structure methods.
As an alternative approach, we demonstrate how structure alone can
be used to guide assignment of ground-state spin from experimentally
determined crystal structures of transition-metal complexes. We first
identify the limits of distance-based heuristics from distributions
of metal–ligand bond lengths of over 2000 unique mononuclear
Fe(II)/Fe(III) transition-metal complexes. To overcome these limits,
we employ artificial neural networks (ANNs) to predict spin-state-dependent
metal–ligand bond lengths and classify experimental ground-state
spins based on agreement of experimental structures with the ANN predictions.
Although the ANN is trained on hybrid density functional theory data,
we exploit the method-insensitivity of geometric properties to enable
assignment of ground states for the majority (ca. 80–90%) of
structures. We demonstrate the utility of the ANN by data-mining the
literature for spin-crossover (SCO) complexes, which have experimentally
observed temperature-dependent geometric structure changes, by correctly
assigning almost all (>95%) spin states in the 46 Fe(II) SCO complex
set. This approach represents a promising complement to more conventional
energy-based spin-state assignment from electronic structure theory
at the low cost of a machine learning model.
Collapse
Affiliation(s)
- Michael G Taylor
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Tzuhsiung Yang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sean Lin
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jon Paul Janet
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
38
|
Islamoglu T, Chen Z, Wasson MC, Buru CT, Kirlikovali KO, Afrin U, Mian MR, Farha OK. Metal–Organic Frameworks against Toxic Chemicals. Chem Rev 2020; 120:8130-8160. [DOI: 10.1021/acs.chemrev.9b00828] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Timur Islamoglu
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Zhijie Chen
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Megan C. Wasson
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Cassandra T. Buru
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Kent O. Kirlikovali
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Unjila Afrin
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Mohammad Rasel Mian
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry and International Institute for Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
39
|
Liu XY, Lo WS, Wu C, Williams BP, Luo L, Li Y, Chou LY, Lee Y, Tsung CK. Tuning Metal-Organic Framework Nanocrystal Shape through Facet-Dependent Coordination. NANO LETTERS 2020; 20:1774-1780. [PMID: 31995389 DOI: 10.1021/acs.nanolett.9b04997] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We studied coordination-dependent surfactant binding on shaped MOF nanocrystals. Cetyltrimethylammonium bromide (CTAB) on the surface of ZIF-8 was used as a model system. Infrared spectroscopic analysis and molecular dynamics simulations reveal different coordination environments for Zn nodes on {100} and {110} facets, resulting in different CTAB adsorption. We found that we are able to fine-tune the ratio of {100} and {110} facets in the nanocrystals. We also observed that once the MOF nanocrystals are enclosed by pure {110} facets growth along the {100} facets is terminated because the MOF nanocrystal has no surface area for CTAB adsorption. Growth can then be reinitiated through the etching of these rhombic dodecahedral nanocrystals to form a small amount of undercoordinated sites. This work represents the first systematic study of the design principles underpinning the synthesis of shaped MOF nanocrystals.
Collapse
Affiliation(s)
- Xiao-Yuan Liu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wei-Shang Lo
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chunhui Wu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Benjamin P Williams
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Lianshun Luo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yang Li
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Lien-Yang Chou
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Yongjin Lee
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
| | - Chia-Kuang Tsung
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
40
|
Kwon S, You Y, Lim H, Lee J, Chang TS, Kim Y, Lee H, Kim BS. Selective CO adsorption using sulfur-doped Ni supported by petroleum-based activated carbon. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2019.11.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Rosen AS, Mian MR, Islamoglu T, Chen H, Farha OK, Notestein JM, Snurr RQ. Tuning the Redox Activity of Metal–Organic Frameworks for Enhanced, Selective O2 Binding: Design Rules and Ambient Temperature O2 Chemisorption in a Cobalt–Triazolate Framework. J Am Chem Soc 2020; 142:4317-4328. [DOI: 10.1021/jacs.9b12401] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andrew S. Rosen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - M. Rasel Mian
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Haoyuan Chen
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Justin M. Notestein
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Randall Q. Snurr
- Department of Chemical & Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
42
|
|
43
|
Reed DA, Xiao DJ, Jiang HZH, Chakarawet K, Oktawiec J, Long JR. Biomimetic O 2 adsorption in an iron metal-organic framework for air separation. Chem Sci 2020; 11:1698-1702. [PMID: 34084391 PMCID: PMC8148054 DOI: 10.1039/c9sc06047b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Bio-inspired motifs for gas binding and small molecule activation can be used to design more selective adsorbents for gas separation applications. Here, we report an iron metal–organic framework, Fe-BTTri (Fe3[(Fe4Cl)3(BTTri)8]2·18CH3OH, H3BTTri = 1,3,5-tris(1H-1,2,3-triazol-5-yl)benzene), that binds O2 in a manner similar to hemoglobin and therefore results in highly selective O2 binding. As confirmed by gas adsorption studies and Mössbauer and infrared spectroscopy data, the exposed iron sites in the framework reversibly adsorb substantial amounts of O2 at low temperatures by converting between high-spin, square-pyramidal Fe(ii) centers in the activated material to low-spin, octahedral Fe(iii)–superoxide sites upon gas binding. This change in both oxidation state and spin state observed in Fe-BTTri leads to selective and readily reversible O2 binding, with the highest reported O2/N2 selectivity for any iron-based framework. Bio-inspired motifs for gas binding and small molecule activation can be used to design more selective adsorbents for gas separation applications.![]()
