1
|
Dias HM, de Toledo NA, Mural RV, Schnable JC, Van Sluys MA. THI1 Gene Evolutionary Trends: A Comprehensive Plant-Focused Assessment via Data Mining and Large-Scale Analysis. Genome Biol Evol 2024; 16:evae212. [PMID: 39400049 PMCID: PMC11521341 DOI: 10.1093/gbe/evae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/01/2024] [Accepted: 08/18/2024] [Indexed: 10/15/2024] Open
Abstract
Molecular evolution analysis typically involves identifying selection pressure and reconstructing evolutionary trends. This process usually requires access to specific data related to a target gene or gene family within a particular group of organisms. While recent advancements in high-throughput sequencing techniques have resulted in the rapid accumulation of extensive genomics and transcriptomics data and the creation of new databases in public repositories, extracting valuable insights from such vast data sets remains a significant challenge for researchers. Here, we elucidated the evolutionary history of THI1, a gene responsible for encoding thiamine thiazole synthase. The thiazole ring is a precursor for vitamin B1 and a crucial cofactor in primary metabolic pathways. A thorough search of complete genomes available within public repositories reveals 702 THI1 homologs of Archaea and Eukarya. Throughout its diversification, the plant lineage has preserved the THI1 gene by incorporating the N-terminus and targeting the chloroplasts. Likewise, evolutionary pressures and lifestyle appear to be associated with retention of TPP riboswitch sites and consequent dual posttranscriptional regulation of the de novo biosynthesis pathway in basal groups. Multicopy retention of THI1 is not a typical plant pattern, even after successive genome duplications. Examining cis-regulatory sites in plants uncovers two shared motifs across all plant lineages. A data mining of 484 transcriptome data sets supports the THI1 homolog expression under a light/dark cycle response and a tissue-specific pattern. Finally, the work presented brings a new look at public repositories as an opportunity to explore evolutionary trends to THI1.
Collapse
Affiliation(s)
- Henrique Moura Dias
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Naiara Almeida de Toledo
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| | - Ravi V Mural
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA
| | - James C Schnable
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, NE, USA
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Marie-Anne Van Sluys
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-090, SP, Brazil
| |
Collapse
|
2
|
Jespersen M, Wagner T. Assimilatory sulfate reduction in the marine methanogen Methanothermococcus thermolithotrophicus. Nat Microbiol 2023:10.1038/s41564-023-01398-8. [PMID: 37277534 DOI: 10.1038/s41564-023-01398-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/26/2023] [Indexed: 06/07/2023]
Abstract
Methanothermococcus thermolithotrophicus is the only known methanogen that grows on sulfate as its sole sulfur source, uniquely uniting methanogenesis and sulfate reduction. Here we use physiological, biochemical and structural analyses to provide a snapshot of the complete sulfate reduction pathway of this methanogenic archaeon. We find that later steps in this pathway are catalysed by atypical enzymes. PAPS (3'-phosphoadenosine 5'-phosphosulfate) released by APS kinase is converted into sulfite and 3'-phosphoadenosine 5'-phosphate (PAP) by a PAPS reductase that is similar to the APS reductases of dissimilatory sulfate reduction. A non-canonical PAP phosphatase then hydrolyses PAP. Finally, the F420-dependent sulfite reductase converts sulfite to sulfide for cellular assimilation. While metagenomic and metatranscriptomic studies suggest that the sulfate reduction pathway is present in several methanogens, the sulfate assimilation pathway in M. thermolithotrophicus is distinct. We propose that this pathway was 'mix-and-matched' through the acquisition of assimilatory and dissimilatory enzymes from other microorganisms and then repurposed to fill a unique metabolic role.
Collapse
Affiliation(s)
- Marion Jespersen
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Tristan Wagner
- Microbial Metabolism Group, Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
3
|
Moura Dias H, Vieira AP, de Jesus EM, de Setta N, Barros G, Van Sluys MA. Functional and comparative analysis of THI1 gene in grasses with a focus on sugarcane. PeerJ 2023; 11:e14973. [PMID: 37214086 PMCID: PMC10194071 DOI: 10.7717/peerj.14973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023] Open
Abstract
De novo synthesis of thiamine (vitamin B1) in plants depends on the action of thiamine thiazole synthase, which synthesizes the thiazole ring, and is encoded by the THI1 gene. Here, we investigated the evolution and diversity of THI1 in Poaceae, where C4 and C3 photosynthetic plants co-evolved. An ancestral duplication of THI1 is observed in Panicoideae that remains in many modern monocots, including sugarcane. In addition to the two sugarcane copies (ScTHI1-1 and ScTHI1-2), we identified ScTHI1-2 alleles showing differences in their sequence, indicating divergence between ScTHI1-2a and ScTHI1-2b. Such variations are observed only in the Saccharum complex, corroborating the phylogeny. At least five THI1 genomic environments were found in Poaceae, two in sugarcane, M. sinensis, and S. bicolor. The THI1 promoter in Poaceae is highly conserved at 300 bp upstream of the start codon ATG and has cis-regulatory elements that putatively bind to transcription factors associated with development, growth, development and biological rhythms. An experiment set to compare gene expression levels in different tissues across the sugarcane R570 life cycle showed that ScTHI1-1 was expressed mainly in leaves regardless of age. Furthermore, ScTHI1 displayed relatively high expression levels in meristem and culm, which varied with the plant age. Finally, yeast complementation studies with THI4-defective strain demonstrate that only ScTHI1-1 and ScTHI1-2b isoforms can partially restore thiamine auxotrophy, albeit at a low frequency. Taken together, the present work supports the existence of multiple origins of THI1 harboring genomic regions in Poaceae with predicted functional redundancy. In addition, it questions the contribution of the levels of the thiazole ring in C4 photosynthetic plant tissues or potentially the relevance of the THI1 protein activity.