Collapse
Affiliation(s)
- Douglas A Reed
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Dianne J Xiao
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Henry Z H Jiang
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | | | - Julia Oktawiec
- Department of Chemistry, University of California Berkeley CA 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley CA 94720 USA .,Department of Chemical Engineering, University of California Berkeley CA 94720 USA.,Materials Sciences Division, Lawrence Berkeley National Lab Berkeley CA 94720 USA
| |
Collapse
|
44
|
Li Y, Liu M, Yao ZS, Tao J. Temperature-dependent hysteretic two-step spin crossover in two-dimensional Hofmann-type compounds. Dalton Trans 2020; 49:7245-7251. [DOI: 10.1039/d0dt00866d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Two 2D Hofmann-type compounds [FeII(ppe)2MII(CN)4]·3H2O [ppe = 1-(2-pyridyl)-2-(4-pyridyl)ethylene; M = Pd for 1 and Pt for 2] have been synthesized. Both of them show complete two-step hysteretic SCO transitions HS1.0 ⇌ HS0.6–0.5LS0.4–0.5 ⇌ LS1.0.
Collapse
Affiliation(s)
- Yue Li
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
| | - Min Liu
- School of Nuclear Science and Technology
- University of South China
- Hengyang 421001
- People's Republic of China
| | - Zi-Shuo Yao
- Key Laboratory of Cluster Science of Ministry of Education
- School of Chemistry and Chemical Engineering
- Liangxiang Campus
- Beijing Institute of Technology
- Beijing 102488
| | - Jun Tao
- College of Chemistry and Chemical Engineering
- Xiamen University
- Xiamen 361005
- People's Republic of China
- Key Laboratory of Cluster Science of Ministry of Education
| |
Collapse
|
45
|
Nandy A, Chu DBK, Harper DR, Duan C, Arunachalam N, Cytter Y, Kulik HJ. Large-scale comparison of 3d and 4d transition metal complexes illuminates the reduced effect of exchange on second-row spin-state energetics. Phys Chem Chem Phys 2020; 22:19326-19341. [DOI: 10.1039/d0cp02977g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The origin of distinct 3d vs. 4d transition metal complex sensitivity to exchange is explored over a large data set.
Collapse
Affiliation(s)
- Aditya Nandy
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Daniel B. K. Chu
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Daniel R. Harper
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Chenru Duan
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
- Department of Chemistry
| | - Naveen Arunachalam
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Yael Cytter
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Heather J. Kulik
- Department of Chemical Engineering
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
46
|
Li HY, Zhao SN, Zang SQ, Li J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 2020; 49:6364-6401. [DOI: 10.1039/c9cs00778d] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Collapse
Affiliation(s)
- Hai-Yang Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jing Li
- Department of Chemistry and Chemical Biology
- Rutgers University
- Piscataway
- USA
| |
Collapse
|
47
|
Asgari M, Semino R, Schouwink PA, Kochetygov I, Tarver J, Trukhina O, Krishna R, Brown CM, Ceriotti M, Queen WL. Understanding How Ligand Functionalization Influences CO 2 and N 2 Adsorption in a Sodalite Metal-Organic Framework. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:10.1021/acs.chemmater.9b04631. [PMID: 33612965 PMCID: PMC7890575 DOI: 10.1021/acs.chemmater.9b04631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, a detailed study is conducted to understand how ligand substitution influences the CO2 and N2 adsorption properties of two highly crystalline sodalite metal-organic frameworks (MOFs) known as Cu-BTT (BTT-3 = 1,3,5-benzenetristetrazolate) and Cu-BTTri (BTTri-3 = 1,3,5-benzenetristriazolate). The enthalpy of adsorption and observed adsorption capacities at a given pressure are significantly lower for Cu-BTTri compared to its tetrazole counterpart, Cu-BTT. In situ X-ray and neutron diffraction, which allow visualization of the CO2 and N2 binding sites on the internal surface of Cu-BTTri, provide insights into understanding the subtle differences. As expected, slightly elongated distances between the open Cu2+ sites and surface-bound CO2 in Cu-BTTri can be explained by the fact that the triazolate ligand is a better electron donor than the tetrazolate. The more pronounced Jahn-Teller effect in Cu-BTTri leads to weaker guest binding. The results of the aforementioned structural analysis were complemented by the prediction of the binding energies at each CO2 and N2 adsorption site by density functional theory calculations. In addition, variable temperature in situ diffraction measurements shed light on the fine structural changes of the framework and CO2 occupancies at different adsorption sites as a function of temperature. Finally, simulated breakthrough curves obtained for both sodalite MOFs demonstrate the materials' potential performance in dry postcombustion CO2 capture. The simulation, which considers both framework uptake capacity and selectivity, predicts better separation performance for Cu-BTT. The information obtained in this work highlights how ligand substitution can influence adsorption properties and hence provides further insights into the material optimization for important separations.