Collapse
Affiliation(s)
| | | | | | - Nathalia de Setta
- Botanica/IB, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
- Universidade Federal do ABC, Sao Bernardo do Campo, Sao Paulo, Brazil
| | - Gesiele Barros
- Botanica/IB, Universidade de Sao Paulo, Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
4
|
Gelder K, Oliveira-Filho ER, García-García JD, Hu Y, Bruner SD, Hanson AD. Directed Evolution of Aerotolerance in Sulfide-Dependent Thiazole Synthases. ACS Synth Biol 2023; 12:963-970. [PMID: 36920242 PMCID: PMC10127261 DOI: 10.1021/acssynbio.2c00512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 03/16/2023]
Abstract
Sulfide-dependent THI4 thiazole synthases could potentially be used to replace plant cysteine-dependent suicide THI4s, whose high protein turnover rates make thiamin synthesis exceptionally energy-expensive. However, sulfide-dependent THI4s are anaerobic or microoxic enzymes and hence unadapted to the aerobic conditions in plants; they are also slow enzymes (kcat < 1 h-1). To improve aerotolerance and activity, we applied continuous directed evolution under aerobic conditions in the yeast OrthoRep system to two sulfide-dependent bacterial THI4s. Seven beneficial single mutations were identified, of which five lie in the active-site cleft predicted by structural modeling and two recapitulate features of naturally aerotolerant THI4s. That single mutations gave substantial improvements suggests that further advance under selection will be possible by stacking mutations. This proof-of-concept study established that the performance of sulfide-dependent THI4s in aerobic conditions is evolvable and, more generally, that yeast OrthoRep provides a plant-like bridge to adapt nonplant enzymes to work better in plants.
Collapse
Affiliation(s)
- Kristen
Van Gelder
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | - Edmar R. Oliveira-Filho
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| | | | - You Hu
- Chemistry
Department, University of Florida, Gainesville, Florida 32611, United States
| | - Steven D. Bruner
- Chemistry
Department, University of Florida, Gainesville, Florida 32611, United States
| | - Andrew D. Hanson
- Horticultural
Sciences Department, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
5
|
Bimai O, Legrand P, Ravanat JL, Touati N, Zhou J, He N, Lénon M, Barras F, Fontecave M, Golinelli-Pimpaneau B. The thiolation of uridine 34 in tRNA, which controls protein translation, depends on a [4Fe-4S] cluster in the archaeum Methanococcus maripaludis. Sci Rep 2023; 13:5351. [PMID: 37005440 PMCID: PMC10067955 DOI: 10.1038/s41598-023-32423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/24/2023] [Indexed: 04/04/2023] Open
Abstract
Thiolation of uridine 34 in the anticodon loop of several tRNAs is conserved in the three domains of life and guarantees fidelity of protein translation. U34-tRNA thiolation is catalyzed by a complex of two proteins in the eukaryotic cytosol (named Ctu1/Ctu2 in humans), but by a single NcsA enzyme in archaea. We report here spectroscopic and biochemical experiments showing that NcsA from Methanococcus maripaludis (MmNcsA) is a dimer that binds a [4Fe-4S] cluster, which is required for catalysis. Moreover, the crystal structure of MmNcsA at 2.8 Å resolution shows that the [4Fe-4S] cluster is coordinated by three conserved cysteines only, in each monomer. Extra electron density on the fourth nonprotein-bonded iron most likely locates the binding site for a hydrogenosulfide ligand, in agreement with the [4Fe-4S] cluster being used to bind and activate the sulfur atom of the sulfur donor. Comparison of the crystal structure of MmNcsA with the AlphaFold model of the human Ctu1/Ctu2 complex shows a very close superposition of the catalytic site residues, including the cysteines that coordinate the [4Fe-4S] cluster in MmNcsA. We thus propose that the same mechanism for U34-tRNA thiolation, mediated by a [4Fe-4S]-dependent enzyme, operates in archaea and eukaryotes.
Collapse
Affiliation(s)
- Ornella Bimai
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Saint Aubin BP48, 91198, Gif-sur-Yvette, France
| | - Jean-Luc Ravanat
- University of Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, UMR 5819, 38000, Grenoble, France
| | - Nadia Touati
- IR CNRS Renard, Chimie-ParisTech, 11 rue Pierre et Marie Curie, 75005, Paris, France
| | - Jingjing Zhou
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Nisha He
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Marine Lénon
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism in Enterobacteria Unit, Institut Pasteur, Université Paris Cité, UMR CNRS 6047, Paris, France
| | - Marc Fontecave
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France
| | - Béatrice Golinelli-Pimpaneau
- Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS UMR 8229, Sorbonne Université, 11 Place Marcelin Berthelot, 75231, Paris Cedex 05, France.
| |
Collapse
|
6
|
Mondal A, Lai RY, Fedoseyenko D, Giri N, Begley TP. Oxidative Dearomatization of PLP in Thiamin Pyrimidine Biosynthesis in Candida albicans. J Am Chem Soc 2023; 145:4421-4430. [PMID: 36802573 PMCID: PMC10848271 DOI: 10.1021/jacs.2c08560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 02/22/2023]
Abstract
The yeast thiamin pyrimidine synthase THI5p catalyzes one of the most complex organic rearrangements found in primary metabolism. In this reaction, the active site His66 and PLP are converted to thiamin pyrimidine in the presence of Fe(II) and oxygen. The enzyme is a single-turnover enzyme. Here, we report the identification of an oxidatively dearomatized PLP intermediate. We utilize oxygen labeling studies, chemical-rescue-based partial reconstitution experiments, and chemical model studies to support this identification. In addition, we also identify and characterize three shunt products derived from the oxidatively dearomatized PLP.
Collapse
Affiliation(s)
- Anushree Mondal
- Department of Chemistry, Texas A&M University, College Station, Texas77843, United States
| | | | - Dmytro Fedoseyenko
- Department of Chemistry, Texas A&M University, College Station, Texas77843, United States
| | | | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, Texas77843, United States
| |
Collapse
|
7
|
Qu YN, Rao YZ, Qi YL, Li YX, Li A, Palmer M, Hedlund BP, Shu WS, Evans PN, Nie GX, Hua ZS, Li WJ. Panguiarchaeum symbiosum, a potential hyperthermophilic symbiont in the TACK superphylum. Cell Rep 2023; 42:112158. [PMID: 36827180 DOI: 10.1016/j.celrep.2023.112158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/27/2022] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
The biology of Korarchaeia remains elusive due to the lack of genome representatives. Here, we reconstruct 10 closely related metagenome-assembled genomes from hot spring habitats and place them into a single species, proposed herein as Panguiarchaeum symbiosum. Functional investigation suggests that Panguiarchaeum symbiosum is strictly anaerobic and grows exclusively in thermal habitats by fermenting peptides coupled with sulfide and hydrogen production to dispose of electrons. Due to its inability to biosynthesize archaeal membranes, amino acids, and purines, this species likely exists in a symbiotic lifestyle similar to DPANN archaea. Population metagenomics and metatranscriptomic analyses demonstrated that genes associated with amino acid/peptide uptake and cell attachment exhibited positive selection and were highly expressed, supporting the proposed proteolytic catabolism and symbiotic lifestyle. Our study sheds light on the metabolism, evolution, and potential symbiotic lifestyle of Panguiarchaeum symbiosum, which may be a unique host-dependent archaeon within the TACK superphylum.
Collapse
Affiliation(s)
- Yan-Ni Qu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yang-Zhi Rao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Yan-Ling Qi
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Yu-Xian Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Andrew Li
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Marike Palmer
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA; Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Wen-Sheng Shu
- School of Life Sciences, South China Normal University, Guangzhou 510631, PR China
| | - Paul N Evans
- The Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Guo-Xing Nie
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Zheng-Shuang Hua
- Chinese Academy of Sciences Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
8
|
Abstract
Covering: up to 2022The report provides a broad approach to deciphering the evolution of coenzyme biosynthetic pathways. Here, these various pathways are analyzed with respect to the coenzymes required for this purpose. Coenzymes whose biosynthesis relies on a large number of coenzyme-mediated reactions probably appeared on the scene at a later stage of biological evolution, whereas the biosyntheses of pyridoxal phosphate (PLP) and nicotinamide (NAD+) require little additional coenzymatic support and are therefore most likely very ancient biosynthetic pathways.
Collapse
Affiliation(s)
- Andreas Kirschning
- Institute of Organic Chemistry, Leibniz University Hannover, Schneiderberg 1B, D-30167 Hannover, Germany.
| |
Collapse
|
9
|
Chatterjee S, Hausinger RP. Sulfur incorporation into biomolecules: recent advances. Crit Rev Biochem Mol Biol 2022; 57:461-476. [PMID: 36403141 PMCID: PMC10192010 DOI: 10.1080/10409238.2022.2141678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/05/2022] [Accepted: 10/26/2022] [Indexed: 11/21/2022]
Abstract
Sulfur is an essential element for a variety of cellular constituents in all living organisms and adds considerable functionality to a wide range of biomolecules. The pathways for incorporating sulfur into central metabolites of the cell such as cysteine, methionine, cystathionine, and homocysteine have long been established. Furthermore, the importance of persulfide intermediates during the biosynthesis of thionucleotide-containing tRNAs, iron-sulfur clusters, thiamin diphosphate, and the molybdenum cofactor are well known. This review briefly surveys these topics while emphasizing more recent aspects of sulfur metabolism that involve unconventional biosynthetic pathways. Sacrificial sulfur transfers from protein cysteinyl side chains to precursors of thiamin and the nickel-pincer nucleotide (NPN) cofactor are described. Newer aspects of synthesis for lipoic acid, biotin, and other compounds are summarized, focusing on the requisite iron-sulfur cluster destruction. Sulfur transfers by using a noncore sulfide ligand bound to a [4Fe-4S] cluster are highlighted for generating certain thioamides and for alternative biosynthetic pathways of thionucleotides and the NPN cofactor. Thioamide formation by activating an amide oxygen atom via phosphorylation also is illustrated. The discussion of these topics stresses the chemical reaction mechanisms of the transformations and generally avoids comments on the gene/protein nomenclature or the sources of the enzymes. This work sets the stage for future efforts to decipher the diverse mechanisms of sulfur incorporation into biological molecules.
Collapse
Affiliation(s)
- Shramana Chatterjee
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Robert P. Hausinger
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, MI, USA
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
10
|
Lai RY, Mondal A, Fedoseyenko D, Begley TP. Mechanistic Studies on the Single-Turnover Yeast Thiamin Pyrimidine Synthase: Characterization of the Inactive Enzyme. J Am Chem Soc 2022; 144:10711-10717. [PMID: 35675507 DOI: 10.1021/jacs.2c03322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eukaryotic thiamin pyrimidine synthase, THI5p, has been identified as a suicidal/single-turnover enzyme that catalyzes the conversion of its active site histidine and lysine-bound pyridoxal phosphate (PLP) to the thiamin pyrimidine (HMP-P). Here we identify the histidine and PLP fragments using bottom-up proteomics and LC-MS analysis. We also identify the active form of the iron cofactor and quantitate the oxygen requirement of the THI5p reaction. This information is integrated into a mechanistic proposal for this remarkable reaction.
Collapse
Affiliation(s)
- Rung-Yi Lai
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Anushree Mondal
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Dmytro Fedoseyenko
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Tadhg P Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
11
|
Wang S, Wang S, Li M, Su Y, Sun Z, Ma H. Combined transcriptome and metabolome analysis of Nerium indicum L. elaborates the key pathways that are activated in response to witches' broom disease. BMC PLANT BIOLOGY 2022; 22:291. [PMID: 35701735 PMCID: PMC9199210 DOI: 10.1186/s12870-022-03672-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 05/27/2022] [Indexed: 05/06/2023]
Abstract
BACKGROUND Nerium indicum Mill. is an ornamental plant that is found in parks, riversides, lakesides, and scenic areas in China and other parts of the world. Our recent survey indicated the prevalence of witches' broom disease (WBD) in Guangdong, China. To find out the possible defense strategies against WBD, we performed a MiSeq based ITS sequencing to identify the possible casual organism, then did a de novo transcriptome sequencing and metabolome profiling in the phloem and stem tip of N. indicum plants suffering from WBD compared to healthy ones. RESULTS The survey showed that Wengyuen county and Zengcheng district had the highest disease incidence rates. The most prevalent microbial species in the diseased tissues was Cophinforma mamane. The transcriptome sequencing resulted in the identification of 191,224 unigenes of which 142,396 could be annotated. There were 19,031 and 13,284 differentially expressed genes (DEGs) between diseased phloem (NOWP) and healthy phloem (NOHP), and diseased stem (NOWS) and healthy stem (NOHS), respectively. The DEGs were enriched in MAPK-signaling (plant), plant-pathogen interaction, plant-hormone signal transduction, phenylpropanoid and flavonoid biosynthesis, linoleic acid and α-linoleic acid metabolism pathways. Particularly, we found that N. indicum plants activated the phytohormone signaling, MAPK-signaling cascade, defense related proteins, and the biosynthesis of phenylpropanoids and flavonoids as defense responses to the pathogenic infection. The metabolome profiling identified 586 metabolites of which 386 and 324 metabolites were differentially accumulated in NOHP vs NOWP and NOHS and NOWS, respectively. The differential accumulation of metabolites related to phytohormone signaling, linoleic acid metabolism, phenylpropanoid and flavonoid biosynthesis, nicotinate and nicotinamide metabolism, and citrate cycle was observed, indicating the role of these pathways in defense responses against the pathogenic infection. CONCLUSION Our results showed that Guangdong province has a high incidence of WBD in most of the surveyed areas. C. mamane is suspected to be the causing pathogen of WBD in N. indicum. N. indicum initiated the MAPK-signaling cascade and phytohormone signaling, leading to the activation of pathogen-associated molecular patterns and hypersensitive response. Furthermore, N. indicum accumulated high concentrations of phenolic acids, coumarins and lignans, and flavonoids under WBD. These results provide scientific tools for the formulation of control strategies of WBD in N. indicum.