Collapse
Affiliation(s)
- Mehrdad Asgari
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Rocio Semino
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Universitéde Montpellier, 34095 Montpellier Cedex 05, France; Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Pascal A. Schouwink
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Ilia Kochetygov
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Jacob Tarver
- Center for Neutron Research, National Institute of Standards and Technology, 20899 Gaithersburg, Maryland, United States; National Renewable Energy Laboratory, 80401 Golden, Colorado, United States
| | - Olga Trukhina
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Rajamani Krishna
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Craig M. Brown
- Center for Neutron Research, National Institute of Standards and Technology, 20899 Gaithersburg, Maryland, United States
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wendy L. Queen
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| |
Collapse
|
48
|
Mahesh K, Ravi K, Rathod PK, Leelavathi P. Convenient synthesis of quinoline-fused triazolo-azepine/oxepine derivatives through Pd-catalyzed C–H functionalisation of triazoles. NEW J CHEM 2020. [DOI: 10.1039/c9nj05254b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The convenient synthesis of a novel polycyclic fused system comprising three different heterocycles, viz., quinolines, azepines/oxepines and triazoles is presented in high yields.
Collapse
Affiliation(s)
- Kukkamudi Mahesh
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500 007
- India
| | - Kanakaraju Ravi
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500 007
- India
| | - Praveen Kumar Rathod
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500 007
- India
| | - Panaganti Leelavathi
- Department of Chemistry
- University College of Science
- Osmania University
- Hyderabad 500 007
- India
| |
Collapse
|
49
|
Kim A, Ahn S, Yoon T, Notestein JM, Farha OK, Bae Y. Fast Cyclohexane Oxidation Under Mild Reaction Conditions Through a Controlled Creation of Redox‐Active Fe(II/III) Sites in a Metal−Organic Framework. ChemCatChem 2019. [DOI: 10.1002/cctc.201901050] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ah‐Reum Kim
- Department of Chemical and Biomolecular EngineeringYonsei University Seoul 03722 Korea
| | - Sol Ahn
- Department of Chemical and Biological EngineeringNorthwestern University Evanston IL-60208 USA
| | - Tae‐Ung Yoon
- Department of Chemical and Biomolecular EngineeringYonsei University Seoul 03722 Korea
| | - Justin M. Notestein
- Department of Chemical and Biological EngineeringNorthwestern University Evanston IL-60208 USA
| | - Omar K. Farha
- Department of Chemical and Biological EngineeringNorthwestern University Evanston IL-60208 USA
- International Institute of Nanotechnology and Department of ChemistryNorthwestern University Evanston IL-60208 USA
| | - Youn‐Sang Bae
- Department of Chemical and Biomolecular EngineeringYonsei University Seoul 03722 Korea
| |
Collapse
|
50
|
Evans AD, Cummings MS, Luebke R, Brown MS, Favero S, Attfield MP, Siperstein F, Fairen-Jimenez D, Hellgardt K, Purves R, Law D, Petit C. Screening Metal–Organic Frameworks for Dynamic CO/N2 Separation Using Complementary Adsorption Measurement Techniques. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b03724] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Arwyn D. Evans
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | | | - Ryan Luebke
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Martyn S. Brown
- School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Silvia Favero
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Martin P. Attfield
- School of Chemistry, The University of Manchester, Manchester M13 9PL, U.K
| | - Flor Siperstein
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester M1 3AL, U.K
| | - David Fairen-Jimenez
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB3 0AS, U.K
| | - Klaus Hellgardt
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| | - Russell Purves
- BP Chemicals Ltd Petrochemicals Technology, Saltend, Hull H12 8DS, U.K
| | - David Law
- BP Chemicals Ltd Petrochemicals Technology, Saltend, Hull H12 8DS, U.K
| | - Camille Petit
- Barrer Centre, Department of Chemical Engineering, Imperial College London, London SW7 2AZ, U.K
| |
Collapse
|