Collapse
Affiliation(s)
- Shengjie Wang
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Shengkun Wang
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Ming Li
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Yuhang Su
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Zhan Sun
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China
| | - Haibin Ma
- The Key Laboratory of National Forestry and Grassland Administration for Tropical Forestry Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Longdong, Guangzhou, 510520, China.
| |
Collapse
|
12
|
García-García JD, Van Gelder K, Joshi J, Bathe U, Leong BJ, Bruner SD, Liu CC, Hanson AD. Using continuous directed evolution to improve enzymes for plant applications. PLANT PHYSIOLOGY 2022; 188:971-983. [PMID: 34718794 PMCID: PMC8825276 DOI: 10.1093/plphys/kiab500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/29/2021] [Indexed: 05/12/2023]
Abstract
Continuous directed evolution of enzymes and other proteins in microbial hosts is capable of outperforming classical directed evolution by executing hypermutation and selection concurrently in vivo, at scale, with minimal manual input. Provided that a target enzyme's activity can be coupled to growth of the host cells, the activity can be improved simply by selecting for growth. Like all directed evolution, the continuous version requires no prior mechanistic knowledge of the target. Continuous directed evolution is thus a powerful way to modify plant or non-plant enzymes for use in plant metabolic research and engineering. Here, we first describe the basic features of the yeast (Saccharomyces cerevisiae) OrthoRep system for continuous directed evolution and compare it briefly with other systems. We then give a step-by-step account of three ways in which OrthoRep can be deployed to evolve primary metabolic enzymes, using a THI4 thiazole synthase as an example and illustrating the mutational outcomes obtained. We close by outlining applications of OrthoRep that serve growing demands (i) to change the characteristics of plant enzymes destined for return to plants, and (ii) to adapt ("plantize") enzymes from prokaryotes-especially exotic prokaryotes-to function well in mild, plant-like conditions.
Collapse
Affiliation(s)
- Jorge D García-García
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Zapopan, Mexico
| | - Kristen Van Gelder
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Jaya Joshi
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Ulschan Bathe
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Bryan J Leong
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Steven D Bruner
- Chemistry Department, University of Florida, Gainesville, Florida 32611
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, California 92617
- Department of Chemistry, University of California, Irvine, California 92617
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
- Author for communication:
| |
Collapse
|
13
|
Structure and function of aerotolerant, multiple-turnover THI4 thiazole synthases. Biochem J 2021; 478:3265-3279. [PMID: 34409984 PMCID: PMC8454699 DOI: 10.1042/bcj20210565] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022]
Abstract
Plant and fungal THI4 thiazole synthases produce the thiamin thiazole moiety in aerobic conditions via a single-turnover suicide reaction that uses an active-site Cys residue as sulfur donor. Multiple-turnover (i.e. catalytic) THI4s lacking an active-site Cys (non-Cys THI4s) that use sulfide as sulfur donor have been biochemically characterized —– but only from archaeal methanogens that are anaerobic, O2-sensitive hyperthermophiles from sulfide-rich habitats. These THI4s prefer iron as cofactor. A survey of prokaryote genomes uncovered non-Cys THI4s in aerobic mesophiles from sulfide-poor habitats, suggesting that multiple-turnover THI4 operation is possible in aerobic, mild, low-sulfide conditions. This was confirmed by testing 23 representative non-Cys THI4s for complementation of an Escherichia coli ΔthiG thiazole auxotroph in aerobic conditions. Sixteen were clearly active, and more so when intracellular sulfide level was raised by supplying Cys, demonstrating catalytic function in the presence of O2 at mild temperatures and indicating use of sulfide or a sulfide metabolite as sulfur donor. Comparative genomic evidence linked non-Cys THI4s with proteins from families that bind, transport, or metabolize cobalt or other heavy metals. The crystal structure of the aerotolerant bacterial Thermovibrio ammonificans THI4 was determined to probe the molecular basis of aerotolerance. The structure suggested no large deviations compared with the structures of THI4s from O2-sensitive methanogens, but is consistent with an alternative catalytic metal. Together with complementation data, use of cobalt rather than iron was supported. We conclude that catalytic THI4s can indeed operate aerobically and that the metal cofactor inserted is a likely natural determinant of aerotolerance.
Collapse
|
14
|
Bioinformatic and experimental evidence for suicidal and catalytic plant THI4s. Biochem J 2020; 477:2055-2069. [PMID: 32441748 DOI: 10.1042/bcj20200297] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022]
Abstract
Like fungi and some prokaryotes, plants use a thiazole synthase (THI4) to make the thiazole precursor of thiamin. Fungal THI4s are suicide enzymes that destroy an essential active-site Cys residue to obtain the sulfur atom needed for thiazole formation. In contrast, certain prokaryotic THI4s have no active-site Cys, use sulfide as sulfur donor, and are truly catalytic. The presence of a conserved active-site Cys in plant THI4s and other indirect evidence implies that they are suicidal. To confirm this, we complemented the Arabidopsistz-1 mutant, which lacks THI4 activity, with a His-tagged Arabidopsis THI4 construct. LC-MS analysis of tryptic peptides of the THI4 extracted from leaves showed that the active-site Cys was predominantly in desulfurated form, consistent with THI4 having a suicide mechanism in planta. Unexpectedly, transcriptome data mining and deep proteome profiling showed that barley, wheat, and oat have both a widely expressed canonical THI4 with an active-site Cys, and a THI4-like paralog (non-Cys THI4) that has no active-site Cys and is the major type of THI4 in developing grains. Transcriptomic evidence also indicated that barley, wheat, and oat grains synthesize thiamin de novo, implying that their non-Cys THI4s synthesize thiazole. Structure modeling supported this inference, as did demonstration that non-Cys THI4s have significant capacity to complement thiazole auxotrophy in Escherichia coli. There is thus a prima facie case that non-Cys cereal THI4s, like their prokaryotic counterparts, are catalytic thiazole synthases. Bioenergetic calculations show that, relative to suicide THI4s, such enzymes could save substantial energy during the grain-filling period.
Collapse
|
15
|
Synthesis of high-titer alka(e)nes in Yarrowia lipolytica is enabled by a discovered mechanism. Nat Commun 2020; 11:6198. [PMID: 33273473 PMCID: PMC7713262 DOI: 10.1038/s41467-020-19995-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022] Open
Abstract
Alka(e)nes are ideal fuel components for aviation, long-distance transport, and shipping. They are typically derived from fossil fuels and accounting for 24% of difficult-to-eliminate greenhouse gas emissions. The synthesis of alka(e)nes in Yarrowia lipolytica from CO2-neutral feedstocks represents an attractive alternative. Here we report that the high-titer synthesis of alka(e)nes in Yarrowia lipolytica harboring a fatty acid photodecarboxylase (CvFAP) is enabled by a discovered pathway. We find that acyl-CoAs, rather than free fatty acids (FFAs), are the preferred substrate for CvFAP. This finding allows us to debottleneck the pathway and optimize fermentation conditions so that we are able to redirect 89% of acyl-CoAs from the synthesis of neutral lipids to alka(e)nes and reach titers of 1.47 g/L from glucose. Two other CO2-derived substrates, wheat straw and acetate, are also demonstrated to be effective in producing alka(e)nes. Overall, our technology could advance net-zero emissions by providing CO2-neutral and energy-dense liquid biofuels. Alka(e)nes with chain lengths in C5-C23 range are ideal fuel components. Here, the authors report that high-titer production of alak(e)nes in pathway engineered Yarrowia lipolytica, which is enabled by the finding that acyl-CoA is another substrate of fatty acid photodecarboxylase (FAP).
Collapse
|
16
|
García-García JD, Joshi J, Patterson JA, Trujillo-Rodriguez L, Reisch CR, Javanpour AA, Liu CC, Hanson AD. Potential for Applying Continuous Directed Evolution to Plant Enzymes: An Exploratory Study. Life (Basel) 2020; 10:E179. [PMID: 32899502 PMCID: PMC7555113 DOI: 10.3390/life10090179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/22/2022] Open
Abstract
Plant evolution has produced enzymes that may not be optimal for maximizing yield and quality in today's agricultural environments and plant biotechnology applications. By improving enzyme performance, it should be possible to alleviate constraints on yield and quality currently imposed by kinetic properties or enzyme instability. Enzymes can be optimized more quickly than naturally possible by applying directed evolution, which entails mutating a target gene in vitro and screening or selecting the mutated gene products for the desired characteristics. Continuous directed evolution is a more efficient and scalable version that accomplishes the mutagenesis and selection steps simultaneously in vivo via error-prone replication of the target gene and coupling of the host cell's growth rate to the target gene's function. However, published continuous systems require custom plasmid assembly, and convenient multipurpose platforms are not available. We discuss two systems suitable for continuous directed evolution of enzymes, OrthoRep in Saccharomyces cerevisiae and EvolvR in Escherichia coli, and our pilot efforts to adapt each system for high-throughput plant enzyme engineering. To test our modified systems, we used the thiamin synthesis enzyme THI4, previously identified as a prime candidate for improvement. Our adapted OrthoRep system shows promise for efficient plant enzyme engineering.
Collapse
Affiliation(s)
| | - Jaya Joshi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| | - Jenelle A. Patterson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| | - Lidimarie Trujillo-Rodriguez
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA; (L.T.-R.); (C.R.R.)
| | - Christopher R. Reisch
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32603, USA; (L.T.-R.); (C.R.R.)
| | - Alex A. Javanpour
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA; (A.A.J.); (C.C.L.)
| | - Chang C. Liu
- Department of Biomedical Engineering, University of California, Irvine, CA 92617, USA; (A.A.J.); (C.C.L.)
- Department of Chemistry, University of California, Irvine, CA 92617, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA;
| |
Collapse
|
17
|
Leisinger F, Burn R, Meury M, Lukat P, Seebeck FP. Structural and Mechanistic Basis for Anaerobic Ergothioneine Biosynthesis. J Am Chem Soc 2019; 141:6906-6914. [DOI: 10.1021/jacs.8b12596] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Florian Leisinger
- Department for Chemistry, University of Basel, Mattenstrasse 24a, BPR 1002, 4056, Basel, Switzerland
| | - Reto Burn
- Department for Chemistry, University of Basel, Mattenstrasse 24a, BPR 1002, 4056, Basel, Switzerland
| | - Marcel Meury
- Department for Chemistry, University of Basel, Mattenstrasse 24a, BPR 1002, 4056, Basel, Switzerland
| | - Peer Lukat
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124, Braunschweig, Germany
| | - Florian P. Seebeck
- Department for Chemistry, University of Basel, Mattenstrasse 24a, BPR 1002, 4056, Basel, Switzerland
| |
Collapse
|
18
|
Sun J, Sigler CL, Beaudoin GAW, Joshi J, Patterson JA, Cho KH, Ralat MA, Gregory JF, Clark DG, Deng Z, Colquhoun TA, Hanson AD. Parts-Prospecting for a High-Efficiency Thiamin Thiazole Biosynthesis Pathway. PLANT PHYSIOLOGY 2019; 179:958-968. [PMID: 30337452 PMCID: PMC6393793 DOI: 10.1104/pp.18.01085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/10/2018] [Indexed: 05/04/2023]
Abstract
Plants synthesize the thiazole precursor of thiamin (cThz-P) via THIAMIN4 (THI4), a suicide enzyme that mediates one reaction cycle and must then be degraded and resynthesized. It has been estimated that this THI4 turnover consumes 2% to 12% of the maintenance energy budget and that installing an energy-efficient alternative pathway could substantially increase crop yield potential. Available data point to two natural alternatives to the suicidal THI4 pathway: (i) nonsuicidal prokaryotic THI4s that lack the active-site Cys residue on which suicide activity depends, and (ii) an uncharacterized thiazole synthesis pathway in flowers of the tropical arum lily Caladium bicolor that enables production and emission of large amounts of the cThz-P analog 4-methyl-5-vinylthiazole (MVT). We used functional complementation of an Escherichia coli ΔthiG strain to identify a nonsuicidal bacterial THI4 (from Thermovibrio ammonificans) that can function in conditions like those in plant cells. We explored whether C. bicolor synthesizes MVT de novo via a novel route, via a suicidal or a nonsuicidal THI4, or by catabolizing thiamin. Analysis of developmental changes in MVT emission, extractable MVT, thiamin level, and THI4 expression indicated that C. bicolor flowers make MVT de novo via a massively expressed THI4 and that thiamin is not involved. Functional complementation tests indicated that C. bicolor THI4, which has the active-site Cys needed to operate suicidally, may be capable of suicidal and - in hypoxic conditions - nonsuicidal operation. T. ammonificans and C. bicolor THI4s are thus candidate parts for rational redesign or directed evolution of efficient, nonsuicidal THI4s for use in crop improvement.
Collapse
Affiliation(s)
- Jiayi Sun
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Cindy L Sigler
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611
| | | | - Jaya Joshi
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Jenelle A Patterson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - Keun H Cho
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611
| | - Maria A Ralat
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - Jesse F Gregory
- Department of Food Science and Human Nutrition, University of Florida, Gainesville, Florida 32611
| | - David G Clark
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611
| | - Zhanao Deng
- Gulf Coast Research and Education Center, Department of Environmental Horticulture, University of Florida, Wimauma, Florida 33598
| | - Thomas A Colquhoun
- Department of Environmental Horticulture, University of Florida, Gainesville, Florida 32611
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| |
Collapse
|
19
|
Amthor JS, Bar-Even A, Hanson AD, Millar AH, Stitt M, Sweetlove LJ, Tyerman SD. Engineering Strategies to Boost Crop Productivity by Cutting Respiratory Carbon Loss. THE PLANT CELL 2019; 31:297-314. [PMID: 30670486 PMCID: PMC6447004 DOI: 10.1105/tpc.18.00743] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/04/2018] [Accepted: 01/09/2019] [Indexed: 05/03/2023]
Abstract
Roughly half the carbon that crop plants fix by photosynthesis is subsequently lost by respiration. Nonessential respiratory activity leading to unnecessary CO2 release is unlikely to have been minimized by natural selection or crop breeding, and cutting this large loss could complement and reinforce the currently dominant yield-enhancement strategy of increasing carbon fixation. Until now, however, respiratory carbon losses have generally been overlooked by metabolic engineers and synthetic biologists because specific target genes have been elusive. We argue that recent advances are at last pinpointing individual enzyme and transporter genes that can be engineered to (1) slow unnecessary protein turnover, (2) replace, relocate, or reschedule metabolic activities, (3) suppress futile cycles, and (4) make ion transport more efficient, all of which can reduce respiratory costs. We identify a set of engineering strategies to reduce respiratory carbon loss that are now feasible and model how implementing these strategies singly or in tandem could lead to substantial gains in crop productivity.
Collapse
Affiliation(s)
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, Florida 32611
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Crawley 6009 WA, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, D-14476 Potsdam-Golm, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Stephen D Tyerman
- ARC Centre of Excellence in Plant Energy Biology, Department of Plant Science, School of Agriculture, Food, and Wine, Waite Research Institute, University of Adelaide, Glen Osmond SA 5064, Australia
| |
Collapse
|
20
|
The Prodigal Compound: Return of Ribosyl 1,5-Bisphosphate as an Important Player in Metabolism. Microbiol Mol Biol Rev 2018; 83:83/1/e00040-18. [PMID: 30567937 DOI: 10.1128/mmbr.00040-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ribosyl 1,5-bisphosphate (PRibP) was discovered 65 years ago and was believed to be an important intermediate in ribonucleotide metabolism, a role immediately taken over by its "big brother" phosphoribosyldiphosphate. Only recently has PRibP come back into focus as an important player in the metabolism of ribonucleotides with the discovery of the pentose bisphosphate pathway that comprises, among others, the intermediates PRibP and ribulose 1,5-bisphosphate (cf. ribose 5-phosphate and ribulose 5-phosphate of the pentose phosphate pathway). Enzymes of several pathways produce and utilize PRibP not only in ribonucleotide metabolism but also in the catabolism of phosphonates, i.e., compounds containing a carbon-phosphorus bond. Pathways for PRibP metabolism are found in all three domains of life, most prominently among organisms of the archaeal domain, where they have been identified either experimentally or by bioinformatic analysis within all of the four main taxonomic groups, Euryarchaeota, TACK, DPANN, and Asgard. Advances in molecular genetics of archaea have greatly improved the understanding of the physiology of PRibP metabolism, and reconciliation of molecular enzymology and three-dimensional structure analysis of enzymes producing or utilizing PRibP emphasize the versatility of the compound. Finally, PRibP is also an effector of several metabolic activities in many organisms, including higher organisms such as mammals. In the present review, we describe all aspects of PRibP metabolism, with emphasis on the biochemical, genetic, and physiological aspects of the enzymes that produce or utilize PRibP. The inclusion of high-resolution structures of relevant enzymes that bind PRibP provides evidence for the flexibility and importance of the compound in metabolism.
Collapse
|
21
|
Fellner M, Rankin JA, Desguin B, Hu J, Hausinger RP. Analysis of the Active Site Cysteine Residue of the Sacrificial Sulfur Insertase LarE from Lactobacillus plantarum. Biochemistry 2018; 57:5513-5523. [PMID: 30157639 DOI: 10.1021/acs.biochem.8b00601] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
LarE from Lactobacillus plantarum is an ATP-dependent sulfur transferase that sacrifices its Cys176 sulfur atom to form a dehydroalanine (Dha) side chain during biosynthesis of the covalently linked nickel-pincer nucleotide (NPN) cofactor (pyridinium 3-thioamide-5-thiocarboxylic acid mononucleotide) of lactate racemase. Coenzyme A (CoA) stabilizes LarE and forms a CoA-Cys176 mixed disulfide with the protein. This study presents the crystal structure of the LarE/CoA complex, revealing protein interactions with CoA that mimic those for binding ATP. CoA weakly inhibits LarE activity, and the persulfide of CoA is capable of partially regenerating functional LarE from the Dha176 form of the protein. The physiological relevance of this cycling reaction is unclear. A new form of LarE was discovered, an NPN-LarE covalent adduct, explaining prior results in which activation of the lactate racemase apoprotein required only the isolated LarE. The crystal structure of the inactive C176A variant revealed a fold essentially identical to that of wild-type LarE. Additional active site variants of LarE were created and their activities characterized, with all LarE variants analyzed in terms of the structure. Finally, the L. plantarum LarE structure was compared to a homology model of Thermoanaerobacterium thermosaccharolyticum LarE, predicted to contain three cysteine residues at the active site, and to other proteins with a similar fold and multiple active site cysteine residues. These findings suggest that some LarE orthologs may not be sacrificial but instead may catalyze sulfur transfer by using a persulfide mechanism or from a labile site on a [4Fe-4S] cluster at this position.
Collapse
Affiliation(s)
- Matthias Fellner
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Joel A Rankin
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Benoît Desguin
- Institute of Life Sciences , Université catholique de Louvain , B-1348 Louvain-La-Neuve , Belgium
| | - Jian Hu
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States.,Department of Chemistry , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Robert P Hausinger
- Department of Biochemistry and Molecular Biology , Michigan State University , East Lansing , Michigan 48824 , United States.,Department of Microbiology and Molecular Genetics , Michigan State University , East Lansing , Michigan 48824 , United States
| |
Collapse
|
22
|
Microbial cell factories for the sustainable manufacturing of B vitamins. Curr Opin Biotechnol 2018; 56:18-29. [PMID: 30138794 DOI: 10.1016/j.copbio.2018.07.006] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022]
Abstract
Vitamins are essential compounds in human and animal diets. Their demand is increasing globally in food, feed, cosmetics, chemical and pharmaceutical industries. Most current production methods are unsustainable because they use non-renewable sources and often generate hazardous waste. Many microorganisms produce vitamins naturally, but their corresponding metabolic pathways are tightly regulated since vitamins are needed only in catalytic amounts. Metabolic engineering is accelerating the development of microbial cell factories for vitamins that could compete with chemical methods that have been optimized over decades, but scientific hurdles remain. Additional technological and regulatory issues need to be overcome for innovative bioprocesses to reach the market. Here, we review the current state of development and challenges for fermentative processes for the B vitamin group.
Collapse
|
23
|
Hanson AD, Amthor JS, Sun J, Niehaus TD, Gregory JF, Bruner SD, Ding Y. Redesigning thiamin synthesis: Prospects and potential payoffs. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 273:92-99. [PMID: 29907313 DOI: 10.1016/j.plantsci.2018.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 05/20/2023]
Abstract
Thiamin is essential for plant growth but is short-lived in vivo and energetically very costly to produce - a combination that makes thiamin biosynthesis a prime target for improvement by redesign. Thiamin consists of thiazole and pyrimidine moieties. Its high biosynthetic cost stems from use of the suicide enzyme THI4 to form the thiazole and the near-suicide enzyme THIC to form the pyrimidine. These energetic costs lower biomass yield potential and are likely compounded by environmental stresses that destroy thiamin and hence increase the rate at which it must be made. The energy costs could be slashed by refactoring the thiamin biosynthesis pathway to eliminate the suicidal THI4 and THIC reactions. To substantiate this design concept, we first document the energetic costs of the THI4 and THIC steps in the pathway and explain how cutting these costs could substantially increase crop biomass and grain yields. We then show that a refactored pathway must produce thiamin itself rather than a stripped-down analog because the thiamin molecule cannot be simplified without losing biological activity. Lastly, we consider possible energy-efficient alternatives to the inefficient natural THI4- and THIC-mediated steps.
Collapse
Affiliation(s)
- Andrew D Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA.
| | | | - Jiayi Sun
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Thomas D Niehaus
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Steven D Bruner
- Chemistry Department, University of Florida, Gainesville, FL, USA
| | - Yousong Ding
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
24
|
Song Z, Pan J, Xie L, Gong G, Han S, Zhang W, Hu Y. Expression, Purification, and Activity of ActhiS, a Thiazole Biosynthesis Enzyme from Acremonium chrysogenum. BIOCHEMISTRY (MOSCOW) 2017; 82:852-860. [PMID: 28918750 DOI: 10.1134/s0006297917070112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thiamine pyrophosphate is an essential coenzyme in all organisms. Its biosynthesis involves independent syntheses of the precursors, pyrimidine and thiazole, which are then coupled. In our previous study with overexpressed and silent mutants of ActhiS (thiazole biosynthesis enzyme from Acremonium chrysogenum), we found that the enzyme level correlated with intracellular thiamine content in A. chrysogenum. However, the exact structure and function of ActhiS remain unclear. In this study, the enzyme-bound ligand was characterized as the ADP adduct of 5-(2-hydroxyethyl)-4-methylthiazole-2-carboxylic acid (ADT) using HPLC and 1H NMR. The ligand-free ActhiS expressed in M9 minimal medium catalyzed conversion of NAD+ and glycine to ADT in the presence of iron. Furthermore, the C217 residue was identified as the sulfur donor for the thiazole moiety. These observations confirm that ActhiS is a thiazole biosynthesis enzyme in A. chrysogenum, and it serves as a sulfur source for the thiazole moiety.
Collapse
Affiliation(s)
- Zhihui Song
- China State Institute of Pharmaceutical Industry, Zhangjiang Institute, Shanghai, 201203, China.
| | | | | | | | | | | | | |
Collapse
|
25
|
Nonredox thiolation in tRNA occurring via sulfur activation by a [4Fe-4S] cluster. Proc Natl Acad Sci U S A 2017; 114:7355-7360. [PMID: 28655838 DOI: 10.1073/pnas.1700902114] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Sulfur is present in several nucleosides within tRNAs. In particular, thiolation of the universally conserved methyl-uridine at position 54 stabilizes tRNAs from thermophilic bacteria and hyperthermophilic archaea and is required for growth at high temperature. The simple nonredox substitution of the C2-uridine carbonyl oxygen by sulfur is catalyzed by tRNA thiouridine synthetases called TtuA. Spectroscopic, enzymatic, and structural studies indicate that TtuA carries a catalytically essential [4Fe-4S] cluster and requires ATP for activity. A series of crystal structures shows that (i) the cluster is ligated by only three cysteines that are fully conserved, allowing the fourth unique iron to bind a small ligand, such as exogenous sulfide, and (ii) the ATP binding site, localized thanks to a protein-bound AMP molecule, a reaction product, is adjacent to the cluster. A mechanism for tRNA sulfuration is suggested, in which the unique iron of the catalytic cluster serves to bind exogenous sulfide, thus acting as a sulfur carrier.
Collapse
|
26
|
ThiN as a Versatile Domain of Transcriptional Repressors and Catalytic Enzymes of Thiamine Biosynthesis. J Bacteriol 2017; 199:JB.00810-16. [PMID: 28115546 DOI: 10.1128/jb.00810-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 01/14/2017] [Indexed: 01/21/2023] Open
Abstract
Thiamine biosynthesis is commonly regulated by a riboswitch mechanism; however, the enzymatic steps and regulation of this pathway in archaea are poorly understood. Haloferax volcanii, one of the representative archaea, uses a eukaryote-like Thi4 (thiamine thiazole synthase) for the production of the thiazole ring and condenses this ring with a pyrimidine moiety synthesized by an apparent bacterium-like ThiC (2-methyl-4-amino-5-hydroxymethylpyrimidine [HMP] phosphate synthase) branch. Here we found that archaeal Thi4 and ThiC were encoded by leaderless transcripts, ruling out a riboswitch mechanism. Instead, a novel ThiR transcription factor that harbored an N-terminal helix-turn-helix (HTH) DNA binding domain and C-terminal ThiN (TMP synthase) domain was identified. In the presence of thiamine, ThiR was found to repress the expression of thi4 and thiC by a DNA operator sequence that was conserved across archaeal phyla. Despite having a ThiN domain, ThiR was found to be catalytically inactive in compensating for the loss of ThiE (TMP synthase) function. In contrast, bifunctional ThiDN, in which the ThiN domain is fused to an N-terminal ThiD (HMP/HMP phosphate [HMP-P] kinase) domain, was found to be interchangeable for ThiE function and, thus, active in thiamine biosynthesis. A conserved Met residue of an extended α-helix near the active-site His of the ThiN domain was found to be important for ThiDN catalytic activity, whereas the corresponding Met residue was absent and the α-helix was shorter in ThiR homologs. Thus, we provide new insight into residues that distinguish catalytic from noncatalytic ThiN domains and reveal that thiamine biosynthesis in archaea is regulated by a transcriptional repressor, ThiR, and not by a riboswitch.IMPORTANCE Thiamine pyrophosphate (TPP) is a cofactor needed for the enzymatic activity of many cellular processes, including central metabolism. In archaea, thiamine biosynthesis is an apparent chimera of eukaryote- and bacterium-type pathways that is not well defined at the level of enzymatic steps or regulatory mechanisms. Here we find that ThiN is a versatile domain of transcriptional repressors and catalytic enzymes of thiamine biosynthesis in archaea. Our study provides new insight into residues that distinguish catalytic from noncatalytic ThiN domains and reveals that archaeal thiamine biosynthesis is regulated by a ThiN domain transcriptional repressor, ThiR, and not by a riboswitch.
Collapse
|
27
|
Pilo AL, Peng Z, McLuckey SA. The dehydroalanine effect in the fragmentation of ions derived from polypeptides. JOURNAL OF MASS SPECTROMETRY : JMS 2016; 51:857-866. [PMID: 27484024 PMCID: PMC5068825 DOI: 10.1002/jms.3831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/27/2016] [Accepted: 07/28/2016] [Indexed: 05/11/2023]
Abstract
The fragmentation of peptides and proteins upon collision-induced dissociation (CID) is highly dependent on sequence and ion type (e.g. protonated, deprotonated, sodiated, odd electron, etc.). Some amino acids, for example aspartic acid and proline, have been found to enhance certain cleavages along the backbone. Here, we show that peptides and proteins containing dehydroalanine, a non-proteinogenic amino acid with an unsaturated side-chain, undergo enhanced cleavage of the N-Cα bond of the dehydroalanine residue to generate c- and z-ions. Because these fragment ion types are not commonly observed upon activation of positively charged even-electron species, they can be used to identify dehydroalanine residues and localize them within the peptide or protein chain. While dehydroalanine can be generated in solution, it can also be generated in the gas phase upon CID of various species. Oxidized S-alkyl cysteine residues generate dehydroalanine upon activation via highly efficient loss of the alkyl sulfenic acid. Asymmetric cleavage of disulfide bonds upon collisional activation of systems with limited proton mobility also generates dehydroalanine. Furthermore, we show that gas-phase ion/ion reactions can be used to facilitate the generation of dehydroalanine residues via, for example, oxidation of S-alkyl cysteine residues and conversion of multiply-protonated peptides to radical cations. In the latter case, loss of radical side-chains to generate dehydroalanine from some amino acids gives rise to the possibility for residue-specific backbone cleavage of polypeptide ions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alice L Pilo
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Zhou Peng
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA
| | - Scott A McLuckey
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907-2084, USA.
| |
Collapse
|
28
|
Zhang X, Eser BE, Chanani PK, Begley TP, Ealick SE. Structural Basis for Iron-Mediated Sulfur Transfer in Archael and Yeast Thiazole Synthases. Biochemistry 2016; 55:1826-38. [PMID: 26919468 PMCID: PMC4811699 DOI: 10.1021/acs.biochem.6b00030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Thiamin diphosphate is an essential cofactor in all forms of life and plays a key role in amino acid and carbohydrate metabolism. Its biosynthesis involves separate syntheses of the pyrimidine and thiazole moieties, which are then coupled to form thiamin monophosphate. A final phosphorylation produces the active form of the cofactor. In most bacteria, six gene products are required for biosynthesis of the thiamin thiazole. In yeast and fungi only one gene product, Thi4, is required for thiazole biosynthesis. Methanococcus jannaschii expresses a putative Thi4 ortholog that was previously reported to be a ribulose 1,5-bisphosphate synthase [Finn, M. W. and Tabita, F. R. (2004) J. Bacteriol., 186, 6360-6366]. Our structural studies show that the Thi4 orthologs from M. jannaschii and Methanococcus igneus are structurally similar to Thi4 from Saccharomyces cerevisiae. In addition, all active site residues are conserved except for a key cysteine residue, which in S. cerevisiae is the source of the thiazole sulfur atom. Our recent biochemical studies showed that the archael Thi4 orthologs use nicotinamide adenine dinucleotide, glycine, and free sulfide to form the thiamin thiazole in an iron-dependent reaction [Eser, B., Zhang, X., Chanani, P. K., Begley, T. P., and Ealick, S. E. (2016) J. Am. Chem. Soc. , DOI: 10.1021/jacs.6b00445]. Here we report X-ray crystal structures of Thi4 from M. jannaschii complexed with ADP-ribulose, the C205S variant of Thi4 from S. cerevisiae with a bound glycine imine intermediate, and Thi4 from M. igneus with bound glycine imine intermediate and iron. These studies reveal the structural basis for the iron-dependent mechanism of sulfur transfer in archael and yeast thiazole synthases.
Collapse
Affiliation(s)
- Xuan Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853
| | - Bekir E. Eser
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Prem K. Chanani
- Department of Chemistry, Texas A&M University, College Station, Texas 77843
| | - Tadhg P. Begley
- Department of Chemistry, Texas A&M University, College Station, Texas 77843,To whom correspondence should be addressed at the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853. Telephone: (607) 255-7961. Fax: (607) 255-1227. ,
| | - Steven E. Ealick
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853,To whom correspondence should be addressed at the Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853. Telephone: (607) 255-7961. Fax: (607) 255-1227. ,
| |
Collapse
|